SlideShare a Scribd company logo
  1	
  
iot,	
  my	
  small	
  ai	
  VERSION,	
  scope	
  of	
  analytics	
  2015	
  	
  
learning,	
  thinking,	
  practicing	
  
Any	
  other	
  thoughts	
  please	
  feel	
  free	
  to	
  contact,	
  luxiaoteng0	
  (at)	
  gmail	
  (dot)	
  com	
  
	
  
	
  
	
  
Data	
  has	
  no	
  shadow.	
  Whatever	
  it’s	
  sculptured,	
  it’s.	
  
	
  
As	
  long	
  as	
  it	
  has	
  landed	
  to	
  the	
  completion	
  of	
  model-­‐100,	
  TENG’s	
  self-­‐assignment	
  
on	
  modeling	
  techniques	
  self-­‐learning,	
  predictive	
  analytics	
  related,	
  TENG	
  is	
  able	
  
to	
  decipher	
  hybrid	
  data	
  solution,	
  which	
  is	
  crossing	
  of	
  generic	
  model	
  techniques	
  
such	
  as	
  familiar	
  hierarchical	
  cluster	
  and	
  a	
  lot,	
  plus	
  domain	
  knowledge	
  i.e.	
  bank,	
  
retail,	
  mobile	
  etc.	
  as	
  well	
  as	
  it	
  empowers	
  advanced	
  data	
  mining	
  applied	
  with	
  
machine	
  learning.	
  	
  It	
  has	
  built	
  into	
  three	
  dimensional	
  data	
  analysis	
  matrix.	
  
	
  
Inside	
  the	
  genres,	
  TENG	
  is	
  unique	
  to	
  design	
  data	
  analysis	
  models,	
  not	
  only	
  
learning	
  from	
  traditional	
  analysis	
  modules,	
  but	
  also	
  consolidate	
  multiple	
  
techniques	
  to	
  address	
  realistic	
  business	
  needs.	
  It	
  rolls	
  out	
  a	
  positive	
  loop	
  that	
  
algorithms	
  could	
  be	
  best	
  fit	
  into	
  where	
  it’s	
  needed	
  for	
  performance	
  improving	
  
related	
  to	
  well	
  recognized	
  business	
  situation.	
  <data	
  UNME>	
  converge	
  the	
  usages	
  
of	
  text	
  mining,	
  semantic	
  analysis	
  and	
  recommendation	
  system.	
  Each	
  of	
  these	
  
analytics	
  modules	
  have	
  been	
  evidently	
  extracted	
  from	
  high	
  profile	
  source.	
  It	
  
consolidates	
  movie/drama/program	
  viewingship	
  pattern	
  through	
  multiple	
  
platforms	
  x	
  devices.	
  Individual	
  could	
  be	
  classified	
  by	
  tag	
  through	
  the	
  output	
  
scoring	
  counts.	
  This	
  process	
  is	
  consistently	
  applied	
  with	
  supervised	
  learning	
  per	
  
Google’s	
  tagged	
  word	
  embedding	
  methodology.	
  Brand	
  could	
  leverage	
  the	
  
viewing	
  score	
  to	
  plan	
  optimum	
  brand	
  awareness	
  as	
  customer-­‐centric	
  driven.	
  
Furthermore,	
  it	
  renders	
  in	
  the	
  range	
  of	
  multiple	
  channel	
  intelligences	
  because	
  it	
  
  2	
  
makes	
  the	
  variables	
  standardization	
  available	
  across	
  online	
  video,	
  time-­‐shifted	
  
TV,	
  social	
  media	
  plus	
  influences	
  from	
  movie	
  on-­‐air.	
  	
  
	
  
	
  Case	
  Study,	
  NLP	
  adoption,	
  
	
  
A	
  famous	
  early	
  example	
  of	
  the	
  use	
  of	
  cognitive	
  technology	
  to	
  improve	
  a	
  product	
  offering	
  is	
  the	
  
recommendation	
  feature	
  of	
  the	
  Netflix	
  online	
  movie	
  rental	
  service,	
  which	
  uses	
  machine	
  learning	
  to	
  
predict	
  which	
  movies	
  a	
  customer	
  will	
  like.	
  This	
  feature	
  has	
  had	
  a	
  significant	
  impact	
  on	
  customers’	
  
use	
  of	
  the	
  service;	
  it	
  accounts	
  for	
  as	
  much	
  as	
  75	
  percent	
  of	
  Netflix	
  usage.	
  
To	
  improve	
  marketing	
  and	
  customer	
  service,	
  BBVA	
  Compass	
  bank	
  uses	
  a	
  social	
  media	
  sentiment	
  
monitoring	
  tool	
  to	
  track	
  and	
  understand	
  what	
  consumers	
  are	
  saying	
  about	
  the	
  bank	
  and	
  its	
  
competitors.	
  The	
  tool,	
  which	
  incorporates	
  natural	
  language	
  processing	
  technology,	
  automatically	
  
identifies	
  salient	
  topics	
  of	
  consumer	
  chatter	
  and	
  the	
  sentiments	
  surrounding	
  those	
  topics.	
  These	
  
insights	
  influence	
  the	
  bank’s	
  decisions	
  on	
  setting	
  fees	
  and	
  offering	
  consumer	
  perks,	
  and	
  how	
  
customer	
  service	
  representatives	
  should	
  respond	
  to	
  certain	
  customer	
  inquiries	
  about	
  services	
  and	
  
fees.22	
  
Source:	
  Deloitte	
  Review	
  
	
  
	
  
Seed	
  Program	
  (1)#	
  <data	
  UNME>	
  follows	
  the	
  working	
  principle,	
  
	
  
Since	
  content	
  consumption	
  dominates	
  online	
  video	
  viewing,	
  it	
  is	
  possible	
  to	
  
reinvent	
  viewingship	
  measurement	
  according	
  to	
  preferences	
  of	
  the	
  programs.	
  
With	
  the	
  chosen	
  variables,	
  targeting	
  market	
  could	
  be	
  defined	
  whereas	
  brands	
  
attribute	
  according	
  to	
  the	
  methods	
  of	
  content	
  connection	
  instead	
  of	
  digital	
  
metrics	
  only.	
  It	
  makes	
  feasible	
  translation	
  with	
  data	
  works	
  out	
  virtually	
  channel	
  
mix	
  strategy.	
  So	
  does	
  it	
  fulfill	
  end-­‐to-­‐end	
  data	
  solution	
  about	
  performance,	
  
segmentation,	
  engagement.	
  
	
  
.	
  Track	
  the	
  influences	
  generated	
  from	
  each	
  viewingship;	
  
.	
  It	
  carries	
  in	
  defined	
  framework;	
  
.	
  Viewingship	
  is	
  measured	
  as	
  a	
  link	
  to	
  the	
  contents	
  counted	
  by	
  chosen	
  variables;	
  
.	
  Besides	
  monitoring	
  actions	
  on	
  programs,	
  it	
  also	
  has	
  advantage	
  to	
  decipher	
  
similar	
  program	
  influences	
  differentiated	
  in	
  various	
  platforms;	
  
.	
  In	
  other	
  words,	
  the	
  platform	
  performance	
  could	
  be	
  taken	
  as	
  the	
  adoption	
  of	
  
variety	
  of	
  programs	
  which	
  associate	
  to	
  the	
  observing	
  variables;	
  	
  
.	
  The	
  preferences	
  on	
  programs	
  reflect	
  the	
  quality	
  of	
  users	
  and	
  it’s	
  conveniently	
  to	
  
quantify	
  users	
  attributions.	
  
	
  
More	
  releases	
  that	
  social	
  network	
  analysis	
  links	
  to	
  utilize	
  tangible	
  conditional	
  
probability	
  predictive	
  method.	
  
	
  
In	
  the	
  mean	
  time,	
  it	
  has	
  the	
  other	
  ascendencies.	
  
	
  
First,	
  it	
  could	
  be	
  synergized	
  with	
  well-­‐established	
  segmentation.	
  According	
  to	
  log	
  
linear	
  model,	
  target	
  groups’	
  viewing	
  habit	
  could	
  be	
  drawn	
  simultaneously	
  with	
  
pre-­‐option	
  affinity	
  variables,	
  besides	
  viewingship	
  data,	
  reviews,	
  favors,	
  there	
  are	
  
more	
  like	
  program	
  type,	
  host,	
  director,	
  actor,	
  geo,	
  timing,	
  devices.	
  With	
  time	
  
being,	
  it’s	
  obvious	
  to	
  maximize	
  the	
  significance	
  bonding	
  between	
  brand	
  
  3	
  
consumer	
  features	
  and	
  viewing	
  indexation.	
  Consequently,	
  the	
  value	
  of	
  data	
  
insight	
  could	
  be	
  further	
  solicited	
  on	
  brand	
  awareness	
  optimization.	
  How	
  much	
  it	
  
correlates	
  to	
  the	
  revenues?	
  Only	
  when	
  this	
  solid	
  awareness	
  combination	
  could	
  
be	
  visualized,	
  the	
  equation	
  about	
  brand,	
  consumer	
  interaction,	
  learned	
  from	
  data	
  
analysis	
  guru	
  Dawn	
  Iacobucci	
  [fig.1]	
  can	
  be	
  measured	
  in	
  a	
  learning	
  path	
  
wherever	
  it’s	
  under	
  the	
  bigger	
  background	
  as	
  forming	
  intelligent	
  enterprise	
  
[fig.2].	
  
