SlideShare a Scribd company logo
An Alternative Expression for the Log-Likelihood Ratio of the Multivariate Normal Distribution
Cole Arora
April 1, 2014
Theorem Suppose prior distribution P(i) = gi for all i ∈ {1, . . . , m} and multivariate normal model X|i ∼ Nk(µi
, Σ) for the k-vector of data X =
[ X1 ··· Xk ] , where the mean vector µi
= E[X|i] = [ E[X1|i] ··· E[Xk|i] ] = [ µi
1 ··· µi
k ] and the common, symmetric covariance matrix Σ is positive definite.
Then the log-likelihood ratio, computed posterior to making the observation x = [ x1 ··· xk ] , has the form
log
f(x|j)
f(x|i)
= x −
µi
+ µj
2
Σ−1
(µj
− µi
). (1)
Proof The left-hand side of Equation (1) can be expanded using the definition of the joint probability density function of the multivariate normal
distribution — which exists only because Σ is positive definite — as follows:
log
f(x|j)
f(x|i)
= log
1√
(2π)k|Σ|
exp −1
2 (x − µj
) Σ−1
(x − µj
)
1√
(2π)k|Σ|
exp −1
2 (x − µi) Σ−1
(x − µi)
= log exp
1
2
(x − µi
) Σ−1
(x − µi
) −
1
2
(x − µj
) Σ−1
(x − µj
)
=
1
2
(x − µi
) Σ−1
(x − µi
) −
1
2
(x − µj
) Σ−1
(x − µj
). (2)
For expediency, let
Σ−1
=





Σ−1
11 Σ−1
12 · · · Σ−1
1k
Σ−1
21 Σ−1
22 · · · Σ−1
2k
...
...
...
...
Σ−1
k1 Σ−1
k2 · · · Σ−1
kk





.
1
Substitution for x, µi
, µj
, and Σ−1
in Equation (2) gives
1
2
x1 − µi
1 · · · xk − µi
k





Σ−1
11 Σ−1
12 · · · Σ−1
1k
Σ−1
21 Σ−1
22 · · · Σ−1
2k
...
...
...
...
Σ−1
k1 Σ−1
k2 · · · Σ−1
kk








x1 − µi
1
...
xk − µi
k


 −
1
2
x1 − µj
1 · · · xk − µj
k





Σ−1
11 Σ−1
12 · · · Σ−1
1k
Σ−1
21 Σ−1
22 · · · Σ−1
2k
...
...
...
...
Σ−1
k1 Σ−1
k2 · · · Σ−1
kk








x1 − µj
1
...
xk − µj
k



=
1
2
k
a=1
(xa − µi
a)(Σ−1
a1 ) · · ·
k
a=1
(xa − µi
a)(Σ−1
ak )



x1 − µi
1
...
xk − µi
k


 −
1
2
k
a=1
(xa − µj
a)(Σ−1
a1 ) · · ·
k
a=1
(xa − µj
a)(Σ−1
ak )



