SlideShare a Scribd company logo
7
Most read
9
Most read
11
Most read
2.1
26
Chapter 2
a)
I,
; i
I
... i : ; ,
,
----. . i I
: i . I
i
, ~
: :
. , I
oJ /l r ,
, .
... ------I
!
~
I
. ¡
, , , , I . ,
-A : t- ~ ..1'-, ø ':, . - ,i :=-: -j.1 3 d~j =
,:': ~ ~, ,,, . .,;' .,.. .: _ __ ~.; " ,1 '..,:/ ,1.. . . . /" 1-.~~ /. -~'"'-.A "'7' .! . _ ... i I .
: 'JO " : i i ; , , ,
../ :
7.
./
: '7K (-~ '~ =, -ii;;;;;.I~
l-' : I ,; I . ¡ ; ;
I I
i i :
~. . , I
. . : ,
! i I
i
I
,
: i
I ; ,
I i ,
I I , I
, , :
i !! I i : I
.
; '.,;! i/'i : g
'-' ,ILl / i-tI ! i i
,
, , 1
! I
I
. J :
.
I ,t
i I;
! : i I i : :, 'i; " I I
./
i ,,/_.
== i i I
b) i) Lx = RX = Iß = 5.9l'i
il) cas(e)
x.y 1
.051= ..= =
LxLy 19.621
- -
e = arc cos ( .051 ) ;, 870
; 1 i) proJection of L on x ; s
lt~i x = i
x
(1 1 31'is1is
3š = 7~35'35
c)
':
: i
I . ! I , :
. i
, I
= i i : l : i i
02-2: i.
!- .
i 'i
, i
I i
:i :3
~
~
. 1
I
;
I
.
;-- I 1
I i
. I
::ti I
i'
.1
i,
:i:-'.i
.1 ..
"T
~-:~~-';'-i-' .~._~-:.i" 1 .' :.. :. -"-- --_..-- ---
Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall
Applied Multivariate Statistical Analysis 6th Edition Johnson Solutions Manual
Full Download: http://alibabadownload.com/product/applied-multivariate-statistical-analysis-6th-edition-johnson-solutions-manual
This sample only, Download all chapters at: alibabadownload.com
27
( -~
15)
r-6
-q2.2 a) SA = b) SA = - ~
20 1 a -6
(-1 :
-9
-: )
c) AIBI = d) C'B = (12, -7)
-1
e) No.
. (~
1). A i
2.3 a) AI so (A I) = A' = A
3 .
b) C'
.(: :l (C'f"l~ J)1 a 10
i2 4 J
(C' J' 'l- 1~
il). (t''-'-1 -ìa lõ,c =
3 1 iiÕ -iÕ ' 10 -Tõ
c)
(1:
7)'
U
8
': )
(AB) , = =
4 11 11
B'A' =
(i n (~ ~)
-
(~ ':)
= (AB) i
11
d) AB has (i ~j )th entry
k
a,. = a"b1, + a'2b2' +...+ a,,,b,,, = i aitb1j1 J 1 J 1 J 1 J R.=1
Consequently, (AB) i has (' ,)th .1 ~J' entry
k
c , , =
I ajR,b1i ,
Jl 1=1
Next ßI has .th row (b, i ,b2i ~'" IbkiJ and A' lias. jth1Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall
28
column (aji,aj2"",ajk)1 so SIAl has ~i~j)th entry
k
bliaji+b2ibj2+...+bk1~jk = t~l ajtb1i = cji
51 nce i and j were arbi trary choices ~ (AB) i = B i A I .
2.4 a) I = II and AA-l = I = A-1A.
and 1= (A-1A)' = A1(A-l)l.
of Al or (AI r' = (A-l)'.
bl (S-lA-l)AS _ B-1
(f1A)B - B-1S' I so AS has inverse (AS)-1 ·
I
B-1 A- i. It was suff1 ci ent to check for a 1 eft inverse but we may
also verify AB(B-1A-l) =.A(~Bi~)A-i = AA-l = I ,
Thus I i = I = (AA - ~ ) I = (A-l)' A,I
Consequently, (A-l)1 is the inverse
2,6
¡s 12l r _121 r
1 :J .l:
~1
IT IT IT 13 = 1 69 = QIQ ,
QQI
=
-12 5 12 5
13 i3 IT i3 a 169
a) 5i nce A = AI, A' is symetric.
b) Since the quadratic form
x' Ax . (xi ,x2J ( 9
-:)(::1-
9xi - 4x1 X2 + 6X2
- - .. -2
2.5
~ (2Xi.x2)2 + 5(x;+xi) ~ 0 for tX,lx2) -l (O~O)
we conclude that A is positive definite.
2.7 a) Eigenvalues: Ål = 10, Å2 = 5 .
Nonnalized eigenvectors: ':1 = (2/15~ -1/15)= (,894~ -,447)
~2 = (1/15, 2/15) = (.447, .894)
Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall
29
b) A' V
-2 ) . 1 fIlS r2/1S. -1//5 + 5 (1/1S1 (1/IS, 2//5
-2 9-1/~ 2/~
c)
-1 1
(:
2) . (012 0041
A = 9(6)-( -2)( -2) 9 ,04 .18
d) Eigenval ues: ll = ,2, l2 = ,1
Normal;z~ eigenvectors: ;1 = (1/¡;~ 2/15J
;z =: (2/15~, -1I/5J
2.8 Ei genva1 ues: l1 = 2 ~ l2 = -3
Norma 1; zed e; genvectors: ;~ = (2/15 ~ l/~ J
A · (:
=~ = (1/15. -2/15 J
2) = 2 (2//5) (2/15, 1/15J _ 3( 1/1S)(1//s' -2/151 '
-2 1/15 -2/~
2.9 ) -1 1 (-2 -2) =i1131 11a A = 1(-2)-2(2) -2 1 - --
3 6
b) Eigenvalues: l1 = 1/2~ l2 = -1/3
Nonna1iz.ed eigenvectors: ;1 = (2/ß, l/I5J
cJ A-l =(t
;z = (i/ß~ -2/I5J
11 = 1 (2/15) (2/15, . 1//5J _ir 1/15) (1//5, -2/ß1
-1 2 1/15 3L-21 5
Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall
30
2.10
B-1 _ 1 r 4.002001 -44,0011- 4(4,D02001 )-(4,OOl)~ ~4,OOl .