	
  
[fig.1]	
  
	
  
Ad	
  exposure	
  !	
  Brand	
  awareness	
  !	
  Attitude	
  ~	
  ad	
  !	
  Buying	
  intention	
  !	
  
Purchase	
  
Ad	
  exposure	
  !	
  Brand	
  awareness	
  !	
  Attitude	
  ~	
  brand	
  !	
  Buying	
  intention	
  !	
  
Purchase	
  
Price	
  !	
  Buying	
  intention	
  
	
  
[fig.2]	
  
	
  
	
  
	
  
	
  
	
  
Have	
  to	
  thank	
  for	
  references	
  being	
  with	
  theoretical	
  proofs,	
  
	
  
1. Natural	
  Language	
  Processing	
  (almost)	
  from	
  Scratch,	
  Journal	
  of	
  Machine	
  Learning	
  Research	
  1	
  (2000)	
  1-­‐48,	
  
Ronan	
  Collobert,	
  Jason	
  Weston,	
  L	
  ́eon	
  Bottou,	
  Michael	
  Karlen,	
  Koray	
  Kavukcuoglu,	
  Pavel	
  Kuksa.	
  
2. Deep	
  learning	
  &	
  NLP	
  -­‐	
  Graphs	
  to	
  the	
  Rescue,	
  (or	
  not	
  yet!),	
  Stockholm,	
  Sics,	
  October	
  21	
  2014,	
  Roelof	
  Pieters,	
  
KTH/CSC,	
  Graph	
  Technologies	
  R&D	
  -­‐	
  	
  
3. Deep	
  learning	
  for	
  NLP,	
  An	
  Introduction	
  to	
  Neural	
  Word	
  Embeddings*	
  and	
  some	
  more	
  fun	
  stuff…,	
  KTH,	
  
December	
  4,	
  2014,	
  Roelof	
  Pieters	
  	
  PhD	
  candidate	
  KTH/CSC	
  CIO/CTO	
  Feeda	
  AB	
  
4. Three	
  New	
  Graphical	
  Models	
  for	
  Statistical	
  Language	
  Modelling,	
  Andriy	
  Mnih,	
  Geoffrey	
  Hinton,	
  Department	
  of	
  
Computer	
  Science,	
  University	
  of	
  Toronto,	
  Canada	
  
  4	
  
5. Statistical	
  Language	
  Models	
  Based	
  on	
  Neural	
  Networks,	
  Google,	
  Moutain	
  View,	
  2nd	
  April	
  2012,	
  Tomas	
  Mikolov,	
  
Strategies	
  for	
  training	
  large	
  scale	
  neural	
  network	
  language	
  models,	
  Microsoft	
  Research,	
  Redmond,	
  WA,	
  USA,	
  
Toma	
  ́sˇ	
  Mikolov	
  #1,	
  Anoop	
  Deoras	
  ∗2,	
  Daniel	
  Povey	
  †3,	
  Luka	
  ́sˇ	
  Burget	
  #4,	
  Jan	
  “Honza”	
  Cˇ	
  ernocky	
  ́	
  #5	
  #	
  Brno	
  
University	
  of	
  Technology,	
  Speech@FIT,	
  Brno,	
  Czech	
  Republic	
  
6. DeViSE:	
  A	
  Deep	
  Visual-­‐Semantic	
  Embedding	
  Model,	
  Google,	
  Inc.	
  Mountain	
  View,	
  CA,	
  USA,	
  Andrea	
  Frome*,	
  Greg	
  
S.	
  Corrado*,	
  Jonathon	
  Shlens*,	
  Samy	
  Bengio	
  Jeffrey	
  Dean,	
  Marc’Aurelio	
  Ranzato,	
  Tomas	
  Mikolov	
  
Whatever	
  it’s	
  probably	
  not	
  a	
  game-­‐changer,	
  it	
  still	
  transforms	
  to	
  model	
  designer	
  
and	
  pursues	
  my	
  own	
  best	
  practices.	
  Thank	
  you.	
  
Is	
  it	
  formidable?	
  What	
  if	
  it’s	
  just	
  thy	
  truth	
  too	
  much.	
  Who	
  just	
  plays	
  
autocorrelation?	
  Unsuspected	
  social	
  site	
  easily	
  becomes	
  assistive.	
  How	
  about	
  
time-­‐shifted	
  TV?	
  It	
  gears	
  up	
  the	
  follower	
  in	
  ahead.	
  Is	
  it	
  awesome?	
  Whenever	
  
think	
  about	
  brand	
  tailors	
  your	
  own	
  broadcasting	
  station,	
  secret	
  recipe	
  is	
  about	
  
virtual	
  channel	
  *	
  type	
  *	
  program.	
  Please	
  contact	
  Teng,	
  it	
  will	
  have	
  hypothesis,	
  
experiments,	
  data	
  analysis	
  methodology	
  decipher,	
  insight	
  report	
  and	
  your	
  
brand’s	
  quotient,	
  everything	
  in	
  the	
  case	
  looking	
  at	
  
viewhingship/clicks/comments	
  as	
  the	
  series	
  of	
  actions	
  caused	
  by	
  users.	
  There	
  is	
  
the	
  correlation	
  between	
  the	
  certain	
  group	
  of	
  viewers	
  and	
  their	
  preferences.	
  
Preferences	
  have	
  been	
  discerned	
  by	
  the	
  program	
  viewingshing	
  habit.	
  How	
  about	
  
brand	
  overarches	
  the	
  findings	
  in	
  veins,	
  thus	
  exert	
  the	
  inherent	
  influences	
  into	
  
viewers	
  who	
  has	
  been	
  identified	
  as	
  worth	
  of	
  targeting	
  according	
  to	
  previous	
  
program	
  classifications.	
  [fig.3].	
  
As	
  long	
  as	
  observing	
  on	
  conditional	
  probability	
  merged	
  with	
  social	
  mining,	
  
unstructured	
  data	
  utilization	
  could	
  be	
  standardized	
  firstly	
  in	
  the	
  sequence	
  to	
  
apply	
  hierarchy	
  bayesian.	
  It	
  is	
  consistent	
  to	
  Seed	
  Program	
  (2)#	
  e-­‐chainTM	
  that	
  the	
  
extreme	
  focus	
  on	
  top	
  three	
  conversions	
  in	
  data	
  stream,	
  e-­‐commerce,	
  engine,	
  
email.	
  In	
  tradition,	
  it	
  veins	
  into	
  impression,	
  click,	
  acquisition,	
  transaction.	
  After	
  
developing	
  word	
  bag,	
  2	
  algorithms	
  Gibbs	
  Sampling	
  and	
  Metropolis	
  Hasting	
  are	
  
particularly	
  useful	
  to	
  draw	
  posterior	
  distribution.	
  This	
  is	
  very	
  crucial	
  conclusion	
  
drawn	
  from	
  my	
  some	
  researches	
  and	
  theoretical	
  learning.	
  Probably	
  it’s	
  familiar	
  
by	
  others,	
  but	
  for	
  me	
  it	
  takes	
  some	
  efforts.	
  It	
  has	
  4	
  strengths	
  by	
  adopting	
  of	
  this	
  
data	
  solution	
  from	
  my	
  point	
  of	
  view,	
  1.	
  It	
  has	
  the	
  completed	
  achievement	
  of	
  data	
  
tracking	
  in	
  each	
  outcome	
  layer;	
  2.	
  Follows	
  contextual	
  measurement	
  without	
  
losing	
  focus	
  90%	
  conversions	
  regarding	
  of	
  e-­‐business	
  backbone;	
  3.	
  It	
  works	
  
under	
  hive	
  philosophy.	
  It	
  involves	
  the	
  touch	
  points	
  as	
  beneficial	
  extensions;	
  4.	
  
It’s	
  effective	
  to	
  merge	
  with	
  other	
  analysis	
  module	
  i.e.	
  brand	
  simulation	
  in	
  
advance.	
  It’s	
  able	
  to	
  utilize	
  Deep	
  Learning	
  as	
  far	
  as	
  there	
  are	
  feasibly	
  55	
  layers	
  
applied	
  in	
  Google’s	
  analysis	
  that	
  I	
  read	
  from	
  one	
  article	
  before	
  in	
  somewhere.	
  	
  	
  
	
  [fig.3]	
  
. about	
  Spark	
  Internet	
  Button	
  /	
  SIB*,	
  {if	
  this,	
  then	
  that.}	
  data	
  analysis	
  integration	
  inside	
  <data	
  UNME>	
  applied	
  with
myself	
  some	
  reliable	
  proofs	
  in	
  data	
  analysis	
  theories,	
  [fig.3]
	
  
  5	
  
	
  
	
  
	
  
	
  other	
  scenario	
  soonest	
  specifically	
  for	
  CIO	
  references.	
  	
  
What	
  is	
  differentiations	
  between	
  supervised	
  learning	
  and	
  unsupervised	
  
learning	
  in	
  terms	
  of	
  social	
  mining.	
  
• A	
  new	
  study	
  has	
  revealed	
  a	
  way	
  to	
  do	
  sentiment	
  analysis	
  on	
  a	
  large	
  number	
  of	
  social	
  
media	
  images	
  using	
  unsupervised	
  learning.	
  
