SlideShare a Scribd company logo
Multidirectional errors Latent class MTMM Conclusions
Multidirectional survey measurement errors:
the latent class MTMM model
Daniel Oberski / doberski@uvt.nl
Department of methodology & statistics
AAPOR 2015
Latent class MTMM Daniel Oberski / doberski@uvt.nl
Multidirectional errors Latent class MTMM Conclusions
..1 Multidirectional survey measurement errors
..2 Latent class multitrait-multimethod model
..3 Conclusions
Latent class MTMM Daniel Oberski / doberski@uvt.nl
Multidirectional errors Latent class MTMM Conclusions
Stochastic errors
Two respondents who:
• Went to the doctor the same number of
times
• Have the same opinion about the role of
women in society
give different answers to these questions.
This will bias estimates of relationships
between the variables.
Latent class MTMM Daniel Oberski / doberski@uvt.nl
Multidirectional errors Latent class MTMM Conclusions
Stochastic errors
• Latent variables can never be recovered
Latent class MTMM Daniel Oberski / doberski@uvt.nl
Multidirectional errors Latent class MTMM Conclusions
Stochastic errors
• Latent variables can never be recovered
• But latent variable models can recover the
amount of influence they exert
Latent class MTMM Daniel Oberski / doberski@uvt.nl
Multidirectional errors Latent class MTMM Conclusions
Stochastic errors
• Latent variables can never be recovered
• But latent variable models can recover the
amount of influence they exert
• This is useful to remove bias
Latent class MTMM Daniel Oberski / doberski@uvt.nl
Multidirectional errors Latent class MTMM Conclusions
Stochastic errors
• Latent variables can never be recovered
• But latent variable models can recover the
amount of influence they exert
• This is useful to remove bias
Latent class MTMM Daniel Oberski / doberski@uvt.nl
Multidirectional errors Latent class MTMM Conclusions
Stochastic errors
• Latent variables can never be recovered
• But latent variable models can recover the
amount of influence they exert
• This is useful to remove bias
• Multitrait-multimethod
(MTMM)
approach to estimating this influence
(Andrews 1984; Saris & Andrews 1991; Saris &
Gallhofer 2007);
Latent class MTMM Daniel Oberski / doberski@uvt.nl
Multidirectional errors Latent class MTMM Conclusions
Stochastic errors
• Latent variables can never be recovered
• But latent variable models can recover the
amount of influence they exert
• This is useful to remove bias
• Multitrait-multimethod
(MTMM)
approach to estimating this influence
(Andrews 1984; Saris & Andrews 1991; Saris &
Gallhofer 2007);
• Quasi-simplex approach (Wiley & Wiley 1970;
Alwin 2007).
Latent class MTMM Daniel Oberski / doberski@uvt.nl
Multidirectional errors Latent class MTMM Conclusions
Stochastic errors
• Latent variables can never be recovered
• But latent variable models can recover the
amount of influence they exert
• This is useful to remove bias
• Multitrait-multimethod
(MTMM)
approach to estimating this influence
(Andrews 1984; Saris & Andrews 1991; Saris &
Gallhofer 2007);
• Quasi-simplex approach (Wiley & Wiley 1970;
Alwin 2007).
Latent class MTMM Daniel Oberski / doberski@uvt.nl
Multidirectional errors Latent class MTMM Conclusions
Stochastic errors
• Latent variables can never be recovered
• But latent variable models can recover the
amount of influence they exert
• This is useful to remove bias
• Multitrait-multimethod
(MTMM)
approach to estimating this influence
(Andrews 1984; Saris & Andrews 1991; Saris &
Gallhofer 2007);
• Quasi-simplex approach (Wiley & Wiley 1970;
Alwin 2007).
↑ Linear
models
Latent class MTMM Daniel Oberski / doberski@uvt.nl
Multidirectional errors Latent class MTMM Conclusions
Stochastic errors in the literature
• Random mistakes
• Acquiescence
• Answering in the socially desirable direction
• Tending to choose the first/last of several categories
• Extreme response (outer categories)
• Avoiding some particular category for whatever reason
• Preferring the midpoint
• Heaping (rounding)
• ...