x1 − µj
1
...
xk − µj
k



=
1
2
k
b=1
k
a=1
(xa − µi
a)(Σ−1
ab )(xb − µi
b) −
1
2
k
b=1
k
a=1
(xa − µj
a)(Σ−1
ab )(xb − µj
b)
=
1
2
k
b=1
k
a=1
(Σ−1
ab ) (xa − µi
a)(xb − µi
b) − (xa − µj
a)(xb − µj
b)
=
1
2
k
b=1
k
a=1
(Σ−1
ab )(xaxb − xaµi
b − xbµi
a + µi
aµi
b − xaxb + xaµj
b + xbµj
a − µj
aµj
b)
=
1
2
k
b=1
k
a=1
(Σ−1
ab )(−xaµi
b − xbµi
a + µi
aµi
b + xaµj
b + xbµj
a − µj
aµj
b)
=
1
2
k
b=1
k
a=1
(Σ−1
ab ) xa(µj
b − µi
b) + xb(µj
a − µi
a) + µi
aµi
b − µj
aµj
b . (3)
There are two key (and somewhat trivial) points that must be realized at this point about the terms under double summation; failure to do so makes
finishing the proof in this way impossible. The first point:
k
b=1
k
a=1
xa(µj
b − µi
b)(Σ−1
ab ) =
k
b=1
k
a=1
xb(µj
a − µi
a)(Σ−1
ba ) =
k
b=1
k
a=1
xb(µj
a − µi
a)(Σ−1
ab ),
where the first equality simply represents a renaming of the indices, and where the second equality holds because the matrix inverse of a symmetric matrix
2
is symmetric. So from this point forward, it is justified to replace xb(µj
a −µi
a) with xa(µj
b −µi
b) in the summand of Equation (3). The second point is similar:
k
b=1
k
a=1
(µi
bµj
a − µi
aµj
b)(Σ−1
ab ) =
k
b=1
k
a=1
(µi
bµj
a)(Σ−1
ab ) −
k
b=1
k
a=1
(µi
aµj
b)(Σ−1
ab )
=
k
b=1
k
a=1
(µi
bµj
a)(Σ−1
ab ) −
k
b=1
k
a=1
(µi
bµj
a)(Σ−1
ba )
=
k
b=1
k
a=1
(µi
bµj
a)(Σ−1
ab ) −
k
b=1
k
a=1
(µi
bµj
a)(Σ−1
ab )
= 0,
so the addition of the quantity (µi
bµj
a − µi
aµj
b) into the right-most term in the summand of Equation (3) would change absolutely nothing, which turns out
to be useful.
Using these two insights, Equation (3) can be rewritten as follows:
1
2
k
b=1
k
a=1
(Σ−1
ab ) 2xa(µj
b − µi
b) + µi
bµj
a − µi
aµj
b + µi
aµi
b − µj
aµj
b =
k
b=1
k
a=1
xa −
µi
a + µj
a
2
(Σ−1
ab )(µj
b − µi
b)
=
k
a=1
xa −
µi
a + µj
a
2
(Σ−1
a1 ) · · ·
k
a=1
xa −
µi
a + µj
a
2
(Σ−1
ak )



µj
1 − µi
1
...
µj
k − µi
k



= x1 −
µi
1 + µj
1
2
· · · xk −
µi
k + µj
k
2





Σ−1
11 Σ−1
12 · · · Σ−1
1k
Σ−1
21 Σ−1
22 · · · Σ−1
2k
...
...
...
...
Σ−1
k1 Σ−1
k2 · · · Σ−1
kk








µj
1 − µi
1
...
µj
k − µi
k



= x −
µi
+ µj
2
Σ−1
(µj
− µi
).
3

More Related Content

PDF
Gaussian quadratures
PPTX
Gauss Quadrature Formula
PDF
Mit2 092 f09_lec06
PDF
SPDE presentation 2012
PDF
Kriging
PPT
Ch11.kriging
PDF
Me 530 assignment 2
Gaussian quadratures
Gauss Quadrature Formula
Mit2 092 f09_lec06
SPDE presentation 2012
Kriging
Ch11.kriging
Me 530 assignment 2

What's hot (18)

PDF
Student_Garden_geostatistics_course
PDF
Index notation
PPT
NUMERICAL METHODS -Iterative methods(indirect method)
PDF
A brief survey of tensors
PPTX
system of algebraic equation by Iteration method
PPTX
Toukei ~20210605
PDF
Daniel Hong ENGR 019 Q6
PDF
08lowess
PDF
A Very Brief Introduction to Reflections in 2D Geometric Algebra, and their U...
PDF
Math 2 Application of integration
PPTX
Change of order in integration
PDF
An Asymptotic Approach of The Crack Extension In Linear Piezoelectricity
PPTX
Caculus
PPT
PDF
A non-stiff numerical method for 3D interfacial flow of inviscid fluids.
PPTX
Double & triple integral unit 5 paper 1 , B.Sc. 2 Mathematics
PDF
Student_Garden_geostatistics_course
Index notation
NUMERICAL METHODS -Iterative methods(indirect method)
A brief survey of tensors
system of algebraic equation by Iteration method
Toukei ~20210605
Daniel Hong ENGR 019 Q6
08lowess
A Very Brief Introduction to Reflections in 2D Geometric Algebra, and their U...
Math 2 Application of integration
Change of order in integration
An Asymptotic Approach of The Crack Extension In Linear Piezoelectricity
Caculus
A non-stiff numerical method for 3D interfacial flow of inviscid fluids.
Double & triple integral unit 5 paper 1 , B.Sc. 2 Mathematics
Ad