• Unsupervised	
  learning	
  in	
  AI	
  is	
  a	
  step	
  above	
  supervised	
  learning	
  where	
  machines	
  have	
  to	
  
work	
  with	
  unlabelled	
  data,	
  observe	
  and	
  make	
  sense	
  of	
  it,	
  and	
  provide	
  an	
  outcome.	
  
Supervised	
  learning,	
  on	
  the	
  other	
  hand,	
  gives	
  machines	
  labelled	
  data	
  or	
  examples	
  to	
  
learn	
  from	
  when	
  carrying	
  out	
  certain	
  tasks	
  such	
  as	
  classifying	
  an	
  object	
  or	
  predicting	
  
future	
  outcomes.	
  The	
  study,	
  Unsupervised	
  Sentiment	
  Analysis	
  for	
  Social	
  Media	
  Images,	
  
was	
  released	
  as	
  part	
  of	
  the	
  International	
  Joint	
  Conference	
  on	
  Artificial	
  Intelligence	
  in	
  
Argentina	
  this	
  week.	
  It	
  reveals	
  a	
  novel	
  framework,	
  called	
  Unsupervised	
  Sentiment	
  
Analysis	
  (USEA),	
  that	
  uses	
  both	
  textual	
  and	
  visual	
  data	
  in	
  a	
  single	
  model	
  for	
  learning.	
  
• Images	
  from	
  social	
  media	
  sites	
  offer	
  rich	
  data	
  to	
  work	
  with	
  when	
  doing	
  sentiment	
  
analysis.	
  However,	
  manually	
  labelling	
  millions	
  of	
  images	
  is	
  too	
  labour-­‐	
  and	
  time-­‐
intensive,	
  meaning	
  this	
  data	
  often	
  goes	
  untapped.	
  This	
  is	
  why	
  the	
  study's	
  authors	
  
focused	
  their	
  efforts	
  on	
  unsupervised	
  learning.	
  
• “In	
  order	
  to	
  utilise	
  the	
  vast	
  amount	
  of	
  unlabelled	
  social	
  media	
  images,	
  an	
  unsupervised	
  
approach	
  would	
  be	
  much	
  more	
  desirable,”	
  researchers	
  from	
  Arizona	
  State	
  University	
  
wrote	
  in	
  their	
  paper.	
  
• “As	
  of	
  2013,	
  87	
  millions	
  of	
  users	
  have	
  registered	
  with	
  Flickr.	
  Also,	
  it	
  was	
  estimated	
  that	
  
about	
  20	
  billion	
  Instagram	
  photos	
  are	
  shared	
  to	
  2014.	
  
• “To	
  our	
  best	
  knowledge,	
  USEA	
  is	
  the	
  first	
  unsupervised	
  sentiment	
  analysis	
  framework	
  
for	
  social	
  media	
  images.”	
  
• The	
  framework	
  infers	
  sentiments	
  by	
  combining	
  visual	
  data	
  with	
  accompanying	
  textual	
  
data.	
  As	
  textual	
  data	
  is	
  often	
  incomplete	
  with	
  hardly	
  any	
  tags	
  or	
  noisy	
  with	
  irrelevant	
  
comments,	
  relying	
  on	
  it	
  alone	
  is	
  difficult	
  when	
  doing	
  sentiment	
  analysis.	
  	
  
  6	
  
• Therefore,	
  the	
  researchers	
  used	
  the	
  supporting	
  textual	
  data	
  to	
  provide	
  semantic	
  
information	
  on	
  the	
  images	
  to	
  enable	
  unsupervised	
  learning.	
  
• “Textual	
  information	
  bridges	
  the	
  semantic	
  gap	
  between	
  visual	
  features	
  and	
  sentiment	
  
labels.”	
  
• The	
  researchers	
  crawled	
  images	
  from	
  Flickr	
  and	
  Instagram	
  users,	
  collecting	
  140,221	
  
images	
  from	
  Flickr	
  and	
  131,224	
  from	
  Instagram.	
  	
  
• They	
  built	
  a	
  framework	
  to	
  classify	
  images	
  into	
  three	
  categories	
  or	
  class	
  labels	
  –	
  positive,	
  
negative	
  and	
  neutral,	
  looking	
  at	
  image	
  captions	
  and	
  comments	
  associated	
  with	
  the	
  
images.	
  	
  
• “Some	
  words	
  may	
  contain	
  sentiment	
  polarities.	
  For	
  example,	
  some	
  words	
  are	
  positive	
  
such	
  as	
  ‘happy’	
  and	
  ‘terrific’;	
  while	
  others	
  are	
  negative	
  such	
  as	
  ‘gloomy’	
  and	
  
‘disappointed’.	
  
• 	
  “The	
  sentiment	
  polarities	
  of	
  words	
  can	
  be	
  obtained	
  via	
  some	
  public	
  sentiment	
  lexicons.	
  
For	
  example,	
  the	
  sentiment	
  lexicon	
  MPQA	
  [Multiple	
  Perspective	
  Question	
  Answering]	
  
contains	
  7,504	
  human	
  labeled	
  words	
  which	
  are	
  commonly	
  used	
  in	
  the	
  daily	
  life	
  with	
  
2,721	
  positive	
  words	
  and	
  4,783	
  negative	
  words.	
  
• “Second,	
  some	
  abbreviations	
  and	
  emoticons	
  are	
  strong	
  sentiment	
  indicators.	
  For	
  
example,	
  ‘lol’	
  [laugh	
  out	
  loud]	
  is	
  a	
  positive	
  indicator	
  while	
  ‘:(‘	
  is	
  a	
  negative	
  indicator.”	
  
• Visual	
  features	
  from	
  the	
  images	
  were	
  extracted	
  by	
  large-­‐scale	
  visual	
  attribute	
  detectors,	
  
with	
  term	
  frequency	
  and	
  stop	
  words	
  (removing	
  words	
  like	
  ‘a’	
  and	
  ‘the’)	
  used	
  to	
  form	
  
text-­‐based	
  features.	
  
• The	
  framework	
  was	
  compared	
  to	
  other	
  sentiment	
  analysis	
  algorithms	
  such	
  as	
  Senti	
  API	
  
for	
  unsupervised	
  sentiment	
  prediction	
  and	
  a	
  variant	
  of	
  the	
  framework,	
  USEA-­‐T,	
  which	
  
only	
  takes	
  textual	
  data	
  into	
  account	
  when	
  doing	
  sentiment	
  analysis.	
  	
  
• Other	
  methods	
  that	
  were	
  also	
  compared	
  with	
  the	
  USEA	
  framework	
  were	
  Sentibank	
  with	
  
K-­‐means	
  clustering,	
  which	
  uses	
  large	
  scale	
  visual	
  attribute	
  detectors,	
  and	
  adjective	
  and	
  
nouns	
  visual	
  sentiment	
  description	
  pairs;	
  EL	
  with	
  K-­‐means	
  clustering,	
  which	
  is	
  a	
  topical	
  
graphical	
  model	
  for	
  sentiment	
  analysis;	
  and	
  Random,	
  which	
  randomly	
  guesses	
  to	
  predict	
  
sentiment	
  labels	
  of	
  images.	
  
• The	
  results	
  show	
  that	
  USEA	
  performed	
  better	
  than	
  all	
  the	
  other	
  algorithms	
  tested,	
  
receiving	
  56.18	
  per	
  cent	
  accuracy	
  with	
  the	
  Flickr	
  dataset	
  compared	
  to	
  Senti	
  API	
  at	
  34.15	
  
per	
  cent	
  and	
  USEA-­‐T	
  at	
  40.22	
  per	
  cent.	
  With	
  the	
  Instagram	
  dataset,	
  it	
  received	
  59.94	
  per	
  
cent	
  accuracy	
  compared	
  to	
  Senti	
  API	
  at	
  37.80	
  per	
  cent	
  and	
  USEA-­‐T	
  at	
  36.41	
  per	
  cent.	
  
• “The	
  proposed	
  framework	
  often	
  obtains	
  better	
  performance	
  than	
  baseline	
  methods.	
  
There	
  are	
  two	
  major	
  reasons.	
  First,	
  textual	
  information	
  provides	
  semantic	
  meanings	
  and	
  
sentiment	
  signals	
  for	
  images.	
  Second	
  we	
  combine	
  visual	
  and	
  textual	
  information	
  for	
  
sentiment	
  analysis.”	
  
• The	
  research	
  pointed	
  out	
  that	
  deep	
  learning	
  approaches	
  (many	
  hidden	
  layers	
  in	
  artificial	
  
neural	
  networks)	
  to	
  this	
  have	
  shown	
  to	
  be	
  effective,	
  but	
  still	
  are	
  mostly	
  used	
  in	
  a	
  
supervised	
  learning	
  way,	
  which	
  depends	
  on	
  the	
  availability	
  of	
  a	
  good	
  training	
  dataset	
  
with	
  labels.	
  
• “In	
  the	
  future,	
  we	
  will	
  exploit	
  more	
  social	
  media	
  sources,	
  such	
  as	
  link	
  information,	
  user	
  
history,	
  geo-­‐location,	
  etc.,	
  for	
  sentiment	
  analysis.”	
  
