Algorithms developed for scheduling applications on heterogeneous multiprocessor system focus on a
single objective such as execution time, cost or total data transmission time. However, if more than one
objective (e.g. execution cost and time, which may be in conflict) are considered, then the problem becomes
more challenging. This project is proposed to develop a multiobjective scheduling algorithm using
Evolutionary techniques for scheduling a set of dependent tasks on available resources in a multiprocessor
environment which will minimize the makespan and reliability cost. A Non-dominated sorting Genetic
Algorithm-II procedure has been developed to get the pareto- optimal solutions. NSGA-II is a Elitist
Evolutionary algorithm, and it takes the initial parental solution without any changes, in all iteration to
eliminate the problem of loss of some pareto-optimal solutions.NSGA-II uses crowding distance concept to
create a diversity of the solutions.
Related topics: