SlideShare a Scribd company logo
LEESA: Toward Native XML Processing Using Multi-paradigm Design
                            in C++




                           May 16, 2011

  Dr. Sumant Tambe                        Dr. Aniruddha Gokhale
     Software Engineer               Associate Professor of EECS Dept.
   Real-Time Innovations                   Vanderbilt University




                  www.dre.vanderbilt.edu/LEESA
                                                                         1 / 54
 XML Programming in C++. Specifically, data binding
 What XML data binding stole from us!
 Restoring order: LEESA
 LEESA by examples
 LEESA in detail
      Architecture of LEESA
      Type-driven data access
      XML schema representation using Boost.MPL
      LEESA descendant axis and strategic programming
      Compile-time schema conformance checking
      LEESA expression templates
 Evaluation: productivity, performance, compilers
 C++0x and LEESA
 LEESA in future
                                                         2 / 54
XML Infoset




              Cɷ
                   3 / 54
 Type system
    Regular types
    Anonymous complex elements
    Repeating subsequence
 XML data model
    XML information set (infoset)
    E.g., Elements, attributes, text, comments, processing
     instructions, namespaces, etc. etc.
 Schema languages
    XSD, DTD, RELAX NG
 Programming Languages
    XPath, XQuery, XSLT
 Idioms and best practices
    XPath: Child, parent, sibling, descendant axes;
     wildcards

                                                              4 / 54
 Predominant categories & examples (non-exhaustive)
 DOM API
    Apache Xerces-C++, RapidXML, Tinyxml, Libxml2, PugiXML, lxml,
     Arabica, MSXML, and many more …
 Event-driven APIs (SAX and SAX-like)
    Apache SAX API for C++, Expat, Arabica, MSXML, CodeSynthesis
     XSD/e, and many more …
 XML data binding
    Liquid XML Studio, Code Synthesis XSD, Codalogic LMX, xmlplus,
     OSS XSD, XBinder, and many more …
 Boost XML??
    No XML library in Boost (as of May 16, 2011)
    Issues: very broad requirements, large XML specifications, good XML
     libraries exist already, encoding issues, round tripping issues, and
     more …

                                                                        5 / 54
XML query/traversal
                                       program

    XML




                                               Uses
   Schema


                       XML
                     Schema                                        C++
                                        Object-oriented
              i/p    Compiler Generate Data Access Layer   i/p              Generate   Executable
                                                                 Compiler
                      (Code
                    Generator)

                                           C++ Code


 Process
      Automatically generate vocabulary-specific classes from the schema
      Develop application code using generated classes
      Parse an XML into an object model at run-time
      Manipulate the objects directly (CRUD)
      Serialize the objects back to XML
                                                                                              6 / 54
 Example: Book catalog xml and xsd

<catalog>                                       <xs:complexType name=“book”>
  <book>                                         <xs:sequence>
    <name>The C++ Programming Language</name>      <xs:element name="name" type="xs:string" />
    <price>71.94</price>                           <xs:element name="price" type="xs:double" />
                                                   <xs:element name="author" maxOccurs="unbounded">
    <author>
                                                    <xs:complexType>
      <name>Bjarne Stroustrup</name>
                                                     <xs:sequence>
      <country>USA</country>                          <xs:element name="name" type="xs:string" />
    </author>                                         <xs:element name="country" type="xs:string" />
  </book>                                            </xs:sequence>
  <book>                                            </xs:complexType>
    <name>C++ Coding Standards</name>             </xs:element>
    <price>36.41</price>                         </xs:sequence>
    <author>                                    </xs:complexType>
      <name>Herb Sutter</name>
      <country>USA</country>                    <xs:element name="catalog">
                                                 <xs:complexType>
    </author>
                                                  <xs:sequence>
    <author>
                                                    <xs:element name=“book”
      <name>Andrei Alexandrescu</name>                           type=“lib:book"
      <country>USA</country>                                     maxOccurs="unbounded">
    </author>                                       </xs:element>
  </book>                                         </xs:sequence>
</catalog>                                       </xs:complexType>
                                                </xs:element>




                                                                                                7 / 54
 Example: Book catalog xsd and generated C++ code
<xs:complexType name=“book”>              class author {
 <xs:sequence>                               private:
   <xs:element name="name"                            std::string name_;
                type="xs:string" />                   std::string country_;
   <xs:element name="price"
                                             public:
                type="xs:double" />
                                                      std::string get_name() const;
   <xs:element name="author"
                maxOccurs="unbounded">                void set_name(std::string const &);
    <xs:complexType>                                  std::string get_country() const;
     <xs:sequence>                                    void set_country(std::string const &);
      <xs:element name="name"             };
                   type="xs:string" />
      <xs:element name="country"          class book {
                   type="xs:string" />       private: std::string name_;
     </xs:sequence>                                   double price_;
    </xs:complexType>                                 std::vector<author> author_sequence_;
  </xs:element>
                                             public: std::string get_name() const;
 </xs:sequence>
                                                      void set_name(std::string const &);
</xs:complexType>
                                                      double get_price() const;
<xs:element name="catalog">                           void set_price(double);
 <xs:complexType>                                     std::vector<author> get_author() const;
  <xs:sequence>                                       void set_author(vector<author> const &);
    <xs:element name=“book”               };
                 type=“lib:book"          class catalog {
                 maxOccurs="unbounded">      private:
    </xs:element>                                     std::vector<book> book_sequence_;
  </xs:sequence>                             public:
 </xs:complexType>
                                                      std::vector<book> get_book() const;
</xs:element>
                                                      void set_book(std::vector<book> const &);
                                          };
                                                                                             8 / 54
 Book catalog application program
   Example: Find all author names
  std::vector<std::string>
  get_author_names (const catalog & root)
  {
    std::vector<std::string> name_seq;
    for (catalog::book_const_iterator bi (root.get_book().begin ());
         bi != root.get_book().end ();
         ++bi)
    {
      for (book::author_const_iterator ai (bi->get_author().begin ());
           ai != bi->get_author().end ();
           ++ai)
      {
        name_seq.push_back(ai->name());
      }
    }
    return name_seq;
  }


 Advantages of XML data binding
   Easy to use                        C++ programming style and idioms
   Vocabulary-specific API            Efficient
   Type safety
                                                                           9 / 54
 We lost something along the way. A lot actually!
 Loss of succinctness
    XML child axis replaced by nested for loops
    Example: Find all author names

                                Using XML data binding (20 lines)
   Using XPath (1 line)
/book/author/name/text()      std::vector<std::string>
                              get_author_names (const catalog & root)
                              {
                                std::vector<std::string> name_seq;
                                for (catalog::book_const_iterator bi =
                                       root.get_book().begin ();
                                     bi != root.get_book().end ();
                                     ++bi)
                                {
                                  for (book::author_const_iterator ai =
                                         bi->get_author().begin ());
                                       ai != bi->get_author().end ();
                                       ++ai)
                                  {
                                    name_seq.push_back(ai->name());
                                  }
                                }
                                return name_seq;
                              }
                                                                          10 / 54
 Loss of expressive power
     Example: “Find all names recursively”
     What if catalogs are recursive too!
     Descendant axis replaced by manual recursion. Hard to maintain.

    Using XPath (1 line)                  Using XML data binding using
//name/text()                             BOOST_FOREACH (20+ lines)
                                        std::vector<std::string> get_author_names (const catalog & c)
<catalog>                               {
  <catalog>                               std::vector<std::string> name_seq;
    <catalog>                             BOOST_FOREACH(const book &b, c.get_book())
      <catalog>                           {
        <book><name>...</name></book>       BOOST_FOREACH(const author &a, b.get_author())
        <book><name>...</name></book>       {
      </catalog>                              name_seq.push_back(a.name());
      <book>...</book>                      }
                                          }
      <book>...</book>
                                          return name_seq;
    </catalog>                          }
    <book>
      <name>...</name>                  std::vector<std::string> get_all_names (const catalog & root)
      <price>...</price>                {
      <author>                            std::vector<std::string> name_seq(get_author_names(root));
        <name>...</name>                  BOOST_FOREACH (const catalog &c, root.get_catalog())
        <country>...</country>            {
      </author>                             std::vector<std::string> names = get_all_names(c);
                                            name_seq.insert(names.begin(), names.end());
    </book>
                                          }
    <book>...</book>                      return name_seq;
    <book>...</book>                    }
  </catalog>
</catalog>
                                                                                                   11 / 54
 Loss of XML programming idioms
   Cannot use “wildcard” types
   Example: Without spelling “Catalog” and “Book”, find names that are
    exactly at the third level.
    Using XPath (1 line)                         Using XML data binding
/*/*/name/text()                      std::vector<std::string>
                                      get_author_names (const catalog & root)
                                      {
                                        std::vector<std::string> name_seq;
                                        . . .
                                        . . .