Problem: Not all of these are linear
Stochastic errors are multidirectional
Latent class MTMM Daniel Oberski / doberski@uvt.nl
Multidirectional errors Latent class MTMM Conclusions
Example of the effect of a nonlinear error on estimate of
relationships
True relationship
1 2 3 4
1 136 112 91 75
2 112 75 50 34
3 91 50 28 15
4 75 34 15 7
Polychoric correlation = -0.25
Relationship with ERS
1 2 3 4
1 374 41 34 205
2 41 4 3 12
3 34 3 1 6
4 205 12 6 19
Polychoric correlation = -0.43
Latent class MTMM Daniel Oberski / doberski@uvt.nl
Multidirectional errors Latent class MTMM Conclusions
Problem: Stochastic errors can strongly bias relationship
estimates;
Problem: Linear latent variable models assume errors are all
one-way, so bias is not appropriately removed.
Solution: Latent class models to allow for multidirectional errors.
Here MTMM but could also be quasi-simplex
Latent class MTMM Daniel Oberski / doberski@uvt.nl
Multidirectional errors Latent class MTMM Conclusions
The latent class MTMM model
Oberski, Hagenaars & Saris, to appear in Psychological Methods.
Latent class MTMM Daniel Oberski / doberski@uvt.nl
Multidirectional errors Latent class MTMM Conclusions
M1 M2 M3
T1 T2 T3
y11 y21 y31 y12 y22 y32 y13 y23 y33
• Latent variables are discrete (categorical)
• Observed may be continuous or discrete
• Relationships (can be) nonparametric
Latent class MTMM Daniel Oberski / doberski@uvt.nl
Multidirectional errors Latent class MTMM Conclusions
Experimental design: split-ballot MTMM
Method 1 Method 2 Method 3
Random group 1 . .
Random group 2 . .
Latent class MTMM Daniel Oberski / doberski@uvt.nl
Multidirectional errors Latent class MTMM Conclusions
Opinion about the role of women experiment: Main
questionnaire (first method)
Latent class MTMM Daniel Oberski / doberski@uvt.nl
Multidirectional errors Latent class MTMM Conclusions
Opinion about the role of women experiment:
Supplementary group 1 (second method)
Latent class MTMM Daniel Oberski / doberski@uvt.nl
Multidirectional errors Latent class MTMM Conclusions
Opinion about the role of women experiment:
Supplementary group 2 (third method)
Latent class MTMM Daniel Oberski / doberski@uvt.nl
Multidirectional errors Latent class MTMM Conclusions
Effect of trait on item distribution, Greece
Men more right, positive agree-disgree
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Latent class MTMM Daniel Oberski / doberski@uvt.nl
1 2 3 4 5
Factor score: 0.00
Category
Proportion
0.00.20.40.60.81.0
Multidirectional errors Latent class MTMM Conclusions
Effect of trait on item distribution, Slovenia
Men more right, negative agree-disgree
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Latent class MTMM Daniel Oberski / doberski@uvt.nl
1 2 3 4 5
Factor score: 0.00
Category
Proportion
0.00.20.40.60.81.0
Multidirectional errors Latent class MTMM Conclusions
Method factors have a nonlinear influence on the items
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Cut down, method 1
Trait
Method
1
2
34
5
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Cut down, method 2
Trait
Method
1
2 3
4
5
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Cut down, method 3
Trait
Method
1
2
3
4
5
Latent class MTMM Daniel Oberski / doberski@uvt.nl
Multidirectional errors Latent class MTMM Conclusions
Prevalence of method behavior
Latent class MTMM Daniel Oberski / doberski@uvt.nl
Multidirectional errors Latent class MTMM Conclusions
Conclusion
Latent class MTMM Daniel Oberski / doberski@uvt.nl
Multidirectional errors Latent class MTMM Conclusions
Conclusion
• Stochastic errors are important when you are interested in
relationships;
• Need latent variable models to estimate their extent so their
effects can be removed statistically;
• In traditional MTMM and quasi-simplex models, these effects
are all one-way;
• Latent class models allow for multidirectional errors.