( 4,OÒZOCl
= 333,333
-4 , 001
~.0011
1 ( 4.002-1
A = 4(4,002)~(4,OOl)~ -4,001
-: 00011
. ( 4.002
= -1,000,000
-4 , 001
-: 00011
Thus A-1 ~ (_3)B-1
2.11 With p=l~ laii =
aii- and with p=2,
aaii
a
= a11a2Z - 0(0) = aiia22
a22
Proceeding by induction~we assume the result holds for any
(p-i)x(p-l) diagonal matrix Aii' Then writing
aii a a
A = a
. Aii
(pxp)
.
.
a
we expand IAI according to Definition 2A.24 to find
IAI = aii I
Aii I + 0 + ,.. + o. S~nce IAnl =, a2Za33 ... ~pp
by the induction hypothesis~ IAI = al'(a2Za33.... app) =
al1a22a33 ,.. app'
Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall
31
2.12 By (2-20), A = PApl with ppi = pip = 1. From Result 2A.l1(e)
IAI = ¡pi IAI Ipil = ¡AI. Since A is a diagonal matrix wlth
diagonal elements Ài,À2~...,À , we can apply Exercise 2.11 to
p pget I A I = I A I = n À , .
'1 11=
2.14 Let À be ,an eigenvalue of A, Thus a = tA-U I. If Q ,is
orthogona 1, QQ i = I and I Q II Q i I = 1 by Exerci se 2.13. . Us; ng
Result 2A.11(e) we can then write
a = I Q I I A-U I I Q i I = I QAQ i -ÀI I
and it follows that À is also an eigenvalue of QAQ' if Q is
orthogona 1 .
2.16 (A i A) i = A i (A i ) I = A i A
Yl
Y = Y 2 = Ax.
show; ng A i A ; s symetric.
Then a s Y12+y22+ ,.. + y2 = yay = x'A1Axp _.. .. ..
yp
2.18
and AlA is non-negative definite by definition.
Write c2 = xlAx with A = r 4 -n1. Theeigenvalue..nonnalized
- - tl2 3
eigenvector pairs for A are:
Ài = 2 ~
'=1 = (.577 ~ ,816)
Å2 = 5, ':2 = (.81 6, -, 577)
'For c2 = 1, the hal f 1 engths of the major and minor axes of the
elllpse of constant distance are
~ = -i = ,707 and ~ =.. = .447
~1 12 ~ ~respectively, These axes 1 ie in the directions of the vectors ~1
and =2 r~spectively,
Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall
32
For c2 = 4~ th,e hal f lengths of the major and mlnor axes are
c 2 '- = - = 1.414 and
ñ:, .f
c _ 2 _-- - -- - .894 .
ñ:2 ' IS
As c2 increases the lengths of, the major and mi~or axes ; ncrease.
2.20 Using matrx A in Exercise 2.3, we determne
Ài = , ,382, :1 = (,8507, - .5257) i
À2 = 3.6'8~ :2 = (.5257., .8507)1
We know
__(' .376
A '/2 = Ifl :1:1 + 1r2 :2:2
,325
,325)
1. 701
A-1/2 = -i e el + -- e el _ ( ,7608
If, -1 -1 Ir -2 _2 ~ -,1453
- .1453 J
.6155
We check
Al/ A-1/2 =(:
~) . A-l/2 Al/2
Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall
2,21 (a)
33
A' A = r 1 _2 2 J r ~ -~ J = r 9 1 J
l1 22 l2 2 l19
0= IA'A-A I I = (9-A)2- 1 = (lu- A)(8-A) , so Ai = 10 and A2 = 8.
Next,
(b)
U;J ¡::J
¡ i ~ J ¡:~ J
10 ¡:~ J gives
- (W2J
- ei - . 1/.;
8 ¡:~J gives
¡ 1/.; J- e2 = -1/.;
AA'= ¡~-n U -; n = ¡n ~J
12-A 0 4o = /AA' - AI I - .1 0 8 - À 0
4 0 8-A
= (2 - A)(8 - A)2 - 42(8 - A) = (8 - A)(A -lO)A so Ai = 10, A2 = 8, and
A3 = O.
(~ ~ ~ J ¡ ~ J - 10 (~J
.gves
4e3 - 8ei
8e2 - lOe2
so ei= ~(~J
¡ ~
0
~ J ¡ :: J
8 (~J8 -
0
gives
4e3 - Gei
so e,= (!J
4ei - U
Also, e3 = 1-2/V5,O, 1/V5 J'
Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall
C)
34
u -~ J - Vi ( l, J ( J" J, 1 + VB (! J (to, - J, I
2,22 (a)
AA' = r 4 8 8 J
l 3 6 -9
r : ~ J = r 144 -12 J
l8 -9 L -12 126
o = IAA' - À I I = (144 - À)(126 - À) - (12)2 = (150 - À)(120 - À) , so
Ài = 150 and À2 =' 120. Next,
r 144 -12) r ei J = .150 r ei J
L -12 126 L e2 le2
. r 2/.; )gives ei = L -1/.; .
and À2 = 120 gives e2 = f1/v512/.;)'.
(b)
AI A = r: ~ J
l8 -9
r438 8J
l 6-9
- r ~~ i~~ i~ J
l 5 10 145
25 - À 5050= IA'A - ÀI 1= 50 100 - À 10 = (150 - A)(A - 120)A
5 10 145 - À
so Ai = 150, A2 = 120, and Ag = 0, Next,
¡ 25 50 5 J
50 100 10
5 10 145
r ei J' r ei J
l :: = 150 l::
gives
-120ei + 60e2 0 1 ( J
O or ei = 'W0521-25ei + 5eg VùU
( ~ i~~ i~ J5 lD 145 ( :~ J = 120 (:~ Jeg e2Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall
35
gives -l~~~ ~ -2:~: ~ or., = ~ ( j J
Also, ea = (2/J5, -l/J5, 0)'.