                                          return name_seq;
                                      }


 Also known as structure-shyness
    Descendant axis and wildcards don’t spell out every detail of the
     structure
 Casting Catalog to Object class isn’t good enough
    object.get_book()  compiler error!
    object.get_children()  Inevitable casting!
                                                                                12 / 54
 Hybrid approach: Pass XPath expression as a string
      Using XML data binding + XPath                         No universal support
                                                             Boilerplate setup code
DOMElement* root (static_cast<DOMElement*> (c._node ()));
DOMDocument* doc (root->getOwnerDocument ());


                                                                 DOM, XML namespaces,
dom::auto_ptr<DOMXPathExpression> expr (
  doc->createExpression (
    xml::string ("//author").c_str (),
    resolver.get ()));                                            Memory management
dom::auto_ptr<DOMXPathResult> r (
  expr->evaluate (
                                                             Casting is inevitable
                                                             Look and feel of two
    doc, DOMXPathResult::ITERATOR_RESULT_TYPE, 0));



                                                              APIs is (vastly) different
while (r->iterateNext ())
{
  DOMNode* n (r->getNodeValue ());

    author* a (                                                  iterateNext() Vs.
      static_cast<author*> (
        n->getUserData (dom::tree_node_key)));                    begin()/end()
}
    cout << "Name   : " << a->get_name () << endl;
                                                             Can’t use predicates on
                                                              data outside xml
                                                                 E.g. Find authors of highest
                                                                  selling books
                                                            “/book[?condition?]/author/name”
                                                                                           13 / 54
 Schema-specificity (to much object-oriented bias?)
    Each class has a different interface (not generic)
    Naming convention of XML data binding tools vary

              Catalog           Book            Author


           +get_Book()      +get_Author()    +get_Name()
                            +get_Price()     +get_Country()
                            +get_name()


 Lost succinctness (axis-oriented expressions)
 Lost structure-shyness (descendant axis, wildcards)
 Can’t use Visitor design pattern (stateful traversal) with
  XPath



                                                              14 / 54
Language for Embedded QuEry and TraverSAl




      Multi-paradigm Design in C++
                                            15 / 54
*


                      Catalog                       A book catalog xsd
                   +get_Book()
                   +get_Catalog()
                                    1               Generated six C++ classes
                      1
                      *                                 Catalog
           1   1
                          Book                          Book      Complex classes
  Price

                   +get_Author()                        Author
                   +get_Price()     1
                   +get_Name()              Name
                                                        Price
                                                                   Simple classes
                                        1
                      1
                      *
                                        1
                                                        Country
 Country   1   1      Author                            Name
                   +get_Name()
                   +get_Country()
                                    1               Price, Country, and Name
<catalog>
  <catalog>                                          are simple wrappers
                                                    Catalogs are recursive
    <catalog>
      <catalog>...</catalog>
    </catalog>
    <book>
      <name>...</name>
      <price>...</price>
      <author>
        <name>...</name>
        <country>...</country>
      </author>
    </book>
  </catalog>
</catalog>
                                                                                     16 / 54
*




 Restoring succinctness
                                                                 Catalog


                                                              +get_Book()
                                                                               1

    Example: Find all author names
                                                              +get_Catalog()

                                                                 1

    Child axis traversal
                                                                 *

                                                                     Book
                                             Price    1   1

                                                              +get_Author()
                                                              +get_Price()     1
                                                              +get_Name()              Name

                                                                                   1
                                                                 1

 Using XPath (1 line)
                                                                 *
                                                                                   1

                                                      1   1      Author
                                            Country
 /book/author/name/text()
                                                              +get_Name()
                                                                               1
                                                              +get_Country()




Using LEESA (3 lines)
 Catalog croot = load_catalog(“catalog.xml”);
 std::vector<Name> author_names =
 evaluate(croot, Catalog() >> Book() >> Author() >> Name());




                                                                                          17 / 54
*




 Restoring expressive power
                                                                  Catalog


                                                               +get_Book()
                                                                                1

     Example: Find all names recursively
                                                               +get_Catalog()

                                                                  1

     Descendant axis traversal
                                                                  *

                                                                      Book
                                             Price     1   1

                                                               +get_Author()
                                                               +get_Price()     1
                                                               +get_Name()              Name

                                                                                    1
                                                                  1

Using XPath (1 line)
                                                                  *
                                                                                    1

                                                       1   1      Author
                                             Country
//name/text()
                                                               +get_Name()
                                                                                1
                                                               +get_Country()



Using LEESA (2 lines)
Catalog croot = load_catalog(“catalog.xml”);
std::vector<Name> names = DescendantsOf(Catalog(), Name())(croot);



 Fully statically typed execution
 Efficient: LEESA “knows” where Names are!
                                                                                           18 / 54
 Restoring xml programming
                                                                    *


                                                                    Catalog


  idioms (structure-shyness)                                     +get_Book()
                                                                 +get_Catalog()
                                                                                  1


     Example: Without spelling intermediate                        1

      types, find names that are exactly at
                                                                    *

                                                                        Book

      the third level.                         Price     1   1

                                                                 +get_Author()

     Wildcards in a typed query!
                                                                 +get_Price()     1
                                                                 +get_Name()              Name

                                                                                      1
                                                                    1

Using XPath (1 line)
                                                                    *
                                                                                      1

                                                         1   1      Author
                                               Country
/*/*/name/text()                                                 +get_Name()
                                                                                  1
                                                                 +get_Country()



Using LEESA (3 lines)
namespace LEESA { struct Underbar {} _; }
Catalog croot = load_catalog(“catalog.xml”);
std::vector<Name> names =
    LevelDescendantsOf(Catalog(), _, _, Name())(croot);

 Fully statically typed execution
 Efficient: LEESA “knows” where Books, Authors, and
  Names are!                                                                                 19 / 54
*


 User-defined filters                                                   Catalog


      Example: Find names of authors from                            +get_Book()
                                                                      +get_Catalog()
                                                                                       1

       Country == USA                                                    1
                                                                         *

      Basically unary functors                                              Book
                                                              1   1

      Supports free functions, function
                                                    Price

                                                                      +get_Author()

       objects, boost::bind, C++0x lambda
                                                                      +get_Price()     1
                                                                      +get_Name()              Name

                                                                                           1
                                                                         1
                                                                         *
                                                                                           1

                                                              1   1      Author
                                                    Country

                                                                      +get_Name()
                                                                                       1

Using XPath (1 line)
                                                                      +get_Country()




//author[country/text() = ‘USA’]/name/text()


Using LEESA (6 lines)
Catalog croot = load_catalog(“catalog.xml”);
std::vector<Name> author_names = evaluate(croot,
      Catalog()
   >> DescendantsOf(Catalog(), Author())
   >> Select(Author(), [](const Author &a) { return a.get_Country() == “USA"; })
   >> Name());

                                                                                                  20 / 54
*


 Tuplefication!!                                                        Catalog


      Example: Pair the name and country of                          +get_Book()
                                                                      +get_Catalog()
                                                                                       1

       all the authors                                                   1
                                                                         *

      std::vector of                                                        Book
                                                    Price     1   1
       boost::tuple<Name *, Country *>                                +get_Author()
                                                                      +get_Price()     1
                                                                      +get_Name()              Name

                                                                                           1
                                                                         1
                                                                         *
                                                                                           1

                                                              1   1      Author
                                                    Country

                                                                      +get_Name()
                                                                                       1

Using XPath
                                                                      +get_Country()




???????????????????????????????


Using LEESA (5 lines)
Catalog croot = load_catalog(“catalog.xml”);
std::vector<boost::tuple<Name *, Country *> > tuples =
evaluate(croot, Catalog()
             >> DescendantsOf(Catalog(), Author())
             >> MembersAsTupleOf(Author(), make_tuple(Name(), Country())));


                                                                                                  21 / 54
*


 Using visitors
                                                                                                   MyVisitor
                                                                     Catalog
                                                                                                +visit_Catalog()

    Gang-of-four Visitor design pattern
                                                                                                +visit_Book()
                                                                  +get_Book()
                                                                                   1            +visit_Author()
                                                                  +get_Catalog()
                                                                                                +visit_Name()

    Visit methods for all Elements
                                                                                                +visit_Country()
                                                                     1                          +visit_Price()
                                                                     *


    Example: Visit catalog, books, authors,   Price      1   1
                                                                         Book


     and names in that order                                      +get_Author()
                                                                  +get_Price()     1

    Stateful, statically typed traversal
                                                                  +get_Name()                    Name

                                                                                            1
                                                                     1

    fixed depth child axis
                                                                     *
                                                                                        1

                                                          1   1      Author
                                               Country

                                                                  +get_Name()
                                                                                   1

Using XPath
                                                                  +get_Country()




???????????????????????????????                                      Catalog


Using LEESA (7 lines)                                         Book1                Book2
Catalog croot = load_catalog(“catalog.xml”);
MyVisitor visitor;
std::vector<Country> countries =                         A1        A2                  A3        A4
evaluate(croot,     Catalog() >> visitor
                 >> Book()    >> visitor
                 >> Author() >> visitor                  C1                                       C4
                                                                   C2                  C3
                 >> Country() >> visitor);
                                                                                                             22 / 54
*


 Using visitors (depth-first)
                                                                                                           MyVisitor
                                                                                 Catalog
                                                                                                        +visit_Catalog()

    Gang-of-four Visitor design pattern
                                                                                                        +visit_Book()
                                                                              +get_Book()
                                                                                               1        +visit_Author()
                                                                              +get_Catalog()
                                                                                                        +visit_Name()

    Visit methods for all Elements
                                                                                                        +visit_Country()
                                                                                 1                      +visit_Price()
                                                                                 *


    Example: Visit catalog, books, authors,           Price      1       1
                                                                                     Book


     and names in depth-first manner                                          +get_Author()
                                                                              +get_Price()     1

    Stateful, statically typed traversal                                     +get_Name()                Name

                                                                                                    1

    fixed depth child axis
                                                                                 1
                                                                                 *
                                                                                                    1

                                                                      1   1      Author
                                                       Country

                                                                              +get_Name()

Using XPath
                                                                                               1
                                                                              +get_Country()



???????????????????????????????                                                 Catalog
                               Default precedence.
Using LEESA (7 lines)         No parenthesis needed.
                                                                      Book1                        Book2
Catalog croot = load_catalog(“catalog.xml”);
MyVisitor visitor;
std::vector<Book> books =
evaluate(croot,      Catalog() >> visitor                        A1           A2               A3       A4
                 >>= Book()    >> visitor
                 >>= Author() >> visitor
                 >>= Country() >> visitor);                      C1           C2               C3       C4
                                                                                                                    23 / 54
Visited




   Child Axis             Child Axis                        Parent Axis
                                           Parent Axis
 (breadth-first)         (depth-first)                     (depth-first)
                                         (breadth-first)

Catalog() >> Book() >> v >> Author() >> v

Catalog() >>= Book() >> v >>= Author() >> v
                                                               Default
                                                             precedence.
Name() << v << Author() << v << Book() << v                 No parenthesis
                                                               needed.