• Example: the latent
class
MTMM model
(Oberski et al., to appear - see http://daob.nl/publications)
Latent class MTMM Daniel Oberski / doberski@uvt.nl
Multidirectional errors Latent class MTMM Conclusions
Thank you for your attention!
doberski@uvt.nl
@DanielOberski
See http://daob.nl/publications for preprints
Supported by Veni grant number 451-14-017 from the Netherlands
Organization for Scientific Research (NWO).
Latent class MTMM Daniel Oberski / doberski@uvt.nl

More Related Content

PPTX
KyotoJALT 2015
PDF
A measure to evaluate latent variable model fit by sensitivity analysis
PDF
lavaan.survey: An R package for complex survey analysis of structural equatio...
PDF
Complex sampling in latent variable models
PDF
How good are administrative register data and what can we do about it?
PDF
Predicting the quality of a survey question from its design characteristics: SQP
PDF
ESRA2015 course: Latent Class Analysis for Survey Research
PDF
Predicting the quality of a survey question from its design characteristics
KyotoJALT 2015
A measure to evaluate latent variable model fit by sensitivity analysis
lavaan.survey: An R package for complex survey analysis of structural equatio...
Complex sampling in latent variable models
How good are administrative register data and what can we do about it?
Predicting the quality of a survey question from its design characteristics: SQP
ESRA2015 course: Latent Class Analysis for Survey Research
Predicting the quality of a survey question from its design characteristics

Similar to Multidirectional survey measurement errors: the latent class MTMM model (20)

PPTX
XAI-proposal2.pptx
PPTX
Basics of Structural Equation Modeling
PDF
General Concepts of Machine Learning
PPTX
Anomalies! You can't escape them.
PPTX
Engineering Method.pptx
PPTX
BASIC MATH PROBLEMS IN STATISCTICSS.pptx
PPTX
Irt assessment
PPTX
Evaluating algorithms using Item Response Theory
DOCX
Estimating Models Using Dummy VariablesYou have had plenty of op.docx
PDF
Panel Data Models
PDF
DS-38data sciencehandbooknotescompiled-46.pdf
PPSX
Analytical Chemistry.ppsx
PDF
0 Model Interpretation setting.pdf
DOCX
The statement that a person who scores 120 has twice as much of the .docx
DOCX
The statement that a person who scores 120 has twice as much of .docx
DOC
Poor man's missing value imputation
PDF
Rits Brown Bag - Surveys and Polls Techniques
PPTX
Topic2a-problems_in_modelling_heteroskedasticity.pptx
PPTX
Top 10 Data Science Practitioner Pitfalls
PPT
Geneticschapter1 140126121555-phpapp02
XAI-proposal2.pptx
Basics of Structural Equation Modeling
General Concepts of Machine Learning
Anomalies! You can't escape them.
Engineering Method.pptx
BASIC MATH PROBLEMS IN STATISCTICSS.pptx
Irt assessment
Evaluating algorithms using Item Response Theory
Estimating Models Using Dummy VariablesYou have had plenty of op.docx
Panel Data Models
DS-38data sciencehandbooknotescompiled-46.pdf
Analytical Chemistry.ppsx
0 Model Interpretation setting.pdf
The statement that a person who scores 120 has twice as much of the .docx
The statement that a person who scores 120 has twice as much of .docx
Poor man's missing value imputation
Rits Brown Bag - Surveys and Polls Techniques
Topic2a-problems_in_modelling_heteroskedasticity.pptx
Top 10 Data Science Practitioner Pitfalls
Geneticschapter1 140126121555-phpapp02
Ad

Recently uploaded (20)

PDF
SEHH2274 Organic Chemistry Notes 1 Structure and Bonding.pdf
PPTX
EPIDURAL ANESTHESIA ANATOMY AND PHYSIOLOGY.pptx
PPTX
ognitive-behavioral therapy, mindfulness-based approaches, coping skills trai...