(c)
(4 8 8J3 6 -9
= Ý150 ( _~ J (J. vk j, J + Ý120 ( ~ J (to ~ - to J
2.24
( 1
a
n
À1 = 4, =l=('~O,OJ'
;-1 = ~a)
1
b) À2 = 9 ~
=2 = (0,1,0)''9
a À3 = 1, =3 = (0,0,1)'
c) ~-l
For + : À1 = 1/4,
À2 = 1 /.9,
À = 1,3
':1 = (1 ,O,~) i
':2 = (0 ~ 1 ,0) ,
el = (OlO~l)1
-3
Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall
36
2.25
Vl/2 "(:
a OJ ( 1 -1/5 4fl5J
il
-.2 .26~
a) 2 o 'if.= ,-1/5 1 1/6= - 2 1 .1'67
" ~:i'67
a 3 4/15 1/6 1 ' 1 67 i
b) V 1/2 .e v 1/2 =
(:
0 0Jt 1 -1/5 4flJ (5 ° OJ i5 -1 4/3) (5 a
:J
2 a -1/5, 1 1/6 0 2 ° = -2/5 2 1/3 a 2
a 3 4/15 1/6 1 a a 3 4/5 1/2 3 a 0
= (~:
-2
4
1 n =f
2.26 a)
1/2 i /2
P13 = °13/°11 °22, = 4/13 ¡q = 4l15 = ,2£7
b) Write Xl = 1 'Xl + O'X2 + O-X3 = ~~~. with ~~ = (1 ~O~O)
1 1 i , i 1 12 x2 + 2 x3 = ~2 ~ W1 th ~2 = (0 i 2' 2" J
Then Var(Xi) =al1 = 25. By (2-43), ~
1X 1X ,+ 1 2 1 .19Var(2" 2 +2" 3) =':2 + ~2 =4 a22 + 4 a23 + '4 °33 = 1 + 2+ 4
15
= T = 3.75
By (2-45) ~ (see al so hi nt to Exerc,ise 2.28),
1 1 i 1 1Cov(X, ~ 2Xi + 2 Xi) = ~l r ~2 = "'0'12 +"2 °13 = -1 + 2 = 1
~o
Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall
2.27
37
1 1Corr(X1 ~ '2 Xl + '2 X2) =
, 1COy(X" "2X, + '2X2) 1
~r(Xi) har(~ Xl + ~ X2) =Sl3 :=
.103
a) iii - 2iiZ ~ aii + 4a22 - 4012
b) -lll + 3iZ ~ aii + 9a22 - 6a12
c) iii + 12 + 13' aii + a22 + a3i + 2a12 + 2a13 +2a23
d) ii, +~212 -. 13, aii' +~a22 + a33 + 402 - 2a,.3 - 4023
e) 3i1 - 4iiZ' 9a11 + 16022 since a12 = a .
Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall
2,31 (a)
38
E¡X(l)J = ¡,(l) = ¡ :i (b) A¡,(l) = ¡ 1 -'1 1 ¡ ~ J = 1
(c)
COV(X(l) ) = Eii = ¡ ~ ~ J
(d)
COV(AX(l) ) = AEiiA' = ¡i -1 i ¡ ~ n ¡ -iJ = 4
(e)
E(X(2)J = ¡,,2) = ¡ n tf) B¡,(2) (~ -iJ ¡ n = ¡ n
(g)
COV(X(2) ) = E22 = ¡ -; -: J
(h)
COV(BX(2)) = BE22B' = ¡ ~ -~ J (-; -: J (-~ ~ J - (~: -~ J
0)
COV(X(l), X(2)) = ¡ ~ ~ J
(j)
COV(AX(1),BX(2))=AE12B'=(1 -1) ¡~ ~J ¡ _~ n=(O 21
Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall
2,32 ~a)
39
EIX(l)j = ILll) = ¡ ~ J (b) AIL(l) = ¡ ~ -~ J ¡ ~ J = ¡ -~ J
(c)
Co(X(l) ) = En = l-i -~ J
td)
COV(AX(l)) = AEnA' = ¡ ~ -¡ J ¡ -i -~ J L ~~ ~ J - ¡ i ~ J
(e)
E(Xl2)j = IL(;) = ( -~ J (f) BIL(2) = ¡ ~ ; -~ J ( -~ i = ¡ -; J
(g)
( 6 1 -~1 i
COV(X(2) ) = ~22 = 1 4
-1 0
(h)
COV(BX(2) ) = BE22B' ,
= U i -~ J (j ~ -~ J U -n -
¡ 12 9 J
9 24
0)
CoV(X(1),X(2)) = ¡ l ::J ~ J
(j)
COV(AX(l) i BX(2)) = AE12B'
Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall
2,33 (a)
40
- U j J H =l n (¡ j J - l ~ ~ J
E(X(l)j = Li(l) = ( _~ J (b) Ati(l) = L î -~ ~ J ( _~ J - ¡ ~ J
(c)
( 4 i 6-i~J
Cov(X(l¡ ) = Eii = - ~ - ~
(d)
COV(AX(l) ) = Ai:iiA' ,
= (î -~ ~) (-¡ -~!J (-~ n -
¡234)
4 63
(e)
E(X(2)J = ti(2) = ¡ ~ ) (f) Bti(2) = ¡ ~ -î J ¡ ~ J = I ; )
(g)
Co( X(2) ) = E" = ¡ ¿ n
(h)
CoV(BX,2) ) = BE"B' = U - î ) L ¿ ~ J D - ~ J - I 1~ ~ J
Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall
(i)
41
( _1 0 J
COv(X(1),X(2))= -1 0
1 -1
ü)
COV(AX(l), BX~2)) = A:E12B1
= ¡ 2 -1 0 J (=!O J
1 1 3 i 01 -1 ¡ ~ - ~ J = ¡ -4,~ 4,~ J
Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall
42
2.34 bib = 4 + 1 + 16 + a = 21, did = 15 and bid = -2-3-8+0 = -13- -
(ÉI~)Z = 169 ~ 21 (15) = 315
2.35 bid = -4 + 3 = -1
- -
biBb = (-4, 3)
L: -:J (-~ J
= (-:14 23)
( -~ J · 125- -
( 5/6
2/6 ) il )
d I B-1 d = (1~1) 2/6
= 11/62/6 1
so 1 = (bld)Z s 125 (11/6)" = 229.17- - '
2.36 4x~ + 4x~ + 6xix, = x'Ax wher A = (: ~).