Similar to Multivariate normal proof (20)

PDF
Application of matrix algebra to multivariate data using standardize scores
PDF
11.application of matrix algebra to multivariate data using standardize scores
PDF
Aieee maths-quick review
PDF
Applied Multivariate Statistical Analysis 6th Edition Johnson Solutions Manual
PDF
Introduction to Bayesian Inference
PDF
1- Matrices and their Applications.pdf
PPTX
final sci lab.pptx
PDF
Numerical Methods: curve fitting and interpolation
PDF
eigenvalueandeigenvector72-80-160505220126 (1).pdf
PDF
Classification of aedes adults mosquitoes in two distinct groups based on fis...
PDF
Statistics Cheatsheet by MIT
PDF
SSA slides
PDF
A02402001011
PPTX
Maths-->>Eigenvalues and eigenvectors
PDF
Dataanalysis2
PPTX
CBSE Class 12 Mathematics formulas
PPT
Series representation of solistics lectr19.ppt
PDF
Linear Algebra
PDF
Lecture_note2.pdf
PDF
Solucao_Marion_Thornton_Dinamica_Classic (1).pdf
Application of matrix algebra to multivariate data using standardize scores
11.application of matrix algebra to multivariate data using standardize scores
Aieee maths-quick review
Applied Multivariate Statistical Analysis 6th Edition Johnson Solutions Manual
Introduction to Bayesian Inference
1- Matrices and their Applications.pdf
final sci lab.pptx
Numerical Methods: curve fitting and interpolation
eigenvalueandeigenvector72-80-160505220126 (1).pdf
Classification of aedes adults mosquitoes in two distinct groups based on fis...
Statistics Cheatsheet by MIT
SSA slides
A02402001011
Maths-->>Eigenvalues and eigenvectors
Dataanalysis2
CBSE Class 12 Mathematics formulas
Series representation of solistics lectr19.ppt
Linear Algebra
Lecture_note2.pdf
Solucao_Marion_Thornton_Dinamica_Classic (1).pdf
Ad

Recently uploaded (20)