PPTX
TOTAL hIP ARTHROPLASTY Presentation.pptx
PPTX
BIOMOLECULES PPT........................
PDF
Cosmic Outliers: Low-spin Halos Explain the Abundance, Compactness, and Redsh...
PDF
Unveiling a 36 billion solar mass black hole at the centre of the Cosmic Hors...
PDF
Sciences of Europe No 170 (2025)
PDF
CAPERS-LRD-z9:AGas-enshroudedLittleRedDotHostingaBroad-lineActive GalacticNuc...
PPTX
The KM-GBF monitoring framework – status & key messages.pptx
PPTX
7. General Toxicologyfor clinical phrmacy.pptx
PPTX
ECG_Course_Presentation د.محمد صقران ppt
PPTX
2Systematics of Living Organisms t-.pptx
PDF
IFIT3 RNA-binding activity primores influenza A viruz infection and translati...
PPT
The World of Physical Science, • Labs: Safety Simulation, Measurement Practice
PPTX
cpcsea ppt.pptxssssssssssssssjjdjdndndddd
PPTX
Comparative Structure of Integument in Vertebrates.pptx
PPTX
Classification Systems_TAXONOMY_SCIENCE8.pptx
PDF
VARICELLA VACCINATION: A POTENTIAL STRATEGY FOR PREVENTING MULTIPLE SCLEROSIS
PDF
Biophysics 2.pdffffffffffffffffffffffffff
SEHH2274 Organic Chemistry Notes 1 Structure and Bonding.pdf
EPIDURAL ANESTHESIA ANATOMY AND PHYSIOLOGY.pptx
ognitive-behavioral therapy, mindfulness-based approaches, coping skills trai...
TOTAL hIP ARTHROPLASTY Presentation.pptx
BIOMOLECULES PPT........................
Cosmic Outliers: Low-spin Halos Explain the Abundance, Compactness, and Redsh...
Unveiling a 36 billion solar mass black hole at the centre of the Cosmic Hors...
Sciences of Europe No 170 (2025)
CAPERS-LRD-z9:AGas-enshroudedLittleRedDotHostingaBroad-lineActive GalacticNuc...
The KM-GBF monitoring framework – status & key messages.pptx
7. General Toxicologyfor clinical phrmacy.pptx
ECG_Course_Presentation د.محمد صقران ppt
2Systematics of Living Organisms t-.pptx
IFIT3 RNA-binding activity primores influenza A viruz infection and translati...
The World of Physical Science, • Labs: Safety Simulation, Measurement Practice
cpcsea ppt.pptxssssssssssssssjjdjdndndddd
Comparative Structure of Integument in Vertebrates.pptx
Classification Systems_TAXONOMY_SCIENCE8.pptx
VARICELLA VACCINATION: A POTENTIAL STRATEGY FOR PREVENTING MULTIPLE SCLEROSIS
Biophysics 2.pdffffffffffffffffffffffffff
Ad

Multidirectional survey measurement errors: the latent class MTMM model

  • 1. Multidirectional errors Latent class MTMM Conclusions Multidirectional survey measurement errors: the latent class MTMM model Daniel Oberski / doberski@uvt.nl Department of methodology & statistics AAPOR 2015 Latent class MTMM Daniel Oberski / doberski@uvt.nl
  • 2. Multidirectional errors Latent class MTMM Conclusions ..1 Multidirectional survey measurement errors ..2 Latent class multitrait-multimethod model ..3 Conclusions Latent class MTMM Daniel Oberski / doberski@uvt.nl
  • 3. Multidirectional errors Latent class MTMM Conclusions Stochastic errors Two respondents who: • Went to the doctor the same number of times • Have the same opinion about the role of women in society give different answers to these questions. This will bias estimates of relationships between the variables. Latent class MTMM Daniel Oberski / doberski@uvt.nl
  • 4. Multidirectional errors Latent class MTMM Conclusions Stochastic errors • Latent variables can never be recovered Latent class MTMM Daniel Oberski / doberski@uvt.nl
  • 5. Multidirectional errors Latent class MTMM Conclusions Stochastic errors • Latent variables can never be recovered • But latent variable models can recover the amount of influence they exert Latent class MTMM Daniel Oberski / doberski@uvt.nl