(4 - ).)2 - 32 = 0 gives ).1 = 7,).2 = 1. Hence the maximum is 7 and the minimum is 1.
2.37 From (2~51), max
x'x=l- -
X i Ax = max
~fQ
~ 'A!
~13
= À1
where À1 is the largest eigenvalue of A. For A given in
Exercise 2.6, we have from Exercise
2.7 ~ Ài = 10 and
el . (.894, -,447), Therefore max xlAx = 10 andth1s
-1 x I x Fl
maximum is attained for : = ~1.
2.38
Using computer, ).1 = 18, ).2 = 9, ).3 = 9, Hence the maximum is 18 and the minimum is 9,
Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall
2.41 (8) E(AX) = AE(X) = APX = m
(b) Cav(AX) = ACov(X)A' = ALXA' = (~
43
o OJ
18 0
o 36
(c) All pairs of linear combinations have zero covarances.
2.42 (8) E(AX)
= AE(X)= Apx =(i
(b) Cov(AX) = ACov(X)A' = ALxA' = ( ~
o OJ
12 0
o 24
(c) All pairs of linear combinations have zero covariances.
Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall
Applied Multivariate Statistical Analysis 6th Edition Johnson Solutions Manual
Full Download: http://alibabadownload.com/product/applied-multivariate-statistical-analysis-6th-edition-johnson-solutions-manual
This sample only, Download all chapters at: alibabadownload.com

More Related Content

PPTX
Chi Square & Anova
PDF
Econometric Analysis 8th Edition Greene Solutions Manual
PPTX
Chap11 simple regression
PPTX
Chapter 6 simple regression and correlation
PDF
A Review Article on Fixed Point Theory and Its Application
PPTX
Binomial and Poission Probablity distribution
PPTX
Presentation chi-square test & Anova
PPTX
Chap10 hypothesis testing ; additional topics
Chi Square & Anova
Econometric Analysis 8th Edition Greene Solutions Manual
Chap11 simple regression
Chapter 6 simple regression and correlation
A Review Article on Fixed Point Theory and Its Application
Binomial and Poission Probablity distribution
Presentation chi-square test & Anova
Chap10 hypothesis testing ; additional topics

What's hot (20)

PPTX
APG Pertemuan 6 : Inferensia Dua Faktor Rata-rata
DOC
Dasar dasar matematika teknik optimasi (matrix hessian)
PPTX
APG Pertemuan 5 : Inferensia Vektor Rata-rata
PPTX
APG Pertemuan 4 : Multivariate Normal Distribution (2)
PPTX
The Wishart and inverse-wishart distribution
PPTX
APG Pertemuan 5 : Inferences about a Mean Vector and Comparison of Several Mu...
PPTX
APG Pertemuan 3 : SAMPLE GEOMETRI AND RANDOM SAMPLING (2)
PPTX
APG Pertemuan 7 : Manova
PPTX
APG Pertemuan 5 : Inferensia Vektor Rata-rata 1 Populasi
PPT
Pemilihan Model Terbaik
PDF
APG Pertemuan 1-2 (1)
DOCX
Metode maximum likelihood
PPTX
APG Pertemuan 6 : Mean Vectors From Two Populations
PPTX
APG Pertemuan 4 : Multivariate Normal Distribution
PPTX
Poisson probability distribution
PDF
Matemaika Diskrit - 04 induksi matematik - 03
PPT
SOME PROPERTIES OF ESTIMATORS - 552.ppt
PDF
PDF
Analisis Regresi Linier Berganda
PPTX
Linear Combination, Span And Linearly Independent, Dependent Set
APG Pertemuan 6 : Inferensia Dua Faktor Rata-rata
Dasar dasar matematika teknik optimasi (matrix hessian)
APG Pertemuan 5 : Inferensia Vektor Rata-rata
APG Pertemuan 4 : Multivariate Normal Distribution (2)
The Wishart and inverse-wishart distribution
APG Pertemuan 5 : Inferences about a Mean Vector and Comparison of Several Mu...
APG Pertemuan 3 : SAMPLE GEOMETRI AND RANDOM SAMPLING (2)
APG Pertemuan 7 : Manova
APG Pertemuan 5 : Inferensia Vektor Rata-rata 1 Populasi
Pemilihan Model Terbaik
APG Pertemuan 1-2 (1)
Metode maximum likelihood
APG Pertemuan 6 : Mean Vectors From Two Populations
APG Pertemuan 4 : Multivariate Normal Distribution
Poisson probability distribution
Matemaika Diskrit - 04 induksi matematik - 03
SOME PROPERTIES OF ESTIMATORS - 552.ppt
Analisis Regresi Linier Berganda
Linear Combination, Span And Linearly Independent, Dependent Set
Ad

Similar to Applied Multivariate Statistical Analysis 6th Edition Johnson Solutions Manual (20)

PDF
Class 12 mathematics pre board sample paper 2023-24
PDF
A Convergence Theorem Associated With a Pair of Second Order Differential Equ...