PPTX
Copy of 16 Timeline & Flowchart Templates – HubSpot.pptx
PPTX
Pilar Kemerdekaan dan Identi Bangsa.pptx
PPTX
Topic 5 Presentation 5 Lesson 5 Corporate Fin
PDF
Capcut Pro Crack For PC Latest Version {Fully Unlocked 2025}
PPTX
New ISO 27001_2022 standard and the changes
PDF
Global Data and Analytics Market Outlook Report
PDF
Transcultural that can help you someday.
PPTX
(Ali Hamza) Roll No: (F24-BSCS-1103).pptx
PDF
Microsoft Core Cloud Services powerpoint
PPTX
Qualitative Qantitative and Mixed Methods.pptx
PPTX
Microsoft-Fabric-Unifying-Analytics-for-the-Modern-Enterprise Solution.pptx
PPTX
mbdjdhjjodule 5-1 rhfhhfjtjjhafbrhfnfbbfnb
PPTX
modul_python (1).pptx for professional and student
PPT
lectureusjsjdhdsjjshdshshddhdhddhhd1.ppt
PPTX
sac 451hinhgsgshssjsjsjheegdggeegegdggddgeg.pptx
PDF
annual-report-2024-2025 original latest.
PDF
Data Engineering Interview Questions & Answers Cloud Data Stacks (AWS, Azure,...
PPTX
QUANTUM_COMPUTING_AND_ITS_POTENTIAL_APPLICATIONS[2].pptx
PPTX
Introduction to Inferential Statistics.pptx
PDF
Data Engineering Interview Questions & Answers Batch Processing (Spark, Hadoo...
Copy of 16 Timeline & Flowchart Templates – HubSpot.pptx
Pilar Kemerdekaan dan Identi Bangsa.pptx
Topic 5 Presentation 5 Lesson 5 Corporate Fin
Capcut Pro Crack For PC Latest Version {Fully Unlocked 2025}
New ISO 27001_2022 standard and the changes
Global Data and Analytics Market Outlook Report
Transcultural that can help you someday.
(Ali Hamza) Roll No: (F24-BSCS-1103).pptx
Microsoft Core Cloud Services powerpoint
Qualitative Qantitative and Mixed Methods.pptx
Microsoft-Fabric-Unifying-Analytics-for-the-Modern-Enterprise Solution.pptx
mbdjdhjjodule 5-1 rhfhhfjtjjhafbrhfnfbbfnb
modul_python (1).pptx for professional and student
lectureusjsjdhdsjjshdshshddhdhddhhd1.ppt
sac 451hinhgsgshssjsjsjheegdggeegegdggddgeg.pptx
annual-report-2024-2025 original latest.
Data Engineering Interview Questions & Answers Cloud Data Stacks (AWS, Azure,...
QUANTUM_COMPUTING_AND_ITS_POTENTIAL_APPLICATIONS[2].pptx
Introduction to Inferential Statistics.pptx
Data Engineering Interview Questions & Answers Batch Processing (Spark, Hadoo...