	
  
• Source:	
  http://www.cio.com.au/article/580602/study-­‐uncovers-­‐unsupervised-­‐
learning-­‐framework-­‐image-­‐sentiment-­‐analysis/?fp=16&fpid=1	
  
	
  
	
  There	
  are	
  some	
  opinions	
  from	
  Professor	
  Miller	
  about	
  text	
  mining	
  
supervised	
  vs	
  unsupervised:	
  
	
  
Unsupervised	
  text	
  analytics	
  problems	
  are	
  those	
  for	
  which	
  there	
  is	
  no	
  response	
  or	
  
class	
  to	
  be	
  predicted.	
  Rather,	
  as	
  we	
  showed	
  with	
  the	
  movie	
  taglines,	
  the	
  task	
  is	
  to	
  
identify	
  common	
  patterns	
  or	
  trends	
  in	
  the	
  data.	
  As	
  part	
  of	
  the	
  task,	
  we	
  may	
  
define	
  text	
  measures	
  describing	
  the	
  documents	
  in	
  the	
  corpus.	
  	
  
	
  
For	
  supervised	
  text	
  analytics	
  problems	
  there	
  is	
  a	
  response	
  or	
  class	
  of	
  documents	
  
to	
  be	
  predicted.	
  We	
  build	
  a	
  model	
  on	
  a	
  training	
  set	
  and	
  test	
  it	
  on	
  a	
  test	
  set.	
  Text	
  
  7	
  
classification	
  problems	
  are	
  common.	
  Span	
  filtering	
  has	
  long	
  been	
  a	
  subject	
  of	
  
interest	
  as	
  a	
  classification	
  problem,	
  and	
  many	
  e-­‐mail	
  users	
  have	
  benefitted	
  from	
  
the	
  efficient	
  algorithm	
  that	
  have	
  evolved	
  in	
  this	
  area.	
  In	
  the	
  context	
  of	
  
information	
  retrieval,	
  search	
  engines	
  classify	
  documents	
  as	
  being	
  relevant	
  to	
  the	
  
search	
  or	
  not.	
  Useful	
  modeling	
  techniques	
  for	
  text	
  classification	
  include	
  logistic	
  
regression,	
  linear	
  discriminant	
  function	
  analysis,	
  classification	
  trees,	
  and	
  support	
  
vector	
  machines.	
  Various	
  ensemble	
  or	
  committee	
  methods	
  may	
  be	
  employed.	
  	
  
	
  
Automatic	
  text	
  summarization	
  is	
  an	
  area	
  of	
  research	
  and	
  development	
  that	
  can	
  
help	
  with	
  information	
  management.	
  Imagine	
  a	
  text	
  processing	
  program	
  with	
  the	
  
ability	
  to	
  read	
  each	
  document	
  in	
  a	
  collection	
  and	
  summarize	
  it	
  in	
  a	
  sentence	
  or	
  
two,	
  perhaps	
  quoting	
  from	
  the	
  document	
  itself.	
  Today’s	
  search	
  engines	
  are	
  
providing	
  partial	
  analysis	
  of	
  documents	
  prior	
  to	
  their	
  being	
  displayed.	
  They	
  
create	
  automated	
  summaries	
  for	
  fast	
  information	
  retrieval.	
  They	
  recognize	
  
common	
  text	
  strings	
  associated	
  with	
  user	
  requests.	
  These	
  applications	
  of	
  text	
  
analysis	
  comprise	
  tool	
  of	
  information	
  search	
  that	
  we	
  take	
  of	
  granted	
  as	
  part	
  of	
  
our	
  daily	
  lives.	
  
	
  
Seed	
  Program	
  (3)#	
  Data	
  Analysis	
  in	
  general	
  +	
  Bank	
  in	
  particular	
  (just	
  name	
  it	
  
symphony	
  analysis)	
  >>>	
  unpublished	
  my	
  first	
  book	
  <data	
  analysis	
  is	
  a	
  symphony	
  
in	
  big	
  data	
  jungle>	
  
	
  
In	
  an	
  analysis	
  list	
  about	
  banking	
  data,	
  may	
  bring	
  my	
  version	
  listed*	
  live.	
  My	
  little	
  
behemoth,	
  it’s	
  with	
  all	
  my	
  nurturing	
  from	
  learning.	
  Whereas	
  it’s	
  fully	
  
understandable	
  my	
  deepest	
  respects	
  to	
  the	
  behemoths	
  who	
  has	
  been	
  
authoritative	
  over	
  50	
  years	
  in	
  bank	
  data	
  analysis	
  relates,	
  especially	
  approached	
  
with	
  seeable	
  continuous	
  advances	
  e.g.	
  machine	
  learning,	
  predictive	
  analytics.	
  	
  
	
  
.	
  Customer	
  portfolio	
  management	
  
.	
  Customer	
  segmentation	
  
.	
  RFM	
  models	
  &	
  Migration	
  
.	
  Market	
  basket	
  analysis	
  
.	
  Recommendation	
  tool	
  
.	
  Existing	
  customer	
  analysis	
  
.	
  Customer	
  acquisition	
  
.	
  Customer	
  retention	
  including	
  churn	
  analysis,	
  and	
  the	
  side	
  of	
  risk	
  management	
  
(over	
  50	
  years’	
  professions	
  in	
  FICO	
  &	
  Others)	
  
.	
  Cross-­‐selling	
  &	
  Up-­‐selling	
  
.	
  Multiple	
  channel	
  planning	
  
.	
  ROI	
  modeler	
  
.	
  Customer	
  lifetime	
  value	
  system	
  
.	
  Techniques	
  in	
  predictive	
  analytics,	
  machine	
  learning	
  &	
  Neural	
  Network	
  
.	
  Risk	
  analysis	
  (over	
  50	
  years’	
  professions	
  in	
  FICO	
  &	
  SAS	
  &	
  Others)	
  
.	
  Fraud	
  analysis	
  (over	
  50	
  years’	
  professions	
  in	
  FICO	
  &	
  SAS	
  &	
  Others)	
  
.	
  Credit	
  score	
  (over	
  50	
  years’	
  professions	
  in	
  FICO	
  &	
  Others)	
  
(&	
  more	
  a	
  lot	
  about	
  financial	
  data	
  areas	
  that	
  probably	
  I	
  don’t	
  know,	
  related	
  to	
  
over	
  50	
  years’	
  professions	
  in	
  FICO	
  &	
  SAS	
  &	
  Others)	
  
.	
  Hypothesis	
  *	
  Experiments	
  
  8	
  
	
  
• *about	
  the	
  list,	
  
• It’s	
  suggested	
  to	
  remove	
  the	
  name	
  limitation	
  here	
  for	
  convenient	
  reading,	
  
despite	
  name	
  system	
  in	
  list	
  is	
  simply	
  consistent	
  to	
  e-­‐business.	
  My	
  learning	
  
has	
  been	
  through	
  data	
  mining	
  methodology,	
  so	
  that,	
  within	
  my	
  available	
  
data	
  capabilities,	
  it	
  enables	
  to	
  switch	
  verified	
  data	
  situation	
  with	
  specific	
  
data	
  analysis	
  techniques	
  behind	
  the	
  name.	
  It	
  also	
  includes	
  some	
  instances	
  
that	
  there	
  are	
  data	
  analysis	
  essences	
  I	
  have	
  learned	
  about	
  e.g.	
  logit,	
  
conjunct	
  analysis	
  and	
  a	
  lot	
  etc.	
  despite	
  it	
  can’t	
  tell	
  from	
  the	
  listed	
  names.	
  	
  	
  
	
  
And there are more small modelers related to modeling techniques.
Need to highlight Seed	
  Program	
  (4)#	
  the	
  innovation analytics would consist to
holistic analytics list and resonating to industry shift on both technology and bank
network including bank urbanization phenomena, why IoT is much relevant to bank
business, influences caused from millennials, mobile bank, e-wallet etc. This part will
be more involved into continuous industry insight decipher. The similar analytics
could be expanded into other sectors Seed	
  Program	
  (5)#, like retail, telecom,
travel/hotel, restaurant. Nonetheless, it’s still necessary to tackle the equation**.
From TENG:“Data is new currency. Banking it.” Roadmap as one of the topics [fig.4]
data in mock-up for category survey, for instance, Newer/Driver/Challenger.
My 1 case connects to bank analysis.
A few years ago, in my chat with my one ex-colleague, he talked about one hurdle
0"
1"
2"
3"
4"
5"
Newer" Driver" Challenger"
•  Data$Analy)cs$Matrix$consolidates$Bank$dynamic$insights$
(Newer/Driver/Challenger)$throughout$comprehensions$of$
shiBing$fric)on$which$is$caused$by$millennials’$dis)nc)on.$$
TENG"data"unme"FRAMEWROK"~"9th"pillar"
Industry"
Insight"
EGBusiness"
Consumer"
+/G"Channel"
Social"
Network"""
Brand"+/G"
Consumer"
Movie/
Drama"
IndexaPon"
""
Modeling$
Techniques$
Machine$
Learning/
Deep$
Learning$
Business$
Savvy$
Biz"
Model"
my$contacts:$$
erinteng$(at)$hotmail$(dot)$com$
139$1862$0956$
  9	
  