  • 6. Multidirectional errors Latent class MTMM Conclusions Stochastic errors • Latent variables can never be recovered • But latent variable models can recover the amount of influence they exert • This is useful to remove bias Latent class MTMM Daniel Oberski / doberski@uvt.nl
  • 7. Multidirectional errors Latent class MTMM Conclusions Stochastic errors • Latent variables can never be recovered • But latent variable models can recover the amount of influence they exert • This is useful to remove bias Latent class MTMM Daniel Oberski / doberski@uvt.nl
  • 8. Multidirectional errors Latent class MTMM Conclusions Stochastic errors • Latent variables can never be recovered • But latent variable models can recover the amount of influence they exert • This is useful to remove bias • Multitrait-multimethod (MTMM) approach to estimating this influence (Andrews 1984; Saris & Andrews 1991; Saris & Gallhofer 2007); Latent class MTMM Daniel Oberski / doberski@uvt.nl
  • 9. Multidirectional errors Latent class MTMM Conclusions Stochastic errors • Latent variables can never be recovered • But latent variable models can recover the amount of influence they exert • This is useful to remove bias • Multitrait-multimethod (MTMM) approach to estimating this influence (Andrews 1984; Saris & Andrews 1991; Saris & Gallhofer 2007); • Quasi-simplex approach (Wiley & Wiley 1970; Alwin 2007). Latent class MTMM Daniel Oberski / doberski@uvt.nl
  • 10. Multidirectional errors Latent class MTMM Conclusions Stochastic errors • Latent variables can never be recovered • But latent variable models can recover the amount of influence they exert • This is useful to remove bias • Multitrait-multimethod (MTMM) approach to estimating this influence (Andrews 1984; Saris & Andrews 1991; Saris & Gallhofer 2007); • Quasi-simplex approach (Wiley & Wiley 1970; Alwin 2007). Latent class MTMM Daniel Oberski / doberski@uvt.nl
  • 11. Multidirectional errors Latent class MTMM Conclusions Stochastic errors • Latent variables can never be recovered • But latent variable models can recover the amount of influence they exert • This is useful to remove bias • Multitrait-multimethod (MTMM) approach to estimating this influence (Andrews 1984; Saris & Andrews 1991; Saris & Gallhofer 2007); • Quasi-simplex approach (Wiley & Wiley 1970; Alwin 2007). ↑ Linear models Latent class MTMM Daniel Oberski / doberski@uvt.nl
  • 12. Multidirectional errors Latent class MTMM Conclusions Stochastic errors in the literature • Random mistakes • Acquiescence • Answering in the socially desirable direction • Tending to choose the first/last of several categories • Extreme response (outer categories) • Avoiding some particular category for whatever reason • Preferring the midpoint • Heaping (rounding) • ... Problem: Not all of these are linear Stochastic errors are multidirectional Latent class MTMM Daniel Oberski / doberski@uvt.nl
  • 13. Multidirectional errors Latent class MTMM Conclusions Example of the effect of a nonlinear error on estimate of relationships True relationship 1 2 3 4 1 136 112 91 75 2 112 75 50 34 3 91 50 28 15 4 75 34 15 7 Polychoric correlation = -0.25 Relationship with ERS 1 2 3 4 1 374 41 34 205 2 41 4 3 12 3 34 3 1 6 4 205 12 6 19 Polychoric correlation = -0.43 Latent class MTMM Daniel Oberski / doberski@uvt.nl
  • 14. Multidirectional errors Latent class MTMM Conclusions Problem: Stochastic errors can strongly bias relationship estimates; Problem: Linear latent variable models assume errors are all one-way, so bias is not appropriately removed. Solution: Latent class models to allow for multidirectional errors. Here MTMM but could also be quasi-simplex Latent class MTMM Daniel Oberski / doberski@uvt.nl