Name() << v <<= Author() << v <<= Book() << v

                                                                         24 / 54
*


 Composing named queries
                                                                                              MyVisitor
                                                                     Catalog
                                                                                           +visit_Catalog()

      Queries can be named, composed, and                        +get_Book()
                                                                  +get_Catalog()
                                                                                   1
                                                                                           +visit_Book()
                                                                                           +visit_Author()

       passed around as executable
                                                                                           +visit_Name()
                                                                                           +visit_Country()
                                                                     1

       expressions
                                                                     *                     +visit_Price()


                                                                         Book

      Example:                                  Price    1   1

                                                                  +get_Author()

       For each book                                              +get_Price()
                                                                  +get_Name()
                                                                                   1
                                                                                            Name


            print(country of the author)
                                                                                       1
                                                                     1
                                                                     *
                                                                                       1

            print(price of the book)            Country   1   1      Author


                                                                  +get_Name()

Using XPath
                                                                                   1
                                                                  +get_Country()



???????????????????????????????


Using LEESA (6 lines)
Catalog croot = load_catalog(“catalog.xml”);
MyVisitor visitor;
BOOST_AUTO(v_country, Author() >> Country() >> visitor);
BOOST_AUTO(v_price,   Price() >> visitor);
BOOST_AUTO(members, MembersOf(Book(), v_country, v_price));
evaluate(croot, Catalog() >>= Book() >> members);

                                                                                                       25 / 54
 Using visitors (recursively)
       Hierarchical Visitor design pattern
       Visit and Leave methods for all elements
       Depth awareness
       Example: Visit everything!!
       Stateful, statically typed traversal
       Descendant axis = recursive
       AroundFullTD = AroundFullTopDown

Using XPath
???????????????????????????????

Using LEESA (3 lines!!)
Catalog croot = load_catalog(“catalog.xml”);
MyHierarchicalVisitor v;
AroundFullTD(Catalog(), VisitStrategy(v), LeaveStrategy(v)))(croot);



                                                                       26 / 54
 LEESA
  1.   Is not an xml parsing library      XML data binding tool
  2.   Does not validate xml files            can do both
  3.   Does not replace/compete with XPath
  4.   Does not resolve X/O impedance mismatch
         More reading: “Revealing X/O impedance mismatch”, Dr. R Lämmel


 LEESA
  1.   Is a query and traversal library for C++
  2.   Validates XPath-like queries at compile-time (schema conformance)
  3.   Is motivated by XPath
  4.   Goes beyond XPath
  5.   Simplifies typed XML programming
  6.   Is an embedded DSEL (Domain-specific embedded language)
  7.   Is applicable beyond xml (E.g., Google Protocol Buffers, model
       traversal, hand coded class hierarchies, etc.)
                                                                       27 / 54
 XML Programming in C++, specifically data-binding
 What XML data binding stole from us!
 Restoring order: LEESA
 LEESA by examples
 LEESA in detail
      Architecture of LEESA
      Type-driven data access
      XML schema representation using Boost.MPL
      LEESA descendant axis and strategic programming
      Compile-time schema conformance checking
      LEESA expression templates
 Evaluation: productivity, performance, compilers
 C++0x and LEESA
 LEESA in future
                                                         28 / 54
 The Process

                LEESA Expressions Written by Programmers
                      Axes-oriented                    Recursive Traversal
                  Traversal Expressions              (Strategic Programming)
                              Ch
                                ec
                                   ke
                                      d                         es
                                          ag
                                            ai                Us
                                               ns
                                                 t
  XML




                                                                               i/p
 Schema
                                                Static
                          Generate
                                           meta-information          i/p

                Extended
                 Schema
                                      Type-driven
          i/p    Compiler Generate Data Access Layer                         C++
                                                                   i/p                Generate   Executable
                  (Code                                                    Compiler
                Generator)
                                           Object-oriented
                           Generate
                                          Data Access Layer          i/p

                                                 C++ Code



                                                                                                       29 / 54
XML
                 Schema                 Static      Type-driven
                                                                       Visitor
                                        meta-       Data Access
                                                                     Declarations
                                     information       Layer
                                                    C++ (.h, .cpp)


                 Object-oriented                                         Meta-data
      Schema                                 XML                ALL
                  Data Access      Doxygen   XML
                                             XML
                                              XML     XSLT
                                                                         Generator
      Compiler                                                  XML
                     Layer
                    C++ (.h)
                                             LEESA’s gen-meta.py script

 Extended schema compiler = 4 step process
   XML schema language (XSD) specification is huge and complex
   Don’t reinvent the wheel: xml data binding tools already process it
   Naming convention of xml data binding tools vary
   Applicability beyond xml data binding
       E.g. Google Protocol Buffers (GPB), hand written class hierarchies
   Meta-data generator script inserts visitor declaration in the C++
    classes                                                               30 / 54
   To fix  Different interface of each class
     Generic API “children” wrappers to navigate aggregation
     Generated by the Python script
     More amenable to composition

std::vector<Book> children (Catalog &c, Book const *) {
  return c.get_Book();
}
std::vector<Catalog> children (Catalog &c, Catalog const *) {
  return c.get_Catalog();
}
std::vector<Author> children (Book &b, Author const *) {
  return b.get_Author();
}
Price children (Book &b, Price const *) {
  return b.get_Price();
}
Name children (Book &b, Name const *) {
  return b.get_Name();
}
Country children (Author &a, Country const *) {
  return a.get_Country();
}
Name children (Author &a, Name const *) {
  return a.get_Name();
}
                                                                31 / 54
 Ambiguity!
     Simple elements and attributes are mapped to built-in types
     “children” function overloads become ambiguous
<xs:complexType name=“Author”>
  <xs:sequence>
    <xs:element   name=“first_name" type="xs:string" />       Mapping
    <xs:element   name=“last_name“ type="xs:string" />
  </xs:sequence>
</xs:complexType>



                                                                    gen-meta.py


                                   std::string children (Author   &a, std::string const *) {
                                     return a.get_first_name();
                                   }
                                   std::string children (Author   &a, std::string const *) {
                                     return a.get_last_name();
                                   }




                                                                                          32 / 54
 Solution 1: Automatic schema transformation
     Force data binding tools to generate unique C++ types
     gen-meta.py can transforms input xsd while preserving semantics
<xs:complexType name=“Author”>
  <xs:sequence>
    <xs:element   name=“first_name" type="xs:string" />   Mapping
    <xs:element   name=“last_name“ type="xs:string" />
  </xs:sequence>
</xs:complexType>

                             Transformation
                             (gen-meta.py)
<xs:complexType name=“Author”>
 <xs:sequence>
  <xsd:element name=“first_name">                         Mapping
   <xsd:simpleType>
     <xsd:restriction base="xsd:string" />
   </xsd:simpleType>
  </xsd:element>
  <xsd:element name=“last_name">
   <xsd:simpleType>
     <xsd:restriction base="xsd:string" />
   </xsd:simpleType>
  </xsd:element>
 </xs:sequence>
</xs:complexType>
                                                                        33 / 54
 Solution 1 limitations: Too many types! Longer compilation times.
 Solution 2: Generate placeholder types
    Create unique type aliases using a template and integer literals
    Not implemented!
             <xs:complexType name=“Author”>
               <xs:sequence>
                 <xs:element   name=“first_name" type="xs:string" />
                 <xs:element   name=“last_name“ type="xs:string" />
               </xs:sequence>
             </xs:complexType>

                                          Code generation
                                          (gen-meta.py)
             namespace LEESA {
               template <class T, unsigned int I>
               struct unique_type
               {
                  typedef T nested;
               };
             }
             namespace Library {
               typedef LEESA::unique_type<std::string, 1> first_name;
               typedef LEESA::unique_type<std::string, 2> last_name;
             }
                                                                        34 / 54
 A key idea in LEESA
      Externalize structural meta-information using Boost.MPL
      LEESA’s meta-programs traverse the meta-information at compile-time

                                                   template <class Kind>
                      *                            struct SchemaTraits
                                                   {
                      Catalog                         typedef mpl::vector<> Children; // Empty sequence
                                                   };
                   +get_Book()
                                    1
                   +get_Catalog()
                                                   template <>
                      1                            struct SchemaTraits <Catalog>
                      *
                                                   {
                          Book                        typedef mpl::vector<Book, Catalog> Children;
 Price     1   1
                                                   };
                   +get_Author()                   template <>
                   +get_Price()     1
                   +get_Name()              Name   struct SchemaTraits <Book>
                                        1
                                                   {
                      1                               typedef mpl::vector<Name, Price, Author> Children;
                      *
                                        1          };
 Country   1   1      Author                       template <>
                                                   struct SchemaTraits <Author>
                   +get_Name()                     {
                                    1
                   +get_Country()
                                                      typedef mpl::vector<Name, Country> Children;
                                                   };




