The document provides notes on group theory. It discusses the definition of groups and examples of groups such as (Z, +), (Q, ×), and Sn. Properties of groups like Lagrange's theorem and criteria for subgroups are also covered. The notes then discuss symmetry groups, defining isometries of R2 and showing that the set of isometries forms a group. Symmetry groups G(Π) of objects Π in R2 are introduced and shown to be subgroups. Specific examples of symmetry groups like those of triangles, squares, regular n-gons, and infinite strips are analyzed. Finally, the concept of group isomorphism is defined and examples are given to illustrate isomorphic groups.