  • 15. Multidirectional errors Latent class MTMM Conclusions The latent class MTMM model Oberski, Hagenaars & Saris, to appear in Psychological Methods. Latent class MTMM Daniel Oberski / doberski@uvt.nl
  • 16. Multidirectional errors Latent class MTMM Conclusions M1 M2 M3 T1 T2 T3 y11 y21 y31 y12 y22 y32 y13 y23 y33 • Latent variables are discrete (categorical) • Observed may be continuous or discrete • Relationships (can be) nonparametric Latent class MTMM Daniel Oberski / doberski@uvt.nl
  • 17. Multidirectional errors Latent class MTMM Conclusions Experimental design: split-ballot MTMM Method 1 Method 2 Method 3 Random group 1 . . Random group 2 . . Latent class MTMM Daniel Oberski / doberski@uvt.nl
  • 18. Multidirectional errors Latent class MTMM Conclusions Opinion about the role of women experiment: Main questionnaire (first method) Latent class MTMM Daniel Oberski / doberski@uvt.nl
  • 19. Multidirectional errors Latent class MTMM Conclusions Opinion about the role of women experiment: Supplementary group 1 (second method) Latent class MTMM Daniel Oberski / doberski@uvt.nl
  • 20. Multidirectional errors Latent class MTMM Conclusions Opinion about the role of women experiment: Supplementary group 2 (third method) Latent class MTMM Daniel Oberski / doberski@uvt.nl
  • 21. Multidirectional errors Latent class MTMM Conclusions Effect of trait on item distribution, Greece Men more right, positive agree-disgree 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Latent class MTMM Daniel Oberski / doberski@uvt.nl 1 2 3 4 5 Factor score: 0.00 Category Proportion 0.00.20.40.60.81.0
  • 22. Multidirectional errors Latent class MTMM Conclusions Effect of trait on item distribution, Slovenia Men more right, negative agree-disgree 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Latent class MTMM Daniel Oberski / doberski@uvt.nl 1 2 3 4 5 Factor score: 0.00 Category Proportion 0.00.20.40.60.81.0
  • 23. Multidirectional errors Latent class MTMM Conclusions Method factors have a nonlinear influence on the items 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Cut down, method 1 Trait Method 1 2 34 5 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Cut down, method 2 Trait Method 1 2 3 4 5 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Cut down, method 3 Trait Method 1 2 3 4 5 Latent class MTMM Daniel Oberski / doberski@uvt.nl
  • 24. Multidirectional errors Latent class MTMM Conclusions Prevalence of method behavior Latent class MTMM Daniel Oberski / doberski@uvt.nl
  • 25. Multidirectional errors Latent class MTMM Conclusions Conclusion Latent class MTMM Daniel Oberski / doberski@uvt.nl
  • 26. Multidirectional errors Latent class MTMM Conclusions Conclusion • Stochastic errors are important when you are interested in relationships; • Need latent variable models to estimate their extent so their effects can be removed statistically; • In traditional MTMM and quasi-simplex models, these effects are all one-way; • Latent class models allow for multidirectional errors. • Example: the latent class MTMM model (Oberski et al., to appear - see http://daob.nl/publications) Latent class MTMM Daniel Oberski / doberski@uvt.nl
  • 27. Multidirectional errors Latent class MTMM Conclusions Thank you for your attention! doberski@uvt.nl @DanielOberski See http://daob.nl/publications for preprints Supported by Veni grant number 451-14-017 from the Netherlands Organization for Scientific Research (NWO). Latent class MTMM Daniel Oberski / doberski@uvt.nl