                                                                                                           35 / 54
 A key idea in LEESA
      Externalize structural meta-information using Boost.MPL
      Descendant meta-information is a transitive closure of Children
                                                   template <class Kind> struct SchemaTraits {
                                                      typedef mpl::vector<> Children; // Empty sequence
                      *                            };
                                                   template <> struct SchemaTraits <Catalog> {
                      Catalog
                                                      typedef mpl::vector<Book, Catalog> Children;
                                                   };
                   +get_Book()
                   +get_Catalog()
                                    1              template <> struct SchemaTraits <Book> {
                                                      typedef mpl::vector<Name, Price, Author> Children;
                      1                            };
                      *
                                                   template <> struct SchemaTraits <Author> {
                          Book                        typedef mpl::vector<Name, Country> Children;
 Price     1   1
                                                   };
                   +get_Author()                   typedef boost::mpl::true_ True;
                   +get_Price()     1
                   +get_Name()              Name   typedef boost::mpl::false_ False;
                                        1
                                                   template<class A, class D> struct IsDescendant : False     {};
                      1                            template<> struct IsDescendant<Catalog, Catalog> : True    {};
                      *
                                        1          template<> struct IsDescendant<Catalog, Book>     : True   {};
           1   1      Author                       template<> struct IsDescendant<Catalog, Name>     : True   {};
 Country
                                                   template<> struct IsDescendant<Catalog, Price>    : True   {};
                   +get_Name()                     template<> struct IsDescendant<Catalog, Author> : True     {};
                                    1
                   +get_Country()
                                                   template<> struct IsDescendant<Catalog, Country> : True    {};
                                                   template<> struct IsDescendant<Book, Name>        : True   {};
                                                   template<> struct IsDescendant<Book, Price>       : True   {};
                                                   template<> struct IsDescendant<Book, Author>      : True   {};
                                                   template<> struct IsDescendant<Book, Country>     : True   {};
                                                   template<> struct IsDescendant<Author, Name>      : True   {};
                                                   template<> struct IsDescendant<Author, Country> : True     {};
                                                                                                              36 / 54
std::vector<Country> countries = DescendantsOf(Catalog(), Country())(croot);

 Algorithm (conceptual)
1. IsDescendant<Catalog, Country>::value
                                                                 Catalog
2. Find all children types of Catalog
    SchemaTraits<Catalog>::Children =
    boost::mpl::vector<Book, Catalog>
3. Iterate over Boost.MPL vector                          Book         Catalog
4. IsDescendant<Book, Country>::value
5. Use type-driven data access on each Catalog
    std::vector<Book>=children(Catalog&, Book*)
                                                   Name      Author          Price
    For Catalogs repeat step (1)
6. Find all children types of Book
    SchemaTraits<Book>::Children =
    boost::mpl::vector<Name, Author, Price>          Country          Name
7. Iterate over Boost.MPL vector
8. IsDescendant<Name, Country>::value
9. IsDescendant<Price, Country>::value
10. IsDescendant<Author, Country>::value
11. Use type drive data access on each Book
    std::vector<Author>=children(Book&, Author*)
12. Find all children types of Author
    SchemaTraits<Author>::Children =
    boost::mpl::vector<Country, Name>
13. Repeat until Country objects are found                                      37 / 54
 Strategic Programming Paradigm
   A systematic way of creating recursive tree traversal
   Developed in 1998 as a term rewriting language: Stratego
 Why LEESA uses strategic programming
   Generic
       LEESA can   be designed without knowing the types in a xml tree
   Recursive
       LEESA can   handles mutually and/or self recursive types
   Reusable
       LEESA can   be reused as a library for any xsd
   Composable
       LEESA can   be extended by its users using policy-based templates
 Basic combinators
   Identity, Fail, Sequence, Choice, All, and One



                                                                          38 / 54
fullTD(node)                  fullTD(node)            All(node, strategy)
{                             {                       {
  visit(node);                  visit(node);            forall children c of node
  forall children c of node     All(node, fullTD);        strategy(c);
       fullTD(c);             }                       }
}

 Pre-order traversal
    pseudo-code
   (fullTopDown)
                              fullTD(node)
                              {                                     Recursive
                                seq(node, visit, All(fullTD));       traversal
                                                                 (1 out of many)
                              }

                              seq(node,strategy1,strategy2)
                              {
                                strategy1(node);
                                strategy2(node);
                              }
                                                                       Basic
                              All(node, strategy)                  Combinators
                              {                                     (2 out of 6)
                                forall children c of node
                                  strategy(c);
                              }
                                                                              39 / 54
template <class Strategy1,             template <class Strategy>
           class Strategy2>            class All                                  Boost.MPL
class Seq                              {                                       Meta-information
{                                         template <class Data>
   template <class Data>                  void operator()(Data d)
   void operator()(Data d)                {
   {                                        foreach T in SchemaTraits<Data>::Children
     Strategy1(d);                             std::vector<T> t = children(d, (T *)0);
     Strategy2(d);                             Strategy(t);
   }                                     }
                                                                               Type-driven
};                                     };
                                                                                Data Access




        Sequence + All = FullTD

 template <class Strategy>
 class FullTD
 {
    template <class data>
    void operator()(Data d)
    {
      Seq<Strategy,All<FullTD>>(d);
    }
 };

Note: Objects and constructors omitted for brevity                                            40 / 54
*
 BOOST_AUTO(prices, DescendantsOf(Catalog(), Price()));
                                                                               Catalog

  LEESA uses FullTopDown<Accumulator<Price>>                               +get_Book()
                                                                                               1

  But schema unaware recursion in every sub-structure
                                                                            +get_Catalog()



   is inefficient
                                                                               1
                                                                               *



  We know that Authors do not contain Prices
                                                                                   Book
                                                          Price    1   1

                                                                            +get_Author()

                                 LEESA’s
                                                                            +get_Price()
                                                                            +get_Name()

FullTD may be                 schema-aware                                     1

  inefficient              traversal is optimal                                *


                                                                   1   1       Author
                                                         Country

                                                                            +get_Name()
                                                                            +get_Country()



                                                                            IsDescendant
                                                                           <Catalog,Price>
                                                                               = True




                                                                    IsDescendant
                                                                   <Author,Price>
                                                                      = False

                                     Bypass unnecessary
                      sub-structures (Author) using meta-programming                      41 / 54
 LEESA has compile-time schema conformance checking
     LEESA queries compile only if they agree with the schema
     Uses externalized schema and meta-programming
     Error message using BOOST_MPL_ASSERT
     Tries to reduce long and incomprehensible error messages
     Shows assertion failures in terms of concepts
         ParentChildConcept, DescendantKindConcept, etc.
         Originally developed for C++0x concepts

   Examples      DescendantKindConcept
                         Failure
                                                      ParentChildConcept
                                                            Failure


 1. BOOST_AUTO(prices, DescendantsOf(Author(), Price());

 2. BOOST_AUTO(books, Catalog() >> Book() >> Book());

 3. BOOST_AUTO(countries, LevelDescendantsOf(Catalog(),_,Country());


                                              LevelDescendantKindConcept
                                                        Failure
                                                                           42 / 54
 Country is at least 2 “steps” away from a Catalog
LevelDescendantsOf(Catalog(),_,Country());
1>------ Build started: Project: library, Configuration: Release Win32 ------
1> driver.cxx
1> using native typeof
1>C:mySVNLEESAincludeLEESA/SP_Accumulation.cpp(112): error C2664: 'boost::mpl::assertion_failed' : cannot convert
parameter 1 from 'boost::mpl::failed
************LEESA::LevelDescendantKindConcept<ParentKind,DescendantKind,SkipCount,Custom>::* ***********' to
'boost::mpl::assert<false>::type'
1>          with
1>          [
1>              ParentKind=library::Catalog,
1>              DescendantKind=library::Country,
1>              SkipCount=1,
1>              Custom=LEESA::Default
1>          ]
1>          No constructor could take the source type, or constructor overload resolution was ambiguous
1>          driver.cxx(155) : see reference to class template instantiation
'LEESA::LevelDescendantsOp<Ancestor,Descendant,SkipCount,Custom>' being compiled
1>          with
1>          [
1>              Ancestor=LEESA::Carrier<library::Catalog>,
1>              Descendant=LEESA::Carrier<library::Country>,
1>              SkipCount=1,
1>              Custom=LEESA::Default
1>          ]
1>C:mySVNLEESAincludeLEESA/SP_Accumulation.cpp(112): error C2866:
'LEESA::LevelDescendantsOp<Ancestor,Descendant,SkipCount,Custom>::mpl_assertion_in_line_130' : a const static data member
of a managed type must be initialized at the point of declaration
1>          with
1>          [
1>              Ancestor=LEESA::Carrier<library::Catalog>,
1>              Descendant=LEESA::Carrier<library::Country>,
1>              SkipCount=1,
1>              Custom=LEESA::Default
1>          ]
1> Generating Code...
========== Build: 0 succeeded, 1 failed, 0 up-to-date, 0 skipped ==========                                               43   / 54
 (Nearly) all LEESA queries are expression templates
    Hand rolled. Not using Boost.Proto
                      Catalog() >> Book() >> Author() >> Name()

                                       3    ChainExpr


                                 n
                                io
                                                                        LResultType
                            ut
                           ec
                       Ex

                            2        ChainExpr    GetChildren<Author, Name>
                      of
                  er




                                                                    LResultType
               rd
              O




                  1        ChainExpr          GetChildren<Book, Author>
                                                                LResultType

               Catalog                     GetChildren<Catalog, Book>

  template <class L, class H>
  ChainExpr<L, GetChildren<typename ExpressionTraits<L>::result_type, H> >
  operator >> (L l, H h)
  {
    typedef typename ExpressionTraits<L>::result_type LResultType;
    typedef GetChildren<LResultType, H> GC;
    return ChainExpr<L, GC>(l, h);
  }
                                                                                      44 / 54
 (Nearly) all LEESA queries are expression templates
    Hand rolled. Not using Boost.Proto
    Every LEESA expression becomes a unary function object
    LEESA query  Systematically composed unary function objects