PDF
A02402001011
PDF
4th Semester Civil Engineering Question Papers June/july 2018
PPTX
CBSE Class 12 Mathematics formulas
DOCX
Final exam g8 correction
PDF
4th Semeste Electronics and Communication Engineering (Dec-2015; Jan-2016) Qu...
PDF
Student manual
DOC
Eigenvalues
PDF
4th Semester (Dec-2015; Jan-2016) Computer Science and Information Science En...
PDF
4 pages from matlab an introduction with app.-2
PDF
Solucao_Marion_Thornton_Dinamica_Classic (1).pdf
PPTX
mws_gen_sle_ppt_eigenvalues.pptx
PPTX
Study material for matrix and determinant.pptx
PDF
Nbhm m. a. and m.sc. scholarship test 2011
PDF
CBSE XII MATHS SAMPLE PAPER BY KENDRIYA VIDYALAYA
PDF
4th semester Computer Science and Information Science Engg (2013 December) Qu...
PDF
Numerical Methods: curve fitting and interpolation
PDF
D41024030
PDF
Math formulas worksheet answers key to the way to pass easily
Class 12 mathematics pre board sample paper 2023-24
A Convergence Theorem Associated With a Pair of Second Order Differential Equ...
A02402001011
4th Semester Civil Engineering Question Papers June/july 2018
CBSE Class 12 Mathematics formulas
Final exam g8 correction
4th Semeste Electronics and Communication Engineering (Dec-2015; Jan-2016) Qu...
Student manual
Eigenvalues
4th Semester (Dec-2015; Jan-2016) Computer Science and Information Science En...
4 pages from matlab an introduction with app.-2
Solucao_Marion_Thornton_Dinamica_Classic (1).pdf
mws_gen_sle_ppt_eigenvalues.pptx
Study material for matrix and determinant.pptx
Nbhm m. a. and m.sc. scholarship test 2011
CBSE XII MATHS SAMPLE PAPER BY KENDRIYA VIDYALAYA
4th semester Computer Science and Information Science Engg (2013 December) Qu...
Numerical Methods: curve fitting and interpolation
D41024030
Math formulas worksheet answers key to the way to pass easily
Ad

Recently uploaded (20)

PDF
102 student loan defaulters named and shamed – Is someone you know on the list?
PDF
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
PDF
Basic Mud Logging Guide for educational purpose
PDF
STATICS OF THE RIGID BODIES Hibbelers.pdf
PDF
Complications of Minimal Access Surgery at WLH
PPTX
GDM (1) (1).pptx small presentation for students
PDF
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
PDF
RMMM.pdf make it easy to upload and study
PDF
TR - Agricultural Crops Production NC III.pdf
PPTX
master seminar digital applications in india
PPTX
Cell Structure & Organelles in detailed.
PDF
Microbial disease of the cardiovascular and lymphatic systems
PDF
Computing-Curriculum for Schools in Ghana
PPTX
Renaissance Architecture: A Journey from Faith to Humanism
PDF
Abdominal Access Techniques with Prof. Dr. R K Mishra
PPTX
Institutional Correction lecture only . . .
PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
PPTX
Lesson notes of climatology university.
PDF
O5-L3 Freight Transport Ops (International) V1.pdf
PDF
Supply Chain Operations Speaking Notes -ICLT Program
102 student loan defaulters named and shamed – Is someone you know on the list?
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
Basic Mud Logging Guide for educational purpose
STATICS OF THE RIGID BODIES Hibbelers.pdf
Complications of Minimal Access Surgery at WLH
GDM (1) (1).pptx small presentation for students
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
RMMM.pdf make it easy to upload and study
TR - Agricultural Crops Production NC III.pdf
master seminar digital applications in india
Cell Structure & Organelles in detailed.
Microbial disease of the cardiovascular and lymphatic systems
Computing-Curriculum for Schools in Ghana
Renaissance Architecture: A Journey from Faith to Humanism
Abdominal Access Techniques with Prof. Dr. R K Mishra
Institutional Correction lecture only . . .
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
Lesson notes of climatology university.
O5-L3 Freight Transport Ops (International) V1.pdf
Supply Chain Operations Speaking Notes -ICLT Program

Applied Multivariate Statistical Analysis 6th Edition Johnson Solutions Manual