happened in performance marketing during his working in insurance services. In the
challenges to decide how much scaling is most appropriate during dealing with
targeting, there is a phenomena there is absolute loss of quality acquisitions in any
case when enlarging recruitment base.
Case Study, it’s all about logistic regression to fix targeting paradox.
All other things being equal, the customers with the highest predicted sales should be the ones the sales
team will approach first. Alternatively, we could set a cutoff for predicted sales. Customers above the
cutoff are the customers who get sales calls—these are the targets. Customers below the cutoff are not
given calls.
When evaluating a regression model using data from the previous year, we can determine how close
the predicted sales are to the actual/observed sales. We can find out the sum of the absolute values of
the residuals (observed minus predicted sales) or the sum of the squared residuals.
Another way to evaluate a regression model is to correlate the observed and predicted response values.
Or, better still, we can compute the squared correlation of the observed and predicted response values.
This last measure is called the coefficient of determination, and it shows the proportion of response
variance accounted for by the linear regression model. This is a number that varies between zero and
one, with one being perfect prediction.
If we plotted observed sales on the horizontal axis and predicted sales on the vertical axis, then the
higher the squared correlation between observed sales and predicted sales, the closer the points in the
plot will fall along a straight line. When the points fall along a straight line exactly, the squared
correlation is equal to one, and the regression model is providing a perfect prediction of sales, which is
to say that 100 percent of sales response is accounted for by the model. When we build a regression
model, we try to obtain a high value for the proportion of response variance accounted for. All other
things being equal, higher squared correlations are preferred.
The focus can be on predicting sales or on predicting cost of sales, cost of support, profitability, or
overall customer lifetime value. There are many possible regression models to use in with regression
methods.
To develop a classification model for targeting, we proceed in much the same way as with a regression,
except the response variable is now a category or class. For each customer, a logistic regression model,
for example, would provide a predicted probability of response. We employ a cut-off value for the
probability of response and classify responses accordingly. If the cut-off were set at 0.50, for example,
then we would target the customer if the predicted probability of response is greater than 0.50, and not
target otherwise. Or we could target all customers who have a predicted probability of response of
0.40, or 0.30, and so on. The value of the cut-off will vary from one problem to the next.
When observed binary responses or choices are about equally split between yes and no, for example,
we would use a cut-off probability of 0.50. That is, when the predicted probability of responding yes is
greater than 0.50, we predict yes. Otherwise, we predict no.
Logistic regression provides a means for estimating the probability of a favorable (yes) response to the
offer. The density lattice in figure 3.6 provides a pictorial representation of the model and a glimpse at
model performance.
To evaluate the performance of this targeting model, we look at a two-by-two contingency table or
confusion matrix showing the predicted and observed response values. A 50 percent cut-off does not
work in the Bank Marketing Study, given the low base rate of responses to the offer.
A 50 percent cut-off will not work for the bank, but using a 10 percent cutoff for the response variable
(accepting the term deposit offer or not), yields 65.9 percent accuracy in classification. The confusion
matrix for the logistic regression and 10 percent cut-off is shown.
  10	
  
The Bank Marketing Study is typical of target marketing problems. Response rates are low, much
lower than 0.50, so a 50 percent cut-off performs poorly. In fact, if bank analysts were to use a 50
percent cut-off, they would predict that every client would respond no, and the bank would target no
one. Too high a cut-off means the bank will miss out on many potential sales.
Too low a cut-off presents problems as well. Too low a cut-off means the bank will pursue sales with
large numbers of clients, many of whom will never subscribe to the term deposit offer. It is wise to
pick a cut-off that maximizes profit, given the unit revenues and costs associated with each cell of the
confusion matrix. Target marketing, employed in the right situations and with the right cut-offs, yields
higher profits for a company.
Source: <Modeling Techniques in Predictive Analytics>
Being through the enterprise & innovation equation**,
Business value = ecosystem x business model x category pacing x data skill x resources
End. Thank You.
My ‘thank you’ has to be sent to, with my rough counts, around data analysis gurus x1,000 ppl, and a
group of professions, authors, contributors x5,000 ppl, besides corporations, universities, institutions,
organizations, and other team members.
Mirroring infusive magnets, we can use data analysis capability to refine data into tangible data
model, thus it’s enable to decode human being’s new information adoption pattern when it
embeds into a shifting lifestyle movement. It’s ready to embark into a learning mode of the new
experiences. It’s found multiple dimensional relationships between customer and brand,
reciprocity since it’s along with disruptive technology revolution.

More Related Content

PDF
PPTX
Defense nikhil khullar
PDF
IRJET - Sentiment Analysis and Rumour Detection in Online Product Reviews
PDF
76 s201921
PDF
The impact of sentiment analysis from user on Facebook to enhanced the servic...
PPTX
Estimating the Helpfulness and Economic Impact of Product Reviews: Mining Tex...
PDF
11.online banner ad corrected
PDF
1. [1 9]online banner ad corrected
Defense nikhil khullar
IRJET - Sentiment Analysis and Rumour Detection in Online Product Reviews
76 s201921
The impact of sentiment analysis from user on Facebook to enhanced the servic...
Estimating the Helpfulness and Economic Impact of Product Reviews: Mining Tex...
11.online banner ad corrected
1. [1 9]online banner ad corrected

What's hot (18)

PDF
A Novel Feature Engineering Framework in Digital Advertising Platform
PPT
12/18 regular meeting paper
PDF
Project sentiment analysis
PDF
Videocon industries limited
PDF
Research Proposal- Integrating Need for Cognition
PDF
MultiChannel Analytics
PDF
Cross Media Marketing 2010
PDF
Sentiment Mining of Community Development Program Evaluation Based on Social ...
PDF
Data management platform_market
PDF
Conversion Prediction for Advertisement Recommendation using Expectation Maxi...
PDF
Bba q&a study final white
PDF
USING SOCIAL NETWORKING AS A MECHANISM TO ACHIEVE BRAND RESONANCE: AN EMPIRIC...
PPTX
Social Media And Project Management
PDF
MTVRep: A movie and TV show reputation system based on fine-grained sentiment ...
PDF
Crm and techology
PDF
Analyzing target user group¡¦s preferences and product form design specificat...
PPTX
Influence of word of mouth communication towards indonesian online shopper pu...
PPTX
Qualitative Research vs Quantitative Research - a QuestionPro Academic Webinar
A Novel Feature Engineering Framework in Digital Advertising Platform
12/18 regular meeting paper
Project sentiment analysis
Videocon industries limited
Research Proposal- Integrating Need for Cognition
MultiChannel Analytics
Cross Media Marketing 2010
Sentiment Mining of Community Development Program Evaluation Based on Social ...
Data management platform_market
Conversion Prediction for Advertisement Recommendation using Expectation Maxi...
Bba q&a study final white
USING SOCIAL NETWORKING AS A MECHANISM TO ACHIEVE BRAND RESONANCE: AN EMPIRIC...
Social Media And Project Management
MTVRep: A movie and TV show reputation system based on fine-grained sentiment ...
Crm and techology
Analyzing target user group¡¦s preferences and product form design specificat...
Influence of word of mouth communication towards indonesian online shopper pu...
Qualitative Research vs Quantitative Research - a QuestionPro Academic Webinar
Ad

Viewers also liked (17)

DOCX
Earth copia gurgaon sec 112
PPT
World Population Day 2011
DOCX
Earth copia gurgaon(2)
DOCX
Earth copia gurgaon(2)
PPT
World population day 2011
ODP
Aural aids
DOCX
Earth copia gurgaon(2)
PDF
American Eagle Trading rep for INZON Sdn Bhd
DOCX
Earth copia gurgaon(2)
PPTX
Lockers location
PDF
copy for Gary Chin.
PPTX
Social networking 4 advocacy-Maternal, Newborn and Child Health
PPT
Talent management Coca Cola
PDF
Sagra dueville
PPTX
الرسم التعليمي
PPTX
Atlas de nervios craneales RM
PPTX
Cerpen warkah daripada ibu
Earth copia gurgaon sec 112
World Population Day 2011
Earth copia gurgaon(2)
Earth copia gurgaon(2)
World population day 2011
Aural aids
Earth copia gurgaon(2)
American Eagle Trading rep for INZON Sdn Bhd
Earth copia gurgaon(2)
Lockers location
copy for Gary Chin.
Social networking 4 advocacy-Maternal, Newborn and Child Health
Talent management Coca Cola
Sagra dueville
الرسم التعليمي
Atlas de nervios craneales RM
Cerpen warkah daripada ibu
Ad

Similar to my model genuines. (20)

PDF
Product Analyst Advisor
PPTX
Is deep learning is a game changer for marketing analytics
DOCX
Strategic thinking for a digital age
PDF
IRJET- Strength and Workability of High Volume Fly Ash Self-Compacting Concre...
PDF
IRJET- Implementing Social CRM System for an Online Grocery Shopping Platform...
PDF
IRJET- Virtual Business Analyst using a Progressive Web Application
PDF
ML-Powered Recommendation System for Engagement & Revenue.pdf
PDF
A Intensified Approach On Enhanced Transformer Based Models Using Natural Lan...
PDF
Improving the Capabilities of Large Language Model based Marketing Analytics ...
PPTX
chapter 7.pptx KNOWLEDGE MANAGEMENT INTRODUCTION
PDF
Knime social media_white_paper
PDF
Engaging users in digital strategy development
PPTX
PDF
Ijmet 10 01_094
PDF
Customer Experience Testing: The Key to Digital Success
PDF
What's Next: Ogilvy x Google Chatbots Partnership
PPTX
AI Unleashed: Transforming Ideas into Intelligent Solutions.pptx
PPTX
MB2208A- Business Analytics- unit-4.pptx
PDF
A Novel Feature Engineering Framework in Digital Advertising Platform
PDF
How To Setup A Center Of Excellence(COE) for Large Language Models (LLMs) In ...
Product Analyst Advisor
Is deep learning is a game changer for marketing analytics
Strategic thinking for a digital age
IRJET- Strength and Workability of High Volume Fly Ash Self-Compacting Concre...
IRJET- Implementing Social CRM System for an Online Grocery Shopping Platform...
IRJET- Virtual Business Analyst using a Progressive Web Application
ML-Powered Recommendation System for Engagement & Revenue.pdf
A Intensified Approach On Enhanced Transformer Based Models Using Natural Lan...
Improving the Capabilities of Large Language Model based Marketing Analytics ...
chapter 7.pptx KNOWLEDGE MANAGEMENT INTRODUCTION
Knime social media_white_paper
Engaging users in digital strategy development
Ijmet 10 01_094
Customer Experience Testing: The Key to Digital Success
What's Next: Ogilvy x Google Chatbots Partnership
AI Unleashed: Transforming Ideas into Intelligent Solutions.pptx
MB2208A- Business Analytics- unit-4.pptx
A Novel Feature Engineering Framework in Digital Advertising Platform
How To Setup A Center Of Excellence(COE) for Large Language Models (LLMs) In ...

my model genuines.