              Catalog() >>= Book() >> Author() >> Name()

              ChainExpr   1
                                                2
        Catalog           DepthFirstGetChildren<Catalog, Book>


                          Catalog          2b       ChainExpr


                                    2a ChainExpr          GetChildren<Author, Name>


                                    Book              GetChildren<Book, Author>

                                                                                      45 / 54
 XML Programming in C++, specifically data-binding
 What XML data binding stole from us!
 Restoring order: LEESA
 LEESA by examples
 LEESA in detail
      Architecture of LEESA
      Type-driven data access
      XML schema representation using Boost.MPL
      LEESA descendant axis and strategic programming
      Compile-time schema conformance checking
      LEESA expression templates
 Evaluation: productivity, performance, compilers
 C++0x and LEESA
 LEESA in future
                                                         46 / 54
 Reduction in boilerplate traversal code
    Results from the 2009 paper in the Working Conference on
     Domain-Specific Languages, Oxford, UK




                                            87% reduction in traversal
                                                     code
                                                                     47 / 54
 CodeSynthesis xsd data binding tool on the catalog xsd
 Abstraction penalty from construction, copying, and destruction of
  internal containers (std::vector<T> and LEESA::Carrier<T>)
 GNU Profiler: Highest time spent in std::vector<T>::insert and
  iterator dereference functions




                          (data binding)




                                                             33 seconds for
                                                           parsing, validating,
                                                            and object model
                                                              construction
                                                                                  48 / 54
   Compilation time affects programmer productivity
   Experiment
      An XML schema containing 300 types (4 recursive)
      gcc 4.5 (with and without variadic templates)



                            (data binding)




                                                          49 / 54
   Experiment: Total time to build an executable from an xsd on 4 compilers
      XML schema containing 300 types (4 recursive)
      5 LEESA expressions (all using descendant axis)
      Tested on Intel Core 2 Duo 2.67 GHz, 4 GB laptop




                   79          44           18
                                                         15

                   54
                              126
                                           112         101
                   60



                   95          95          95          95




                                                                         50 / 54
 Readability improvements
     Lambdas!
     LEESA actions (e.g., Select, Sort) can use C++0x lambdas
     static_assert for improved error reporting
     auto for naming LEESA expressions
 Performance improvements (run-time)
     Rvalue references and move semantics
     Optimize away internal copies of large containers
 Performance improvements (Compile-time)
     Variadic templates  Faster schema conformance
      checking
     No need to use BOOST_MPL_LIMIT_VECTOR_SIZE and
      Boost.Preprocessor tricks
 Simplifying LEESA’s implementation
     Trailing return-type syntax and decltype
     Right angle bracket syntax
                                                                 51 / 54
 Become a part of the Boost libraries!?
 Extend LEESA to support
      Google Protocol Buffers (GPB)
      Apache Thrift
      Or any “schema-first” data binding in C++
 Better support from data binding tools?
 Parallelization on multiple cores
      Parallelize query execution on multiple cores
       behind LEESA’s high-level declarative
       programming API
 Co-routine style programming model
      LEESA expressions return containers
      Expression to container  expensive!
      Expression to iterator  cheap!
      Compute result only when needed (lazy)
 XML literal construction
      Checked against schema at compile-time
                                                       52 / 54
LEESA  Native XML Processing Using Multi-paradigm
                   Design in C++
               XML Programming Concerns
            Representation
                                  Traversal      Static Schema
            and access to
                                 (up, down,      conformance
             richly-typed
                                 sideways)         checking
           hierarchical data

                          Statically
                                         Structure-shy
                         fixed depth

                         Breadth-first   Depth-first

            Object-oriented      Generative
             Programming        Programming
                                                 Metaprogramming
                Generic           Strategic
             programming        Programming

                C++ Multi-paradigm Solution
                                                                   53 / 54
54 / 54

More Related Content

PDF
SXML: S-expression eXtensible Markup Language
PPTX
PDF
Schemaless Solr and the Solr Schema REST API
PPTX
Introductionto xslt
PPTX
In Pursuit of the Grand Unified Template
PPT
PDF
Postgre(No)SQL - A JSON journey
PPT
J query
SXML: S-expression eXtensible Markup Language
Schemaless Solr and the Solr Schema REST API
Introductionto xslt
In Pursuit of the Grand Unified Template
Postgre(No)SQL - A JSON journey
J query

What's hot (19)

PPTX
Web Service Workshop - 3 days
PPTX
J query1
PPTX
Introduction to MarkLogic NoSQL
PDF
Json tutorial, a beguiner guide
PPT
Json - ideal for data interchange
PDF
Querring xml with xpath
PPTX
Java and XML
PPT
Advanced php
KEY
PDF
What's in a language? By Cheng Lou
PDF
Jazoon 2010 - Building DSLs with Eclipse
PDF
The Lumber Mill Xslt For Your Templates
PPTX
Sax parser
PPTX
Xml schema
PDF
Xml parsing
PDF
C# Advanced L03-XML+LINQ to XML
PDF
Object Based Databases
PPTX
Web Service Workshop - 3 days
J query1
Introduction to MarkLogic NoSQL
Json tutorial, a beguiner guide
Json - ideal for data interchange
Querring xml with xpath
Java and XML
Advanced php
What's in a language? By Cheng Lou
Jazoon 2010 - Building DSLs with Eclipse
The Lumber Mill Xslt For Your Templates
Sax parser
Xml schema
Xml parsing
C# Advanced L03-XML+LINQ to XML
Object Based Databases
Ad

Viewers also liked (20)

PDF
Projectmanagement en systemisch werken
PDF
Giip bp-giip connectivity1703
PPTX
VMworld 2015: Take Virtualization to the Next Level vSphere with Operations M...
PDF
How To: De Raspberry Pi als downloadmachine
PDF
The Beauty of BAD code
PDF
Integrating the CDO Role Into Your Organization; Managing the Disruption (MIT...
PPTX
And the new System Center is here... what's actually new?
PDF
소셜 코딩 GitHub & branch & branch strategy
PDF
How to Crunch Petabytes with Hadoop and Big Data using InfoSphere BigInsights...
PDF
Migrating to aws
PDF
High Availability Architecture for Legacy Stuff - a 10.000 feet overview
PPTX
Conociendo los servicios adicionales en big data
PPTX
Hadoop and Genomics - What you need to know - Cambridge - Sanger Center and EBI
PDF
Cwin16 tls-s2-0945-going cloud native
PPTX
Container microservices
PDF
Lifehacking met Evernote
PPTX
How OpenTable uses Big Data to impact growth by Raman Marya
PPT
Finding HMAS Sydney Chapter 9 - Search for Sydney
PPTX
2017 GRESB Real Estate Results - The Netherlands
PDF
AI = SE , giip system manage automation with A.I
Projectmanagement en systemisch werken
Giip bp-giip connectivity1703
VMworld 2015: Take Virtualization to the Next Level vSphere with Operations M...
How To: De Raspberry Pi als downloadmachine
The Beauty of BAD code
Integrating the CDO Role Into Your Organization; Managing the Disruption (MIT...
And the new System Center is here... what's actually new?
소셜 코딩 GitHub & branch & branch strategy
How to Crunch Petabytes with Hadoop and Big Data using InfoSphere BigInsights...
Migrating to aws
High Availability Architecture for Legacy Stuff - a 10.000 feet overview
Conociendo los servicios adicionales en big data
Hadoop and Genomics - What you need to know - Cambridge - Sanger Center and EBI
Cwin16 tls-s2-0945-going cloud native
Container microservices
Lifehacking met Evernote
How OpenTable uses Big Data to impact growth by Raman Marya
Finding HMAS Sydney Chapter 9 - Search for Sydney
2017 GRESB Real Estate Results - The Netherlands
AI = SE , giip system manage automation with A.I
Ad

Similar to Native XML processing in C++ (BoostCon'11) (20)

PDF
Default Namespace
PPT
basic knowledge on the xsd schema and much more
PDF
SAX, DOM & JDOM parsers for beginners
PPTX
Xml part4
PDF
Basics of JSON (JavaScript Object Notation) with examples
PPT
XML stands for EXtensible Markup Language
PPT
XMLLec1.pptsfsfsafasfasdfasfdsadfdsfdf dfdsfds
PPT
XMLLec1 (1xML lecturefsfsdfsdfdsfdsfsdfsdfdsf
PPT
JavaScript Workshop
PPT
Reversing JavaScript
PPTX
Xsd restrictions, xsl elements, dhtml
PPTX
PostgreSQL's Secret NoSQL Superpowers
PPTX
Xml session
PPTX
eXtensible Markup Language (XML)
PDF
Dax Declarative Api For Xml
PDF
Schemas and soap_prt
PPT
2011 Mongo FR - MongoDB introduction
PPT
Introduction to MongoDB
PPT
NOSQL and Cassandra
Default Namespace
basic knowledge on the xsd schema and much more
SAX, DOM & JDOM parsers for beginners
Xml part4
Basics of JSON (JavaScript Object Notation) with examples
XML stands for EXtensible Markup Language
XMLLec1.pptsfsfsafasfasdfasfdsadfdsfdf dfdsfds
XMLLec1 (1xML lecturefsfsdfsdfdsfdsfsdfsdfdsf
JavaScript Workshop
Reversing JavaScript
Xsd restrictions, xsl elements, dhtml
PostgreSQL's Secret NoSQL Superpowers
Xml session
eXtensible Markup Language (XML)
Dax Declarative Api For Xml
Schemas and soap_prt
2011 Mongo FR - MongoDB introduction
Introduction to MongoDB
NOSQL and Cassandra