  • 1. 2.1 26 Chapter 2 a) I, ; i I ... i : ; , , ----. . i I : i . I i , ~ : : . , I oJ /l r , , . ... ------I ! ~ I . ¡ , , , , I . , -A : t- ~ ..1'-, ø ':, . - ,i :=-: -j.1 3 d~j = ,:': ~ ~, ,,, . .,;' .,.. .: _ __ ~.; " ,1 '..,:/ ,1.. . . . /" 1-.~~ /. -~'"'-.A "'7' .! . _ ... i I . : 'JO " : i i ; , , , ../ : 7. ./ : '7K (-~ '~ =, -ii;;;;;.I~ l-' : I ,; I . ¡ ; ; I I i i : ~. . , I . . : , ! i I i I , : i I ; , I i , I I , I , , : i !! I i : I . ; '.,;! i/'i : g '-' ,ILl / i-tI ! i i , , , 1 ! I I . J : . I ,t i I; ! : i I i : :, 'i; " I I ./ i ,,/_. == i i I b) i) Lx = RX = Iß = 5.9l'i il) cas(e) x.y 1 .051= ..= = LxLy 19.621 - - e = arc cos ( .051 ) ;, 870 ; 1 i) proJection of L on x ; s lt~i x = i x (1 1 31'is1is 3š = 7~35'35 c) ': : i I . ! I , : . i , I = i i : l : i i 02-2: i. !- . i 'i , i I i :i :3 ~ ~ . 1 I ; I . ;-- I 1 I i . I ::ti I i' .1 i, :i:-'.i .1 .. "T ~-:~~-';'-i-' .~._~-:.i" 1 .' :.. :. -"-- --_..-- --- Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall Applied Multivariate Statistical Analysis 6th Edition Johnson Solutions Manual Full Download: http://alibabadownload.com/product/applied-multivariate-statistical-analysis-6th-edition-johnson-solutions-manual This sample only, Download all chapters at: alibabadownload.com
  • 2. 27 ( -~ 15) r-6 -q2.2 a) SA = b) SA = - ~ 20 1 a -6 (-1 : -9 -: ) c) AIBI = d) C'B = (12, -7) -1 e) No. . (~ 1). A i 2.3 a) AI so (A I) = A' = A 3 . b) C' .(: :l (C'f"l~ J)1 a 10 i2 4 J (C' J' 'l- 1~ il). (t''-'-1 -ìa lõ,c = 3 1 iiÕ -iÕ ' 10 -Tõ c) (1: 7)' U 8 ': ) (AB) , = = 4 11 11 B'A' = (i n (~ ~) - (~ ':) = (AB) i 11 d) AB has (i ~j )th entry k a,. = a"b1, + a'2b2' +...+ a,,,b,,, = i aitb1j1 J 1 J 1 J 1 J R.=1 Consequently, (AB) i has (' ,)th .1 ~J' entry k c , , = I ajR,b1i , Jl 1=1 Next ßI has .th row (b, i ,b2i ~'" IbkiJ and A' lias. jth1Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall
  • 3. 28 column (aji,aj2"",ajk)1 so SIAl has ~i~j)th entry k bliaji+b2ibj2+...+bk1~jk = t~l ajtb1i = cji 51 nce i and j were arbi trary choices ~ (AB) i = B i A I . 2.4 a) I = II and AA-l = I = A-1A. and 1= (A-1A)' = A1(A-l)l. of Al or (AI r' = (A-l)'. bl (S-lA-l)AS _ B-1 (f1A)B - B-1S' I so AS has inverse (AS)-1 · I B-1 A- i. It was suff1 ci ent to check for a 1 eft inverse but we may also verify AB(B-1A-l) =.A(~Bi~)A-i = AA-l = I , Thus I i = I = (AA - ~ ) I = (A-l)' A,I Consequently, (A-l)1 is the inverse 2,6 ¡s 12l r _121 r 1 :J .l: ~1 IT IT IT 13 = 1 69 = QIQ , QQI = -12 5 12 5 13 i3 IT i3 a 169 a) 5i nce A = AI, A' is symetric. b) Since the quadratic form x' Ax . (xi ,x2J ( 9 -:)(::1- 9xi - 4x1 X2 + 6X2 - - .. -2 2.5 ~ (2Xi.x2)2 + 5(x;+xi) ~ 0 for tX,lx2) -l (O~O) we conclude that A is positive definite. 2.7 a) Eigenvalues: Ål = 10, Å2 = 5 . Nonnalized eigenvectors: ':1 = (2/15~ -1/15)= (,894~ -,447) ~2 = (1/15, 2/15) = (.447, .894) Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall
  • 4. 29 b) A' V -2 ) . 1 fIlS r2/1S. -1//5 + 5 (1/1S1 (1/IS, 2//5 -2 9-1/~ 2/~ c) -1 1 (: 2) . (012 0041 A = 9(6)-( -2)( -2) 9 ,04 .18 d) Eigenval ues: ll = ,2, l2 = ,1 Normal;z~ eigenvectors: ;1 = (1/¡;~ 2/15J ;z =: (2/15~, -1I/5J 2.8 Ei genva1 ues: l1 = 2 ~ l2 = -3 Norma 1; zed e; genvectors: ;~ = (2/15 ~ l/~ J A · (: =~ = (1/15. -2/15 J 2) = 2 (2//5) (2/15, 1/15J _ 3( 1/1S)(1//s' -2/151 ' -2 1/15 -2/~ 2.9 ) -1 1 (-2 -2) =i1131 11a A = 1(-2)-2(2) -2 1 - -- 3 6 b) Eigenvalues: l1 = 1/2~ l2 = -1/3 Nonna1iz.ed eigenvectors: ;1 = (2/ß, l/I5J cJ A-l =(t ;z = (i/ß~ -2/I5J 11 = 1 (2/15) (2/15, . 1//5J _ir 1/15) (1//5, -2/ß1 -1 2 1/15 3L-21 5 Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall
  • 5. 30 2.10 B-1 _ 1 r 4.002001 -44,0011- 4(4,D02001 )-(4,OOl)~ ~4,OOl . ( 4,OÒZOCl = 333,333 -4 , 001 ~.0011 1 ( 4.002-1 A = 4(4,002)~(4,OOl)~ -4,001 -: 00011 . ( 4.002 = -1,000,000 -4 , 001 -: 00011 Thus A-1 ~ (_3)B-1 2.11 With p=l~ laii = aii- and with p=2, aaii a = a11a2Z - 0(0) = aiia22 a22 Proceeding by induction~we assume the result holds for any (p-i)x(p-l) diagonal matrix Aii' Then writing aii a a A = a . Aii (pxp) . . a we expand IAI according to Definition 2A.24 to find IAI = aii I Aii I + 0 + ,.. + o. S~nce IAnl =, a2Za33 ... ~pp by the induction hypothesis~ IAI = al'(a2Za33.... app) = al1a22a33 ,.. app' Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall
  • 6. 31 2.12 By (2-20), A = PApl with ppi = pip = 1. From Result 2A.l1(e) IAI = ¡pi IAI Ipil = ¡AI. Since A is a diagonal matrix wlth diagonal elements Ài,À2~...,À , we can apply Exercise 2.11 to p pget I A I = I A I = n À , . '1 11= 2.14 Let À be ,an eigenvalue of A, Thus a = tA-U I. If Q ,is orthogona 1, QQ i = I and I Q II Q i I = 1 by Exerci se 2.13. . Us; ng Result 2A.11(e) we can then write a = I Q I I A-U I I Q i I = I QAQ i -ÀI I and it follows that À is also an eigenvalue of QAQ' if Q is orthogona 1 . 2.16 (A i A) i = A i (A i ) I = A i A Yl Y = Y 2 = Ax. show; ng A i A ; s symetric. Then a s Y12+y22+ ,.. + y2 = yay = x'A1Axp _.. .. .. yp 2.18 and AlA is non-negative definite by definition. Write c2 = xlAx with A = r 4 -n1. Theeigenvalue..nonnalized - - tl2 3 eigenvector pairs for A are: Ài = 2 ~ '=1 = (.577 ~ ,816) Å2 = 5, ':2 = (.81 6, -, 577) 'For c2 = 1, the hal f 1 engths of the major and minor axes of the elllpse of constant distance are ~ = -i = ,707 and ~ =.. = .447 ~1 12 ~ ~respectively, These axes 1 ie in the directions of the vectors ~1 and =2 r~spectively, Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall
  • 7. 32 For c2 = 4~ th,e hal f lengths of the major and mlnor axes are c 2 '- = - = 1.414 and ñ:, .f c _ 2 _-- - -- - .894 . ñ:2 ' IS As c2 increases the lengths of, the major and mi~or axes ; ncrease. 2.20 Using matrx A in Exercise 2.3, we determne Ài = , ,382, :1 = (,8507, - .5257) i À2 = 3.6'8~ :2 = (.5257., .8507)1 We know __(' .376 A '/2 = Ifl :1:1 + 1r2 :2:2 ,325 ,325) 1. 701 A-1/2 = -i e el + -- e el _ ( ,7608 If, -1 -1 Ir -2 _2 ~ -,1453 - .1453 J .6155 We check Al/ A-1/2 =(: ~) . A-l/2 Al/2 Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall
  • 8. 2,21 (a) 33 A' A = r 1 _2 2 J r ~ -~ J = r 9 1 J l1 22 l2 2 l19 0= IA'A-A I I = (9-A)2- 1 = (lu- A)(8-A) , so Ai = 10 and A2 = 8. Next, (b) U;J ¡::J ¡ i ~ J ¡:~ J 10 ¡:~ J gives - (W2J - ei - . 1/.; 8 ¡:~J gives ¡ 1/.; J- e2 = -1/.; AA'= ¡~-n U -; n = ¡n ~J 12-A 0 4o = /AA' - AI I - .1 0 8 - À 0 4 0 8-A = (2 - A)(8 - A)2 - 42(8 - A) = (8 - A)(A -lO)A so Ai = 10, A2 = 8, and A3 = O. (~ ~ ~ J ¡ ~ J - 10 (~J .gves 4e3 - 8ei 8e2 - lOe2 so ei= ~(~J ¡ ~ 0 ~ J ¡ :: J 8 (~J8 - 0 gives 4e3 - Gei so e,= (!J 4ei - U Also, e3 = 1-2/V5,O, 1/V5 J' Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall
  • 9. C) 34 u -~ J - Vi ( l, J ( J" J, 1 + VB (! J (to, - J, I 2,22 (a) AA' = r 4 8 8 J l 3 6 -9 r : ~ J = r 144 -12 J l8 -9 L -12 126 o = IAA' - À I I = (144 - À)(126 - À) - (12)2 = (150 - À)(120 - À) , so Ài = 150 and À2 =' 120. Next, r 144 -12) r ei J = .150 r ei J L -12 126 L e2 le2 . r 2/.; )gives ei = L -1/.; . and À2 = 120 gives e2 = f1/v512/.;)'. (b) AI A = r: ~ J l8 -9 r438 8J l 6-9 - r ~~ i~~ i~ J l 5 10 145 25 - À 5050= IA'A - ÀI 1= 50 100 - À 10 = (150 - A)(A - 120)A 5 10 145 - À so Ai = 150, A2 = 120, and Ag = 0, Next, ¡ 25 50 5 J 50 100 10 5 10 145 r ei J' r ei J l :: = 150 l:: gives -120ei + 60e2 0 1 ( J O or ei = 'W0521-25ei + 5eg VùU ( ~ i~~ i~ J5 lD 145 ( :~ J = 120 (:~ Jeg e2Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall
  • 10. 35 gives -l~~~ ~ -2:~: ~ or., = ~ ( j J Also, ea = (2/J5, -l/J5, 0)'. (c) (4 8 8J3 6 -9 = Ý150 ( _~ J (J. vk j, J + Ý120 ( ~ J (to ~ - to J 2.24 ( 1 a n À1 = 4, =l=('~O,OJ' ;-1 = ~a) 1 b) À2 = 9 ~ =2 = (0,1,0)''9 a À3 = 1, =3 = (0,0,1)' c) ~-l For + : À1 = 1/4, À2 = 1 /.9, À = 1,3 ':1 = (1 ,O,~) i ':2 = (0 ~ 1 ,0) , el = (OlO~l)1 -3 Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall
  • 11. 36 2.25 Vl/2 "(: a OJ ( 1 -1/5 4fl5J il -.2 .26~ a) 2 o 'if.= ,-1/5 1 1/6= - 2 1 .1'67 " ~:i'67 a 3 4/15 1/6 1 ' 1 67 i b) V 1/2 .e v 1/2 = (: 0 0Jt 1 -1/5 4flJ (5 ° OJ i5 -1 4/3) (5 a :J 2 a -1/5, 1 1/6 0 2 ° = -2/5 2 1/3 a 2 a 3 4/15 1/6 1 a a 3 4/5 1/2 3 a 0 = (~: -2 4 1 n =f 2.26 a) 1/2 i /2 P13 = °13/°11 °22, = 4/13 ¡q = 4l15 = ,2£7 b) Write Xl = 1 'Xl + O'X2 + O-X3 = ~~~. with ~~ = (1 ~O~O) 1 1 i , i 1 12 x2 + 2 x3 = ~2 ~ W1 th ~2 = (0 i 2' 2" J Then Var(Xi) =al1 = 25. By (2-43), ~ 1X 1X ,+ 1 2 1 .19Var(2" 2 +2" 3) =':2 + ~2 =4 a22 + 4 a23 + '4 °33 = 1 + 2+ 4 15 = T = 3.75 By (2-45) ~ (see al so hi nt to Exerc,ise 2.28), 1 1 i 1 1Cov(X, ~ 2Xi + 2 Xi) = ~l r ~2 = "'0'12 +"2 °13 = -1 + 2 = 1 ~o Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall
  • 12. 2.27 37 1 1Corr(X1 ~ '2 Xl + '2 X2) = , 1COy(X" "2X, + '2X2) 1 ~r(Xi) har(~ Xl + ~ X2) =Sl3 := .103 a) iii - 2iiZ ~ aii + 4a22 - 4012 b) -lll + 3iZ ~ aii + 9a22 - 6a12 c) iii + 12 + 13' aii + a22 + a3i + 2a12 + 2a13 +2a23 d) ii, +~212 -. 13, aii' +~a22 + a33 + 402 - 2a,.3 - 4023 e) 3i1 - 4iiZ' 9a11 + 16022 since a12 = a . Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall
  • 13. 2,31 (a) 38 E¡X(l)J = ¡,(l) = ¡ :i (b) A¡,(l) = ¡ 1 -'1 1 ¡ ~ J = 1 (c) COV(X(l) ) = Eii = ¡ ~ ~ J (d) COV(AX(l) ) = AEiiA' = ¡i -1 i ¡ ~ n ¡ -iJ = 4 (e) E(X(2)J = ¡,,2) = ¡ n tf) B¡,(2) (~ -iJ ¡ n = ¡ n (g) COV(X(2) ) = E22 = ¡ -; -: J (h) COV(BX(2)) = BE22B' = ¡ ~ -~ J (-; -: J (-~ ~ J - (~: -~ J 0) COV(X(l), X(2)) = ¡ ~ ~ J (j) COV(AX(1),BX(2))=AE12B'=(1 -1) ¡~ ~J ¡ _~ n=(O 21 Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall
  • 14. 2,32 ~a) 39 EIX(l)j = ILll) = ¡ ~ J (b) AIL(l) = ¡ ~ -~ J ¡ ~ J = ¡ -~ J (c) Co(X(l) ) = En = l-i -~ J td) COV(AX(l)) = AEnA' = ¡ ~ -¡ J ¡ -i -~ J L ~~ ~ J - ¡ i ~ J (e) E(Xl2)j = IL(;) = ( -~ J (f) BIL(2) = ¡ ~ ; -~ J ( -~ i = ¡ -; J (g) ( 6 1 -~1 i COV(X(2) ) = ~22 = 1 4 -1 0 (h) COV(BX(2) ) = BE22B' , = U i -~ J (j ~ -~ J U -n - ¡ 12 9 J 9 24 0) CoV(X(1),X(2)) = ¡ l ::J ~ J (j) COV(AX(l) i BX(2)) = AE12B' Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall
  • 15. 2,33 (a) 40 - U j J H =l n (¡ j J - l ~ ~ J E(X(l)j = Li(l) = ( _~ J (b) Ati(l) = L î -~ ~ J ( _~ J - ¡ ~ J (c) ( 4 i 6-i~J Cov(X(l¡ ) = Eii = - ~ - ~ (d) COV(AX(l) ) = Ai:iiA' , = (î -~ ~) (-¡ -~!J (-~ n - ¡234) 4 63 (e) E(X(2)J = ti(2) = ¡ ~ ) (f) Bti(2) = ¡ ~ -î J ¡ ~ J = I ; ) (g) Co( X(2) ) = E" = ¡ ¿ n (h) CoV(BX,2) ) = BE"B' = U - î ) L ¿ ~ J D - ~ J - I 1~ ~ J Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall
  • 16. (i) 41 ( _1 0 J COv(X(1),X(2))= -1 0 1 -1 ü) COV(AX(l), BX~2)) = A:E12B1 = ¡ 2 -1 0 J (=!O J 1 1 3 i 01 -1 ¡ ~ - ~ J = ¡ -4,~ 4,~ J Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall
  • 17. 42 2.34 bib = 4 + 1 + 16 + a = 21, did = 15 and bid = -2-3-8+0 = -13- - (ÉI~)Z = 169 ~ 21 (15) = 315 2.35 bid = -4 + 3 = -1 - - biBb = (-4, 3) L: -:J (-~ J = (-:14 23) ( -~ J · 125- - ( 5/6 2/6 ) il ) d I B-1 d = (1~1) 2/6 = 11/62/6 1 so 1 = (bld)Z s 125 (11/6)" = 229.17- - ' 2.36 4x~ + 4x~ + 6xix, = x'Ax wher A = (: ~). (4 - ).)2 - 32 = 0 gives ).1 = 7,).2 = 1. Hence the maximum is 7 and the minimum is 1. 2.37 From (2~51), max x'x=l- - X i Ax = max ~fQ ~ 'A! ~13 = À1 where À1 is the largest eigenvalue of A. For A given in Exercise 2.6, we have from Exercise 2.7 ~ Ài = 10 and el . (.894, -,447), Therefore max xlAx = 10 andth1s -1 x I x Fl maximum is attained for : = ~1. 2.38 Using computer, ).1 = 18, ).2 = 9, ).3 = 9, Hence the maximum is 18 and the minimum is 9, Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall
  • 18. 2.41 (8) E(AX) = AE(X) = APX = m (b) Cav(AX) = ACov(X)A' = ALXA' = (~ 43 o OJ 18 0 o 36 (c) All pairs of linear combinations have zero covarances. 2.42 (8) E(AX) = AE(X)= Apx =(i (b) Cov(AX) = ACov(X)A' = ALxA' = ( ~ o OJ 12 0 o 24 (c) All pairs of linear combinations have zero covariances. Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall Applied Multivariate Statistical Analysis 6th Edition Johnson Solutions Manual Full Download: http://alibabadownload.com/product/applied-multivariate-statistical-analysis-6th-edition-johnson-solutions-manual This sample only, Download all chapters at: alibabadownload.com