Multivariate normal proof

  • 1. An Alternative Expression for the Log-Likelihood Ratio of the Multivariate Normal Distribution Cole Arora April 1, 2014 Theorem Suppose prior distribution P(i) = gi for all i ∈ {1, . . . , m} and multivariate normal model X|i ∼ Nk(µi , Σ) for the k-vector of data X = [ X1 ··· Xk ] , where the mean vector µi = E[X|i] = [ E[X1|i] ··· E[Xk|i] ] = [ µi 1 ··· µi k ] and the common, symmetric covariance matrix Σ is positive definite. Then the log-likelihood ratio, computed posterior to making the observation x = [ x1 ··· xk ] , has the form log f(x|j) f(x|i) = x − µi + µj 2 Σ−1 (µj − µi ). (1) Proof The left-hand side of Equation (1) can be expanded using the definition of the joint probability density function of the multivariate normal distribution — which exists only because Σ is positive definite — as follows: log f(x|j) f(x|i) = log 1√ (2π)k|Σ| exp −1 2 (x − µj ) Σ−1 (x − µj ) 1√ (2π)k|Σ| exp −1 2 (x − µi) Σ−1 (x − µi) = log exp 1 2 (x − µi ) Σ−1 (x − µi ) − 1 2 (x − µj ) Σ−1 (x − µj ) = 1 2 (x − µi ) Σ−1 (x − µi ) − 1 2 (x − µj ) Σ−1 (x − µj ). (2) For expediency, let Σ−1 =      Σ−1 11 Σ−1 12 · · · Σ−1 1k Σ−1 21 Σ−1 22 · · · Σ−1 2k ... ... ... ... Σ−1 k1 Σ−1 k2 · · · Σ−1 kk      . 1
  • 2. Substitution for x, µi , µj , and Σ−1 in Equation (2) gives 1 2 x1 − µi 1 · · · xk − µi k      Σ−1 11 Σ−1 12 · · · Σ−1 1k Σ−1 21 Σ−1 22 · · · Σ−1 2k ... ... ... ... Σ−1 k1 Σ−1 k2 · · · Σ−1 kk         x1 − µi 1 ... xk − µi k    − 1 2 x1 − µj 1 · · · xk − µj k      Σ−1 11 Σ−1 12 · · · Σ−1 1k Σ−1 21 Σ−1 22 · · · Σ−1 2k ... ... ... ... Σ−1 k1 Σ−1 k2 · · · Σ−1 kk         x1 − µj 1 ... xk − µj k    = 1 2 k a=1 (xa − µi a)(Σ−1 a1 ) · · · k a=1 (xa − µi a)(Σ−1 ak )    x1 − µi 1 ... xk − µi k    − 1 2 k a=1 (xa − µj a)(Σ−1 a1 ) · · · k a=1 (xa − µj a)(Σ−1 ak )    x1 − µj 1 ... xk − µj k    = 1 2 k b=1 k a=1 (xa − µi a)(Σ−1 ab )(xb − µi b) − 1 2 k b=1 k a=1 (xa − µj a)(Σ−1 ab )(xb − µj b) = 1 2 k b=1 k a=1 (Σ−1 ab ) (xa − µi a)(xb − µi b) − (xa − µj a)(xb − µj b) = 1 2 k b=1 k a=1 (Σ−1 ab )(xaxb − xaµi b − xbµi a + µi aµi b − xaxb + xaµj b + xbµj a − µj aµj b) = 1 2 k b=1 k a=1 (Σ−1 ab )(−xaµi b − xbµi a + µi aµi b + xaµj b + xbµj a − µj aµj b) = 1 2 k b=1 k a=1 (Σ−1 ab ) xa(µj b − µi b) + xb(µj a − µi a) + µi aµi b − µj aµj b . (3) There are two key (and somewhat trivial) points that must be realized at this point about the terms under double summation; failure to do so makes finishing the proof in this way impossible. The first point: k b=1 k a=1 xa(µj b − µi b)(Σ−1 ab ) = k b=1 k a=1 xb(µj a − µi a)(Σ−1 ba ) = k b=1 k a=1 xb(µj a − µi a)(Σ−1 ab ), where the first equality simply represents a renaming of the indices, and where the second equality holds because the matrix inverse of a symmetric matrix 2
  • 3. is symmetric. So from this point forward, it is justified to replace xb(µj a −µi a) with xa(µj b −µi b) in the summand of Equation (3). The second point is similar: k b=1 k a=1 (µi bµj a − µi aµj b)(Σ−1 ab ) = k b=1 k a=1 (µi bµj a)(Σ−1 ab ) − k b=1 k a=1 (µi aµj b)(Σ−1 ab ) = k b=1 k a=1 (µi bµj a)(Σ−1 ab ) − k b=1 k a=1 (µi bµj a)(Σ−1 ba ) = k b=1 k a=1 (µi bµj a)(Σ−1 ab ) − k b=1 k a=1 (µi bµj a)(Σ−1 ab ) = 0, so the addition of the quantity (µi bµj a − µi aµj b) into the right-most term in the summand of Equation (3) would change absolutely nothing, which turns out to be useful. Using these two insights, Equation (3) can be rewritten as follows: 1 2 k b=1 k a=1 (Σ−1 ab ) 2xa(µj b − µi b) + µi bµj a − µi aµj b + µi aµi b − µj aµj b = k b=1 k a=1 xa − µi a + µj a 2 (Σ−1 ab )(µj b − µi b) = k a=1 xa − µi a + µj a 2 (Σ−1 a1 ) · · · k a=1 xa − µi a + µj a 2 (Σ−1 ak )    µj 1 − µi 1 ... µj k − µi k    = x1 − µi 1 + µj 1 2 · · · xk − µi k + µj k 2      Σ−1 11 Σ−1 12 · · · Σ−1 1k Σ−1 21 Σ−1 22 · · · Σ−1 2k ... ... ... ... Σ−1 k1 Σ−1 k2 · · · Σ−1 kk         µj 1 − µi 1 ... µj k − µi k    = x − µi + µj 2 Σ−1 (µj − µi ). 3