More from Sumant Tambe (20)

PDF
Kafka tiered-storage-meetup-2022-final-presented
PPTX
Systematic Generation Data and Types in C++
PPTX
Tuning kafka pipelines
PPTX
New Tools for a More Functional C++
PPTX
C++ Coroutines
PPTX
C++ Generators and Property-based Testing
PDF
Reactive Stream Processing in Industrial IoT using DDS and Rx
PDF
RPC over DDS Beta 1
PDF
Remote Log Analytics Using DDS, ELK, and RxJS
PDF
Property-based Testing and Generators (Lua)
PDF
Reactive Stream Processing for Data-centric Publish/Subscribe
PDF
Reactive Stream Processing Using DDS and Rx
PPTX
Fun with Lambdas: C++14 Style (part 2)
PDF
Fun with Lambdas: C++14 Style (part 1)
PDF
An Extensible Architecture for Avionics Sensor Health Assessment Using DDS
PDF
Overloading in Overdrive: A Generic Data-Centric Messaging Library for DDS
PDF
Standardizing the Data Distribution Service (DDS) API for Modern C++
PDF
Communication Patterns Using Data-Centric Publish/Subscribe
PDF
C++11 Idioms @ Silicon Valley Code Camp 2012
PPTX
Retargeting Embedded Software Stack for Many-Core Systems
Kafka tiered-storage-meetup-2022-final-presented
Systematic Generation Data and Types in C++
Tuning kafka pipelines
New Tools for a More Functional C++
C++ Coroutines
C++ Generators and Property-based Testing
Reactive Stream Processing in Industrial IoT using DDS and Rx
RPC over DDS Beta 1
Remote Log Analytics Using DDS, ELK, and RxJS
Property-based Testing and Generators (Lua)
Reactive Stream Processing for Data-centric Publish/Subscribe
Reactive Stream Processing Using DDS and Rx
Fun with Lambdas: C++14 Style (part 2)
Fun with Lambdas: C++14 Style (part 1)
An Extensible Architecture for Avionics Sensor Health Assessment Using DDS
Overloading in Overdrive: A Generic Data-Centric Messaging Library for DDS
Standardizing the Data Distribution Service (DDS) API for Modern C++
Communication Patterns Using Data-Centric Publish/Subscribe
C++11 Idioms @ Silicon Valley Code Camp 2012
Retargeting Embedded Software Stack for Many-Core Systems

Recently uploaded (20)

PDF
Approach and Philosophy of On baking technology
PPTX
Understanding_Digital_Forensics_Presentation.pptx
PDF
CIFDAQ's Market Insight: SEC Turns Pro Crypto
PDF
Machine learning based COVID-19 study performance prediction
PDF
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
PDF
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
PDF
Spectral efficient network and resource selection model in 5G networks
PPT
“AI and Expert System Decision Support & Business Intelligence Systems”
PDF
Chapter 3 Spatial Domain Image Processing.pdf
PDF
KodekX | Application Modernization Development
PPTX
Cloud computing and distributed systems.
PPTX
20250228 LYD VKU AI Blended-Learning.pptx
PPTX
Digital-Transformation-Roadmap-for-Companies.pptx
PPTX
Detection-First SIEM: Rule Types, Dashboards, and Threat-Informed Strategy
PDF
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
PDF
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
PDF
Agricultural_Statistics_at_a_Glance_2022_0.pdf
PDF
Shreyas Phanse Resume: Experienced Backend Engineer | Java • Spring Boot • Ka...
PDF
Encapsulation theory and applications.pdf
PPTX
A Presentation on Artificial Intelligence
Approach and Philosophy of On baking technology
Understanding_Digital_Forensics_Presentation.pptx
CIFDAQ's Market Insight: SEC Turns Pro Crypto
Machine learning based COVID-19 study performance prediction
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
Spectral efficient network and resource selection model in 5G networks
“AI and Expert System Decision Support & Business Intelligence Systems”
Chapter 3 Spatial Domain Image Processing.pdf
KodekX | Application Modernization Development
Cloud computing and distributed systems.
20250228 LYD VKU AI Blended-Learning.pptx
Digital-Transformation-Roadmap-for-Companies.pptx
Detection-First SIEM: Rule Types, Dashboards, and Threat-Informed Strategy
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
Agricultural_Statistics_at_a_Glance_2022_0.pdf
Shreyas Phanse Resume: Experienced Backend Engineer | Java • Spring Boot • Ka...
Encapsulation theory and applications.pdf
A Presentation on Artificial Intelligence

Native XML processing in C++ (BoostCon'11)