  • 1.   1   iot,  my  small  ai  VERSION,  scope  of  analytics  2015     learning,  thinking,  practicing   Any  other  thoughts  please  feel  free  to  contact,  luxiaoteng0  (at)  gmail  (dot)  com         Data  has  no  shadow.  Whatever  it’s  sculptured,  it’s.     As  long  as  it  has  landed  to  the  completion  of  model-­‐100,  TENG’s  self-­‐assignment   on  modeling  techniques  self-­‐learning,  predictive  analytics  related,  TENG  is  able   to  decipher  hybrid  data  solution,  which  is  crossing  of  generic  model  techniques   such  as  familiar  hierarchical  cluster  and  a  lot,  plus  domain  knowledge  i.e.  bank,   retail,  mobile  etc.  as  well  as  it  empowers  advanced  data  mining  applied  with   machine  learning.    It  has  built  into  three  dimensional  data  analysis  matrix.     Inside  the  genres,  TENG  is  unique  to  design  data  analysis  models,  not  only   learning  from  traditional  analysis  modules,  but  also  consolidate  multiple   techniques  to  address  realistic  business  needs.  It  rolls  out  a  positive  loop  that   algorithms  could  be  best  fit  into  where  it’s  needed  for  performance  improving   related  to  well  recognized  business  situation.  <data  UNME>  converge  the  usages   of  text  mining,  semantic  analysis  and  recommendation  system.  Each  of  these   analytics  modules  have  been  evidently  extracted  from  high  profile  source.  It   consolidates  movie/drama/program  viewingship  pattern  through  multiple   platforms  x  devices.  Individual  could  be  classified  by  tag  through  the  output   scoring  counts.  This  process  is  consistently  applied  with  supervised  learning  per   Google’s  tagged  word  embedding  methodology.  Brand  could  leverage  the   viewing  score  to  plan  optimum  brand  awareness  as  customer-­‐centric  driven.   Furthermore,  it  renders  in  the  range  of  multiple  channel  intelligences  because  it  
  • 2.   2   makes  the  variables  standardization  available  across  online  video,  time-­‐shifted   TV,  social  media  plus  influences  from  movie  on-­‐air.        Case  Study,  NLP  adoption,     A  famous  early  example  of  the  use  of  cognitive  technology  to  improve  a  product  offering  is  the   recommendation  feature  of  the  Netflix  online  movie  rental  service,  which  uses  machine  learning  to   predict  which  movies  a  customer  will  like.  This  feature  has  had  a  significant  impact  on  customers’   use  of  the  service;  it  accounts  for  as  much  as  75  percent  of  Netflix  usage.   To  improve  marketing  and  customer  service,  BBVA  Compass  bank  uses  a  social  media  sentiment   monitoring  tool  to  track  and  understand  what  consumers  are  saying  about  the  bank  and  its   competitors.  The  tool,  which  incorporates  natural  language  processing  technology,  automatically   identifies  salient  topics  of  consumer  chatter  and  the  sentiments  surrounding  those  topics.  These   insights  influence  the  bank’s  decisions  on  setting  fees  and  offering  consumer  perks,  and  how   customer  service  representatives  should  respond  to  certain  customer  inquiries  about  services  and   fees.22   Source:  Deloitte  Review       Seed  Program  (1)#  <data  UNME>  follows  the  working  principle,     Since  content  consumption  dominates  online  video  viewing,  it  is  possible  to   reinvent  viewingship  measurement  according  to  preferences  of  the  programs.   With  the  chosen  variables,  targeting  market  could  be  defined  whereas  brands   attribute  according  to  the  methods  of  content  connection  instead  of  digital   metrics  only.  It  makes  feasible  translation  with  data  works  out  virtually  channel   mix  strategy.  So  does  it  fulfill  end-­‐to-­‐end  data  solution  about  performance,   segmentation,  engagement.     .  Track  the  influences  generated  from  each  viewingship;   .  It  carries  in  defined  framework;   .  Viewingship  is  measured  as  a  link  to  the  contents  counted  by  chosen  variables;   .  Besides  monitoring  actions  on  programs,  it  also  has  advantage  to  decipher   similar  program  influences  differentiated  in  various  platforms;   .  In  other  words,  the  platform  performance  could  be  taken  as  the  adoption  of   variety  of  programs  which  associate  to  the  observing  variables;     .  The  preferences  on  programs  reflect  the  quality  of  users  and  it’s  conveniently  to   quantify  users  attributions.     More  releases  that  social  network  analysis  links  to  utilize  tangible  conditional   probability  predictive  method.     In  the  mean  time,  it  has  the  other  ascendencies.     First,  it  could  be  synergized  with  well-­‐established  segmentation.  According  to  log   linear  model,  target  groups’  viewing  habit  could  be  drawn  simultaneously  with   pre-­‐option  affinity  variables,  besides  viewingship  data,  reviews,  favors,  there  are   more  like  program  type,  host,  director,  actor,  geo,  timing,  devices.  With  time   being,  it’s  obvious  to  maximize  the  significance  bonding  between  brand  
  • 3.   3   consumer  features  and  viewing  indexation.  Consequently,  the  value  of  data   insight  could  be  further  solicited  on  brand  awareness  optimization.  How  much  it   correlates  to  the  revenues?  Only  when  this  solid  awareness  combination  could   be  visualized,  the  equation  about  brand,  consumer  interaction,  learned  from  data   analysis  guru  Dawn  Iacobucci  [fig.1]  can  be  measured  in  a  learning  path   wherever  it’s  under  the  bigger  background  as  forming  intelligent  enterprise   [fig.2].     [fig.1]     Ad  exposure  !  Brand  awareness  !  Attitude  ~  ad  !  Buying  intention  !   Purchase   Ad  exposure  !  Brand  awareness  !  Attitude  ~  brand  !  Buying  intention  !   Purchase   Price  !  Buying  intention     [fig.2]             Have  to  thank  for  references  being  with  theoretical  proofs,     1. Natural  Language  Processing  (almost)  from  Scratch,  Journal  of  Machine  Learning  Research  1  (2000)  1-­‐48,   Ronan  Collobert,  Jason  Weston,  L  ́eon  Bottou,  Michael  Karlen,  Koray  Kavukcuoglu,  Pavel  Kuksa.   2. Deep  learning  &  NLP  -­‐  Graphs  to  the  Rescue,  (or  not  yet!),  Stockholm,  Sics,  October  21  2014,  Roelof  Pieters,   KTH/CSC,  Graph  Technologies  R&D  -­‐     3. Deep  learning  for  NLP,  An  Introduction  to  Neural  Word  Embeddings*  and  some  more  fun  stuff…,  KTH,   December  4,  2014,  Roelof  Pieters    PhD  candidate  KTH/CSC  CIO/CTO  Feeda  AB   4. Three  New  Graphical  Models  for  Statistical  Language  Modelling,  Andriy  Mnih,  Geoffrey  Hinton,  Department  of   Computer  Science,  University  of  Toronto,  Canada  
  • 4.   4   5. Statistical  Language  Models  Based  on  Neural  Networks,  Google,  Moutain  View,  2nd  April  2012,  Tomas  Mikolov,   Strategies  for  training  large  scale  neural  network  language  models,  Microsoft  Research,  Redmond,  WA,  USA,   Toma  ́sˇ  Mikolov  #1,  Anoop  Deoras  ∗2,  Daniel  Povey  †3,  Luka  ́sˇ  Burget  #4,  Jan  “Honza”  Cˇ  ernocky  ́  #5  #  Brno   University  of  Technology,  Speech@FIT,  Brno,  Czech  Republic   6. DeViSE:  A  Deep  Visual-­‐Semantic  Embedding  Model,  Google,  Inc.  Mountain  View,  CA,  USA,  Andrea  Frome*,  Greg   S.  Corrado*,  Jonathon  Shlens*,  Samy  Bengio  Jeffrey  Dean,  Marc’Aurelio  Ranzato,  Tomas  Mikolov   Whatever  it’s  probably  not  a  game-­‐changer,  it  still  transforms  to  model  designer   and  pursues  my  own  best  practices.  Thank  you.   Is  it  formidable?  What  if  it’s  just  thy  truth  too  much.  Who  just  plays   autocorrelation?  Unsuspected  social  site  easily  becomes  assistive.  How  about   time-­‐shifted  TV?  It  gears  up  the  follower  in  ahead.  Is  it  awesome?  Whenever   think  about  brand  tailors  your  own  broadcasting  station,  secret  recipe  is  about   virtual  channel  *  type  *  program.  Please  contact  Teng,  it  will  have  hypothesis,   experiments,  data  analysis  methodology  decipher,  insight  report  and  your   brand’s  quotient,  everything  in  the  case  looking  at   viewhingship/clicks/comments  as  the  series  of  actions  caused  by  users.  There  is   the  correlation  between  the  certain  group  of  viewers  and  their  preferences.   Preferences  have  been  discerned  by  the  program  viewingshing  habit.  How  about   brand  overarches  the  findings  in  veins,  thus  exert  the  inherent  influences  into   viewers  who  has  been  identified  as  worth  of  targeting  according  to  previous   program  classifications.  [fig.3].   As  long  as  observing  on  conditional  probability  merged  with  social  mining,   unstructured  data  utilization  could  be  standardized  firstly  in  the  sequence  to   apply  hierarchy  bayesian.  It  is  consistent  to  Seed  Program  (2)#  e-­‐chainTM  that  the   extreme  focus  on  top  three  conversions  in  data  stream,  e-­‐commerce,  engine,   email.  In  tradition,  it  veins  into  impression,  click,  acquisition,  transaction.  After   developing  word  bag,  2  algorithms  Gibbs  Sampling  and  Metropolis  Hasting  are   particularly  useful  to  draw  posterior  distribution.  This  is  very  crucial  conclusion   drawn  from  my  some  researches  and  theoretical  learning.  Probably  it’s  familiar   by  others,  but  for  me  it  takes  some  efforts.  It  has  4  strengths  by  adopting  of  this   data  solution  from  my  point  of  view,  1.  It  has  the  completed  achievement  of  data   tracking  in  each  outcome  layer;  2.  Follows  contextual  measurement  without   losing  focus  90%  conversions  regarding  of  e-­‐business  backbone;  3.  It  works   under  hive  philosophy.  It  involves  the  touch  points  as  beneficial  extensions;  4.   It’s  effective  to  merge  with  other  analysis  module  i.e.  brand  simulation  in   advance.  It’s  able  to  utilize  Deep  Learning  as  far  as  there  are  feasibly  55  layers   applied  in  Google’s  analysis  that  I  read  from  one  article  before  in  somewhere.        [fig.3]   . about  Spark  Internet  Button  /  SIB*,  {if  this,  then  that.}  data  analysis  integration  inside  <data  UNME>  applied  with myself  some  reliable  proofs  in  data  analysis  theories,  [fig.3]  