  • 1. LEESA: Toward Native XML Processing Using Multi-paradigm Design in C++ May 16, 2011 Dr. Sumant Tambe Dr. Aniruddha Gokhale Software Engineer Associate Professor of EECS Dept. Real-Time Innovations Vanderbilt University www.dre.vanderbilt.edu/LEESA 1 / 54
  • 2.  XML Programming in C++. Specifically, data binding  What XML data binding stole from us!  Restoring order: LEESA  LEESA by examples  LEESA in detail  Architecture of LEESA  Type-driven data access  XML schema representation using Boost.MPL  LEESA descendant axis and strategic programming  Compile-time schema conformance checking  LEESA expression templates  Evaluation: productivity, performance, compilers  C++0x and LEESA  LEESA in future 2 / 54
  • 3. XML Infoset Cɷ 3 / 54
  • 4.  Type system  Regular types  Anonymous complex elements  Repeating subsequence  XML data model  XML information set (infoset)  E.g., Elements, attributes, text, comments, processing instructions, namespaces, etc. etc.  Schema languages  XSD, DTD, RELAX NG  Programming Languages  XPath, XQuery, XSLT  Idioms and best practices  XPath: Child, parent, sibling, descendant axes; wildcards 4 / 54
  • 5.  Predominant categories & examples (non-exhaustive)  DOM API  Apache Xerces-C++, RapidXML, Tinyxml, Libxml2, PugiXML, lxml, Arabica, MSXML, and many more …  Event-driven APIs (SAX and SAX-like)  Apache SAX API for C++, Expat, Arabica, MSXML, CodeSynthesis XSD/e, and many more …  XML data binding  Liquid XML Studio, Code Synthesis XSD, Codalogic LMX, xmlplus, OSS XSD, XBinder, and many more …  Boost XML??  No XML library in Boost (as of May 16, 2011)  Issues: very broad requirements, large XML specifications, good XML libraries exist already, encoding issues, round tripping issues, and more … 5 / 54
  • 6. XML query/traversal program XML Uses Schema XML Schema C++ Object-oriented i/p Compiler Generate Data Access Layer i/p Generate Executable Compiler (Code Generator) C++ Code  Process  Automatically generate vocabulary-specific classes from the schema  Develop application code using generated classes  Parse an XML into an object model at run-time  Manipulate the objects directly (CRUD)  Serialize the objects back to XML 6 / 54
  • 7.  Example: Book catalog xml and xsd <catalog> <xs:complexType name=“book”> <book> <xs:sequence> <name>The C++ Programming Language</name> <xs:element name="name" type="xs:string" /> <price>71.94</price> <xs:element name="price" type="xs:double" /> <xs:element name="author" maxOccurs="unbounded"> <author> <xs:complexType> <name>Bjarne Stroustrup</name> <xs:sequence> <country>USA</country> <xs:element name="name" type="xs:string" /> </author> <xs:element name="country" type="xs:string" /> </book> </xs:sequence> <book> </xs:complexType> <name>C++ Coding Standards</name> </xs:element> <price>36.41</price> </xs:sequence> <author> </xs:complexType> <name>Herb Sutter</name> <country>USA</country> <xs:element name="catalog"> <xs:complexType> </author> <xs:sequence> <author> <xs:element name=“book” <name>Andrei Alexandrescu</name> type=“lib:book" <country>USA</country> maxOccurs="unbounded"> </author> </xs:element> </book> </xs:sequence> </catalog> </xs:complexType> </xs:element> 7 / 54
  • 8.  Example: Book catalog xsd and generated C++ code <xs:complexType name=“book”> class author { <xs:sequence> private: <xs:element name="name" std::string name_; type="xs:string" /> std::string country_; <xs:element name="price" public: type="xs:double" /> std::string get_name() const; <xs:element name="author" maxOccurs="unbounded"> void set_name(std::string const &); <xs:complexType> std::string get_country() const; <xs:sequence> void set_country(std::string const &); <xs:element name="name" }; type="xs:string" /> <xs:element name="country" class book { type="xs:string" /> private: std::string name_; </xs:sequence> double price_; </xs:complexType> std::vector<author> author_sequence_; </xs:element> public: std::string get_name() const; </xs:sequence> void set_name(std::string const &); </xs:complexType> double get_price() const; <xs:element name="catalog"> void set_price(double); <xs:complexType> std::vector<author> get_author() const; <xs:sequence> void set_author(vector<author> const &); <xs:element name=“book” }; type=“lib:book" class catalog { maxOccurs="unbounded"> private: </xs:element> std::vector<book> book_sequence_; </xs:sequence> public: </xs:complexType> std::vector<book> get_book() const; </xs:element> void set_book(std::vector<book> const &); }; 8 / 54
  • 9.  Book catalog application program  Example: Find all author names std::vector<std::string> get_author_names (const catalog & root) { std::vector<std::string> name_seq; for (catalog::book_const_iterator bi (root.get_book().begin ()); bi != root.get_book().end (); ++bi) { for (book::author_const_iterator ai (bi->get_author().begin ()); ai != bi->get_author().end (); ++ai) { name_seq.push_back(ai->name()); } } return name_seq; }  Advantages of XML data binding  Easy to use  C++ programming style and idioms  Vocabulary-specific API  Efficient  Type safety 9 / 54
  • 10.  We lost something along the way. A lot actually!  Loss of succinctness  XML child axis replaced by nested for loops  Example: Find all author names Using XML data binding (20 lines) Using XPath (1 line) /book/author/name/text() std::vector<std::string> get_author_names (const catalog & root) { std::vector<std::string> name_seq; for (catalog::book_const_iterator bi = root.get_book().begin (); bi != root.get_book().end (); ++bi) { for (book::author_const_iterator ai = bi->get_author().begin ()); ai != bi->get_author().end (); ++ai) { name_seq.push_back(ai->name()); } } return name_seq; } 10 / 54
  • 11.  Loss of expressive power  Example: “Find all names recursively”  What if catalogs are recursive too!  Descendant axis replaced by manual recursion. Hard to maintain. Using XPath (1 line) Using XML data binding using //name/text() BOOST_FOREACH (20+ lines) std::vector<std::string> get_author_names (const catalog & c) <catalog> { <catalog> std::vector<std::string> name_seq; <catalog> BOOST_FOREACH(const book &b, c.get_book()) <catalog> { <book><name>...</name></book> BOOST_FOREACH(const author &a, b.get_author()) <book><name>...</name></book> { </catalog> name_seq.push_back(a.name()); <book>...</book> } } <book>...</book> return name_seq; </catalog> } <book> <name>...</name> std::vector<std::string> get_all_names (const catalog & root) <price>...</price> { <author> std::vector<std::string> name_seq(get_author_names(root)); <name>...</name> BOOST_FOREACH (const catalog &c, root.get_catalog()) <country>...</country> { </author> std::vector<std::string> names = get_all_names(c); name_seq.insert(names.begin(), names.end()); </book> } <book>...</book> return name_seq; <book>...</book> } </catalog> </catalog> 11 / 54
  • 12.  Loss of XML programming idioms  Cannot use “wildcard” types  Example: Without spelling “Catalog” and “Book”, find names that are exactly at the third level. Using XPath (1 line) Using XML data binding /*/*/name/text() std::vector<std::string> get_author_names (const catalog & root) { std::vector<std::string> name_seq; . . . . . . return name_seq; }  Also known as structure-shyness  Descendant axis and wildcards don’t spell out every detail of the structure  Casting Catalog to Object class isn’t good enough  object.get_book()  compiler error!  object.get_children()  Inevitable casting! 12 / 54
  • 13.  Hybrid approach: Pass XPath expression as a string Using XML data binding + XPath  No universal support  Boilerplate setup code DOMElement* root (static_cast<DOMElement*> (c._node ())); DOMDocument* doc (root->getOwnerDocument ());  DOM, XML namespaces, dom::auto_ptr<DOMXPathExpression> expr ( doc->createExpression ( xml::string ("//author").c_str (), resolver.get ())); Memory management dom::auto_ptr<DOMXPathResult> r ( expr->evaluate (  Casting is inevitable  Look and feel of two doc, DOMXPathResult::ITERATOR_RESULT_TYPE, 0)); APIs is (vastly) different while (r->iterateNext ()) { DOMNode* n (r->getNodeValue ()); author* a (  iterateNext() Vs. static_cast<author*> ( n->getUserData (dom::tree_node_key))); begin()/end() } cout << "Name : " << a->get_name () << endl;  Can’t use predicates on data outside xml  E.g. Find authors of highest selling books “/book[?condition?]/author/name” 13 / 54
  • 14.  Schema-specificity (to much object-oriented bias?)  Each class has a different interface (not generic)  Naming convention of XML data binding tools vary Catalog Book Author +get_Book() +get_Author() +get_Name() +get_Price() +get_Country() +get_name()  Lost succinctness (axis-oriented expressions)  Lost structure-shyness (descendant axis, wildcards)  Can’t use Visitor design pattern (stateful traversal) with XPath 14 / 54
  • 15. Language for Embedded QuEry and TraverSAl Multi-paradigm Design in C++ 15 / 54
  • 16. * Catalog  A book catalog xsd +get_Book() +get_Catalog() 1  Generated six C++ classes 1 *  Catalog 1 1 Book  Book Complex classes Price +get_Author()  Author +get_Price() 1 +get_Name() Name  Price Simple classes 1 1 * 1  Country Country 1 1 Author  Name +get_Name() +get_Country() 1  Price, Country, and Name <catalog> <catalog> are simple wrappers  Catalogs are recursive <catalog> <catalog>...</catalog> </catalog> <book> <name>...</name> <price>...</price> <author> <name>...</name> <country>...</country> </author> </book> </catalog> </catalog> 16 / 54
  • 17. *  Restoring succinctness Catalog +get_Book() 1  Example: Find all author names +get_Catalog() 1  Child axis traversal * Book Price 1 1 +get_Author() +get_Price() 1 +get_Name() Name 1 1 Using XPath (1 line) * 1 1 1 Author Country /book/author/name/text() +get_Name() 1 +get_Country() Using LEESA (3 lines) Catalog croot = load_catalog(“catalog.xml”); std::vector<Name> author_names = evaluate(croot, Catalog() >> Book() >> Author() >> Name()); 17 / 54
  • 18. *  Restoring expressive power Catalog +get_Book() 1  Example: Find all names recursively +get_Catalog() 1  Descendant axis traversal * Book Price 1 1 +get_Author() +get_Price() 1 +get_Name() Name 1 1 Using XPath (1 line) * 1 1 1 Author Country //name/text() +get_Name() 1 +get_Country() Using LEESA (2 lines) Catalog croot = load_catalog(“catalog.xml”); std::vector<Name> names = DescendantsOf(Catalog(), Name())(croot);  Fully statically typed execution  Efficient: LEESA “knows” where Names are! 18 / 54
  • 19.  Restoring xml programming * Catalog idioms (structure-shyness) +get_Book() +get_Catalog() 1  Example: Without spelling intermediate 1 types, find names that are exactly at * Book the third level. Price 1 1 +get_Author()  Wildcards in a typed query! +get_Price() 1 +get_Name() Name 1 1 Using XPath (1 line) * 1 1 1 Author Country /*/*/name/text() +get_Name() 1 +get_Country() Using LEESA (3 lines) namespace LEESA { struct Underbar {} _; } Catalog croot = load_catalog(“catalog.xml”); std::vector<Name> names = LevelDescendantsOf(Catalog(), _, _, Name())(croot);  Fully statically typed execution  Efficient: LEESA “knows” where Books, Authors, and Names are! 19 / 54