  • 5.   5          other  scenario  soonest  specifically  for  CIO  references.     What  is  differentiations  between  supervised  learning  and  unsupervised   learning  in  terms  of  social  mining.   • A  new  study  has  revealed  a  way  to  do  sentiment  analysis  on  a  large  number  of  social   media  images  using  unsupervised  learning.   • Unsupervised  learning  in  AI  is  a  step  above  supervised  learning  where  machines  have  to   work  with  unlabelled  data,  observe  and  make  sense  of  it,  and  provide  an  outcome.   Supervised  learning,  on  the  other  hand,  gives  machines  labelled  data  or  examples  to   learn  from  when  carrying  out  certain  tasks  such  as  classifying  an  object  or  predicting   future  outcomes.  The  study,  Unsupervised  Sentiment  Analysis  for  Social  Media  Images,   was  released  as  part  of  the  International  Joint  Conference  on  Artificial  Intelligence  in   Argentina  this  week.  It  reveals  a  novel  framework,  called  Unsupervised  Sentiment   Analysis  (USEA),  that  uses  both  textual  and  visual  data  in  a  single  model  for  learning.   • Images  from  social  media  sites  offer  rich  data  to  work  with  when  doing  sentiment   analysis.  However,  manually  labelling  millions  of  images  is  too  labour-­‐  and  time-­‐ intensive,  meaning  this  data  often  goes  untapped.  This  is  why  the  study's  authors   focused  their  efforts  on  unsupervised  learning.   • “In  order  to  utilise  the  vast  amount  of  unlabelled  social  media  images,  an  unsupervised   approach  would  be  much  more  desirable,”  researchers  from  Arizona  State  University   wrote  in  their  paper.   • “As  of  2013,  87  millions  of  users  have  registered  with  Flickr.  Also,  it  was  estimated  that   about  20  billion  Instagram  photos  are  shared  to  2014.   • “To  our  best  knowledge,  USEA  is  the  first  unsupervised  sentiment  analysis  framework   for  social  media  images.”   • The  framework  infers  sentiments  by  combining  visual  data  with  accompanying  textual   data.  As  textual  data  is  often  incomplete  with  hardly  any  tags  or  noisy  with  irrelevant   comments,  relying  on  it  alone  is  difficult  when  doing  sentiment  analysis.    
  • 6.   6   • Therefore,  the  researchers  used  the  supporting  textual  data  to  provide  semantic   information  on  the  images  to  enable  unsupervised  learning.   • “Textual  information  bridges  the  semantic  gap  between  visual  features  and  sentiment   labels.”   • The  researchers  crawled  images  from  Flickr  and  Instagram  users,  collecting  140,221   images  from  Flickr  and  131,224  from  Instagram.     • They  built  a  framework  to  classify  images  into  three  categories  or  class  labels  –  positive,   negative  and  neutral,  looking  at  image  captions  and  comments  associated  with  the   images.     • “Some  words  may  contain  sentiment  polarities.  For  example,  some  words  are  positive   such  as  ‘happy’  and  ‘terrific’;  while  others  are  negative  such  as  ‘gloomy’  and   ‘disappointed’.   •  “The  sentiment  polarities  of  words  can  be  obtained  via  some  public  sentiment  lexicons.   For  example,  the  sentiment  lexicon  MPQA  [Multiple  Perspective  Question  Answering]   contains  7,504  human  labeled  words  which  are  commonly  used  in  the  daily  life  with   2,721  positive  words  and  4,783  negative  words.   • “Second,  some  abbreviations  and  emoticons  are  strong  sentiment  indicators.  For   example,  ‘lol’  [laugh  out  loud]  is  a  positive  indicator  while  ‘:(‘  is  a  negative  indicator.”   • Visual  features  from  the  images  were  extracted  by  large-­‐scale  visual  attribute  detectors,   with  term  frequency  and  stop  words  (removing  words  like  ‘a’  and  ‘the’)  used  to  form   text-­‐based  features.   • The  framework  was  compared  to  other  sentiment  analysis  algorithms  such  as  Senti  API   for  unsupervised  sentiment  prediction  and  a  variant  of  the  framework,  USEA-­‐T,  which   only  takes  textual  data  into  account  when  doing  sentiment  analysis.     • Other  methods  that  were  also  compared  with  the  USEA  framework  were  Sentibank  with   K-­‐means  clustering,  which  uses  large  scale  visual  attribute  detectors,  and  adjective  and   nouns  visual  sentiment  description  pairs;  EL  with  K-­‐means  clustering,  which  is  a  topical   graphical  model  for  sentiment  analysis;  and  Random,  which  randomly  guesses  to  predict   sentiment  labels  of  images.   • The  results  show  that  USEA  performed  better  than  all  the  other  algorithms  tested,   receiving  56.18  per  cent  accuracy  with  the  Flickr  dataset  compared  to  Senti  API  at  34.15   per  cent  and  USEA-­‐T  at  40.22  per  cent.  With  the  Instagram  dataset,  it  received  59.94  per   cent  accuracy  compared  to  Senti  API  at  37.80  per  cent  and  USEA-­‐T  at  36.41  per  cent.   • “The  proposed  framework  often  obtains  better  performance  than  baseline  methods.   There  are  two  major  reasons.  First,  textual  information  provides  semantic  meanings  and   sentiment  signals  for  images.  Second  we  combine  visual  and  textual  information  for   sentiment  analysis.”   • The  research  pointed  out  that  deep  learning  approaches  (many  hidden  layers  in  artificial   neural  networks)  to  this  have  shown  to  be  effective,  but  still  are  mostly  used  in  a   supervised  learning  way,  which  depends  on  the  availability  of  a  good  training  dataset   with  labels.   • “In  the  future,  we  will  exploit  more  social  media  sources,  such  as  link  information,  user   history,  geo-­‐location,  etc.,  for  sentiment  analysis.”     • Source:  http://www.cio.com.au/article/580602/study-­‐uncovers-­‐unsupervised-­‐ learning-­‐framework-­‐image-­‐sentiment-­‐analysis/?fp=16&fpid=1      There  are  some  opinions  from  Professor  Miller  about  text  mining   supervised  vs  unsupervised:     Unsupervised  text  analytics  problems  are  those  for  which  there  is  no  response  or   class  to  be  predicted.  Rather,  as  we  showed  with  the  movie  taglines,  the  task  is  to   identify  common  patterns  or  trends  in  the  data.  As  part  of  the  task,  we  may   define  text  measures  describing  the  documents  in  the  corpus.       For  supervised  text  analytics  problems  there  is  a  response  or  class  of  documents   to  be  predicted.  We  build  a  model  on  a  training  set  and  test  it  on  a  test  set.  Text  
  • 7.   7   classification  problems  are  common.  Span  filtering  has  long  been  a  subject  of   interest  as  a  classification  problem,  and  many  e-­‐mail  users  have  benefitted  from   the  efficient  algorithm  that  have  evolved  in  this  area.  In  the  context  of   information  retrieval,  search  engines  classify  documents  as  being  relevant  to  the   search  or  not.  Useful  modeling  techniques  for  text  classification  include  logistic   regression,  linear  discriminant  function  analysis,  classification  trees,  and  support   vector  machines.  Various  ensemble  or  committee  methods  may  be  employed.       Automatic  text  summarization  is  an  area  of  research  and  development  that  can   help  with  information  management.  Imagine  a  text  processing  program  with  the   ability  to  read  each  document  in  a  collection  and  summarize  it  in  a  sentence  or   two,  perhaps  quoting  from  the  document  itself.  Today’s  search  engines  are   providing  partial  analysis  of  documents  prior  to  their  being  displayed.  They   create  automated  summaries  for  fast  information  retrieval.  They  recognize   common  text  strings  associated  with  user  requests.  These  applications  of  text   analysis  comprise  tool  of  information  search  that  we  take  of  granted  as  part  of   our  daily  lives.     Seed  Program  (3)#  Data  Analysis  in  general  +  Bank  in  particular  (just  name  it   symphony  analysis)  >>>  unpublished  my  first  book  <data  analysis  is  a  symphony   in  big  data  jungle>     In  an  analysis  list  about  banking  data,  may  bring  my  version  listed*  live.  My  little   behemoth,  it’s  with  all  my  nurturing  from  learning.  Whereas  it’s  fully   understandable  my  deepest  respects  to  the  behemoths  who  has  been   authoritative  over  50  years  in  bank  data  analysis  relates,  especially  approached   with  seeable  continuous  advances  e.g.  machine  learning,  predictive  analytics.       .  Customer  portfolio  management   .  Customer  segmentation   .  RFM  models  &  Migration   .  Market  basket  analysis   .  Recommendation  tool   .  Existing  customer  analysis   .  Customer  acquisition   .  Customer  retention  including  churn  analysis,  and  the  side  of  risk  management   (over  50  years’  professions  in  FICO  &  Others)   .  Cross-­‐selling  &  Up-­‐selling   .  Multiple  channel  planning   .  ROI  modeler   .  Customer  lifetime  value  system   .  Techniques  in  predictive  analytics,  machine  learning  &  Neural  Network   .  Risk  analysis  (over  50  years’  professions  in  FICO  &  SAS  &  Others)   .  Fraud  analysis  (over  50  years’  professions  in  FICO  &  SAS  &  Others)   .  Credit  score  (over  50  years’  professions  in  FICO  &  Others)   (&  more  a  lot  about  financial  data  areas  that  probably  I  don’t  know,  related  to   over  50  years’  professions  in  FICO  &  SAS  &  Others)   .  Hypothesis  *  Experiments  
  • 8.   8     • *about  the  list,   • It’s  suggested  to  remove  the  name  limitation  here  for  convenient  reading,   despite  name  system  in  list  is  simply  consistent  to  e-­‐business.  My  learning   has  been  through  data  mining  methodology,  so  that,  within  my  available   data  capabilities,  it  enables  to  switch  verified  data  situation  with  specific   data  analysis  techniques  behind  the  name.  It  also  includes  some  instances   that  there  are  data  analysis  essences  I  have  learned  about  e.g.  logit,   conjunct  analysis  and  a  lot  etc.  despite  it  can’t  tell  from  the  listed  names.         And there are more small modelers related to modeling techniques. Need to highlight Seed  Program  (4)#  the  innovation analytics would consist to holistic analytics list and resonating to industry shift on both technology and bank network including bank urbanization phenomena, why IoT is much relevant to bank business, influences caused from millennials, mobile bank, e-wallet etc. This part will be more involved into continuous industry insight decipher. The similar analytics could be expanded into other sectors Seed  Program  (5)#, like retail, telecom, travel/hotel, restaurant. Nonetheless, it’s still necessary to tackle the equation**. From TENG:“Data is new currency. Banking it.” Roadmap as one of the topics [fig.4] data in mock-up for category survey, for instance, Newer/Driver/Challenger. My 1 case connects to bank analysis. A few years ago, in my chat with my one ex-colleague, he talked about one hurdle 0" 1" 2" 3" 4" 5" Newer" Driver" Challenger" •  Data$Analy)cs$Matrix$consolidates$Bank$dynamic$insights$ (Newer/Driver/Challenger)$throughout$comprehensions$of$ shiBing$fric)on$which$is$caused$by$millennials’$dis)nc)on.$$ TENG"data"unme"FRAMEWROK"~"9th"pillar" Industry" Insight" EGBusiness" Consumer" +/G"Channel" Social" Network""" Brand"+/G" Consumer" Movie/ Drama" IndexaPon" "" Modeling$ Techniques$ Machine$ Learning/ Deep$ Learning$ Business$ Savvy$ Biz" Model" my$contacts:$$ erinteng$(at)$hotmail$(dot)$com$ 139$1862$0956$
  • 9.   9   happened in performance marketing during his working in insurance services. In the challenges to decide how much scaling is most appropriate during dealing with targeting, there is a phenomena there is absolute loss of quality acquisitions in any case when enlarging recruitment base. Case Study, it’s all about logistic regression to fix targeting paradox. All other things being equal, the customers with the highest predicted sales should be the ones the sales team will approach first. Alternatively, we could set a cutoff for predicted sales. Customers above the cutoff are the customers who get sales calls—these are the targets. Customers below the cutoff are not given calls. When evaluating a regression model using data from the previous year, we can determine how close the predicted sales are to the actual/observed sales. We can find out the sum of the absolute values of the residuals (observed minus predicted sales) or the sum of the squared residuals. Another way to evaluate a regression model is to correlate the observed and predicted response values. Or, better still, we can compute the squared correlation of the observed and predicted response values. This last measure is called the coefficient of determination, and it shows the proportion of response variance accounted for by the linear regression model. This is a number that varies between zero and one, with one being perfect prediction. If we plotted observed sales on the horizontal axis and predicted sales on the vertical axis, then the higher the squared correlation between observed sales and predicted sales, the closer the points in the plot will fall along a straight line. When the points fall along a straight line exactly, the squared correlation is equal to one, and the regression model is providing a perfect prediction of sales, which is to say that 100 percent of sales response is accounted for by the model. When we build a regression model, we try to obtain a high value for the proportion of response variance accounted for. All other things being equal, higher squared correlations are preferred. The focus can be on predicting sales or on predicting cost of sales, cost of support, profitability, or overall customer lifetime value. There are many possible regression models to use in with regression methods. To develop a classification model for targeting, we proceed in much the same way as with a regression, except the response variable is now a category or class. For each customer, a logistic regression model, for example, would provide a predicted probability of response. We employ a cut-off value for the probability of response and classify responses accordingly. If the cut-off were set at 0.50, for example, then we would target the customer if the predicted probability of response is greater than 0.50, and not target otherwise. Or we could target all customers who have a predicted probability of response of 0.40, or 0.30, and so on. The value of the cut-off will vary from one problem to the next. When observed binary responses or choices are about equally split between yes and no, for example, we would use a cut-off probability of 0.50. That is, when the predicted probability of responding yes is greater than 0.50, we predict yes. Otherwise, we predict no. Logistic regression provides a means for estimating the probability of a favorable (yes) response to the offer. The density lattice in figure 3.6 provides a pictorial representation of the model and a glimpse at model performance. To evaluate the performance of this targeting model, we look at a two-by-two contingency table or confusion matrix showing the predicted and observed response values. A 50 percent cut-off does not work in the Bank Marketing Study, given the low base rate of responses to the offer. A 50 percent cut-off will not work for the bank, but using a 10 percent cutoff for the response variable (accepting the term deposit offer or not), yields 65.9 percent accuracy in classification. The confusion matrix for the logistic regression and 10 percent cut-off is shown.
  • 10.   10   The Bank Marketing Study is typical of target marketing problems. Response rates are low, much lower than 0.50, so a 50 percent cut-off performs poorly. In fact, if bank analysts were to use a 50 percent cut-off, they would predict that every client would respond no, and the bank would target no one. Too high a cut-off means the bank will miss out on many potential sales. Too low a cut-off presents problems as well. Too low a cut-off means the bank will pursue sales with large numbers of clients, many of whom will never subscribe to the term deposit offer. It is wise to pick a cut-off that maximizes profit, given the unit revenues and costs associated with each cell of the confusion matrix. Target marketing, employed in the right situations and with the right cut-offs, yields higher profits for a company. Source: <Modeling Techniques in Predictive Analytics> Being through the enterprise & innovation equation**, Business value = ecosystem x business model x category pacing x data skill x resources End. Thank You. My ‘thank you’ has to be sent to, with my rough counts, around data analysis gurus x1,000 ppl, and a group of professions, authors, contributors x5,000 ppl, besides corporations, universities, institutions, organizations, and other team members. Mirroring infusive magnets, we can use data analysis capability to refine data into tangible data model, thus it’s enable to decode human being’s new information adoption pattern when it embeds into a shifting lifestyle movement. It’s ready to embark into a learning mode of the new experiences. It’s found multiple dimensional relationships between customer and brand, reciprocity since it’s along with disruptive technology revolution.