  • 20. *  User-defined filters Catalog  Example: Find names of authors from +get_Book() +get_Catalog() 1 Country == USA 1 *  Basically unary functors Book 1 1  Supports free functions, function Price +get_Author() objects, boost::bind, C++0x lambda +get_Price() 1 +get_Name() Name 1 1 * 1 1 1 Author Country +get_Name() 1 Using XPath (1 line) +get_Country() //author[country/text() = ‘USA’]/name/text() Using LEESA (6 lines) Catalog croot = load_catalog(“catalog.xml”); std::vector<Name> author_names = evaluate(croot, Catalog() >> DescendantsOf(Catalog(), Author()) >> Select(Author(), [](const Author &a) { return a.get_Country() == “USA"; }) >> Name()); 20 / 54
  • 21. *  Tuplefication!! Catalog  Example: Pair the name and country of +get_Book() +get_Catalog() 1 all the authors 1 *  std::vector of Book Price 1 1 boost::tuple<Name *, Country *> +get_Author() +get_Price() 1 +get_Name() Name 1 1 * 1 1 1 Author Country +get_Name() 1 Using XPath +get_Country() ??????????????????????????????? Using LEESA (5 lines) Catalog croot = load_catalog(“catalog.xml”); std::vector<boost::tuple<Name *, Country *> > tuples = evaluate(croot, Catalog() >> DescendantsOf(Catalog(), Author()) >> MembersAsTupleOf(Author(), make_tuple(Name(), Country()))); 21 / 54
  • 22. *  Using visitors MyVisitor Catalog +visit_Catalog()  Gang-of-four Visitor design pattern +visit_Book() +get_Book() 1 +visit_Author() +get_Catalog() +visit_Name()  Visit methods for all Elements +visit_Country() 1 +visit_Price() *  Example: Visit catalog, books, authors, Price 1 1 Book and names in that order +get_Author() +get_Price() 1  Stateful, statically typed traversal +get_Name() Name 1 1  fixed depth child axis * 1 1 1 Author Country +get_Name() 1 Using XPath +get_Country() ??????????????????????????????? Catalog Using LEESA (7 lines) Book1 Book2 Catalog croot = load_catalog(“catalog.xml”); MyVisitor visitor; std::vector<Country> countries = A1 A2 A3 A4 evaluate(croot, Catalog() >> visitor >> Book() >> visitor >> Author() >> visitor C1 C4 C2 C3 >> Country() >> visitor); 22 / 54
  • 23. *  Using visitors (depth-first) MyVisitor Catalog +visit_Catalog()  Gang-of-four Visitor design pattern +visit_Book() +get_Book() 1 +visit_Author() +get_Catalog() +visit_Name()  Visit methods for all Elements +visit_Country() 1 +visit_Price() *  Example: Visit catalog, books, authors, Price 1 1 Book and names in depth-first manner +get_Author() +get_Price() 1  Stateful, statically typed traversal +get_Name() Name 1  fixed depth child axis 1 * 1 1 1 Author Country +get_Name() Using XPath 1 +get_Country() ??????????????????????????????? Catalog Default precedence. Using LEESA (7 lines) No parenthesis needed. Book1 Book2 Catalog croot = load_catalog(“catalog.xml”); MyVisitor visitor; std::vector<Book> books = evaluate(croot, Catalog() >> visitor A1 A2 A3 A4 >>= Book() >> visitor >>= Author() >> visitor >>= Country() >> visitor); C1 C2 C3 C4 23 / 54
  • 24. Visited Child Axis Child Axis Parent Axis Parent Axis (breadth-first) (depth-first) (depth-first) (breadth-first) Catalog() >> Book() >> v >> Author() >> v Catalog() >>= Book() >> v >>= Author() >> v Default precedence. Name() << v << Author() << v << Book() << v No parenthesis needed. Name() << v <<= Author() << v <<= Book() << v 24 / 54
  • 25. *  Composing named queries MyVisitor Catalog +visit_Catalog()  Queries can be named, composed, and +get_Book() +get_Catalog() 1 +visit_Book() +visit_Author() passed around as executable +visit_Name() +visit_Country() 1 expressions * +visit_Price() Book  Example: Price 1 1 +get_Author() For each book +get_Price() +get_Name() 1 Name print(country of the author) 1 1 * 1 print(price of the book) Country 1 1 Author +get_Name() Using XPath 1 +get_Country() ??????????????????????????????? Using LEESA (6 lines) Catalog croot = load_catalog(“catalog.xml”); MyVisitor visitor; BOOST_AUTO(v_country, Author() >> Country() >> visitor); BOOST_AUTO(v_price, Price() >> visitor); BOOST_AUTO(members, MembersOf(Book(), v_country, v_price)); evaluate(croot, Catalog() >>= Book() >> members); 25 / 54
  • 26.  Using visitors (recursively)  Hierarchical Visitor design pattern  Visit and Leave methods for all elements  Depth awareness  Example: Visit everything!!  Stateful, statically typed traversal  Descendant axis = recursive  AroundFullTD = AroundFullTopDown Using XPath ??????????????????????????????? Using LEESA (3 lines!!) Catalog croot = load_catalog(“catalog.xml”); MyHierarchicalVisitor v; AroundFullTD(Catalog(), VisitStrategy(v), LeaveStrategy(v)))(croot); 26 / 54
  • 27.  LEESA 1. Is not an xml parsing library XML data binding tool 2. Does not validate xml files can do both 3. Does not replace/compete with XPath 4. Does not resolve X/O impedance mismatch  More reading: “Revealing X/O impedance mismatch”, Dr. R Lämmel  LEESA 1. Is a query and traversal library for C++ 2. Validates XPath-like queries at compile-time (schema conformance) 3. Is motivated by XPath 4. Goes beyond XPath 5. Simplifies typed XML programming 6. Is an embedded DSEL (Domain-specific embedded language) 7. Is applicable beyond xml (E.g., Google Protocol Buffers, model traversal, hand coded class hierarchies, etc.) 27 / 54
  • 28.  XML Programming in C++, specifically data-binding  What XML data binding stole from us!  Restoring order: LEESA  LEESA by examples  LEESA in detail  Architecture of LEESA  Type-driven data access  XML schema representation using Boost.MPL  LEESA descendant axis and strategic programming  Compile-time schema conformance checking  LEESA expression templates  Evaluation: productivity, performance, compilers  C++0x and LEESA  LEESA in future 28 / 54
  • 29.  The Process LEESA Expressions Written by Programmers Axes-oriented Recursive Traversal Traversal Expressions (Strategic Programming) Ch ec ke d es ag ai Us ns t XML i/p Schema Static Generate meta-information i/p Extended Schema Type-driven i/p Compiler Generate Data Access Layer C++ i/p Generate Executable (Code Compiler Generator) Object-oriented Generate Data Access Layer i/p C++ Code 29 / 54
  • 30. XML Schema Static Type-driven Visitor meta- Data Access Declarations information Layer C++ (.h, .cpp) Object-oriented Meta-data Schema XML ALL Data Access Doxygen XML XML XML XSLT Generator Compiler XML Layer C++ (.h) LEESA’s gen-meta.py script  Extended schema compiler = 4 step process  XML schema language (XSD) specification is huge and complex  Don’t reinvent the wheel: xml data binding tools already process it  Naming convention of xml data binding tools vary  Applicability beyond xml data binding  E.g. Google Protocol Buffers (GPB), hand written class hierarchies  Meta-data generator script inserts visitor declaration in the C++ classes 30 / 54
  • 31. To fix  Different interface of each class  Generic API “children” wrappers to navigate aggregation  Generated by the Python script  More amenable to composition std::vector<Book> children (Catalog &c, Book const *) { return c.get_Book(); } std::vector<Catalog> children (Catalog &c, Catalog const *) { return c.get_Catalog(); } std::vector<Author> children (Book &b, Author const *) { return b.get_Author(); } Price children (Book &b, Price const *) { return b.get_Price(); } Name children (Book &b, Name const *) { return b.get_Name(); } Country children (Author &a, Country const *) { return a.get_Country(); } Name children (Author &a, Name const *) { return a.get_Name(); } 31 / 54
  • 32.  Ambiguity!  Simple elements and attributes are mapped to built-in types  “children” function overloads become ambiguous <xs:complexType name=“Author”> <xs:sequence> <xs:element name=“first_name" type="xs:string" /> Mapping <xs:element name=“last_name“ type="xs:string" /> </xs:sequence> </xs:complexType> gen-meta.py std::string children (Author &a, std::string const *) { return a.get_first_name(); } std::string children (Author &a, std::string const *) { return a.get_last_name(); } 32 / 54
  • 33.  Solution 1: Automatic schema transformation  Force data binding tools to generate unique C++ types  gen-meta.py can transforms input xsd while preserving semantics <xs:complexType name=“Author”> <xs:sequence> <xs:element name=“first_name" type="xs:string" /> Mapping <xs:element name=“last_name“ type="xs:string" /> </xs:sequence> </xs:complexType> Transformation (gen-meta.py) <xs:complexType name=“Author”> <xs:sequence> <xsd:element name=“first_name"> Mapping <xsd:simpleType> <xsd:restriction base="xsd:string" /> </xsd:simpleType> </xsd:element> <xsd:element name=“last_name"> <xsd:simpleType> <xsd:restriction base="xsd:string" /> </xsd:simpleType> </xsd:element> </xs:sequence> </xs:complexType> 33 / 54
  • 34.  Solution 1 limitations: Too many types! Longer compilation times.  Solution 2: Generate placeholder types  Create unique type aliases using a template and integer literals  Not implemented! <xs:complexType name=“Author”> <xs:sequence> <xs:element name=“first_name" type="xs:string" /> <xs:element name=“last_name“ type="xs:string" /> </xs:sequence> </xs:complexType> Code generation (gen-meta.py) namespace LEESA { template <class T, unsigned int I> struct unique_type { typedef T nested; }; } namespace Library { typedef LEESA::unique_type<std::string, 1> first_name; typedef LEESA::unique_type<std::string, 2> last_name; } 34 / 54
  • 35.  A key idea in LEESA  Externalize structural meta-information using Boost.MPL  LEESA’s meta-programs traverse the meta-information at compile-time template <class Kind> * struct SchemaTraits { Catalog typedef mpl::vector<> Children; // Empty sequence }; +get_Book() 1 +get_Catalog() template <> 1 struct SchemaTraits <Catalog> * { Book typedef mpl::vector<Book, Catalog> Children; Price 1 1 }; +get_Author() template <> +get_Price() 1 +get_Name() Name struct SchemaTraits <Book> 1 { 1 typedef mpl::vector<Name, Price, Author> Children; * 1 }; Country 1 1 Author template <> struct SchemaTraits <Author> +get_Name() { 1 +get_Country() typedef mpl::vector<Name, Country> Children; }; 35 / 54
  • 36.  A key idea in LEESA  Externalize structural meta-information using Boost.MPL  Descendant meta-information is a transitive closure of Children template <class Kind> struct SchemaTraits { typedef mpl::vector<> Children; // Empty sequence * }; template <> struct SchemaTraits <Catalog> { Catalog typedef mpl::vector<Book, Catalog> Children; }; +get_Book() +get_Catalog() 1 template <> struct SchemaTraits <Book> { typedef mpl::vector<Name, Price, Author> Children; 1 }; * template <> struct SchemaTraits <Author> { Book typedef mpl::vector<Name, Country> Children; Price 1 1 }; +get_Author() typedef boost::mpl::true_ True; +get_Price() 1 +get_Name() Name typedef boost::mpl::false_ False; 1 template<class A, class D> struct IsDescendant : False {}; 1 template<> struct IsDescendant<Catalog, Catalog> : True {}; * 1 template<> struct IsDescendant<Catalog, Book> : True {}; 1 1 Author template<> struct IsDescendant<Catalog, Name> : True {}; Country template<> struct IsDescendant<Catalog, Price> : True {}; +get_Name() template<> struct IsDescendant<Catalog, Author> : True {}; 1 +get_Country() template<> struct IsDescendant<Catalog, Country> : True {}; template<> struct IsDescendant<Book, Name> : True {}; template<> struct IsDescendant<Book, Price> : True {}; template<> struct IsDescendant<Book, Author> : True {}; template<> struct IsDescendant<Book, Country> : True {}; template<> struct IsDescendant<Author, Name> : True {}; template<> struct IsDescendant<Author, Country> : True {}; 36 / 54
  • 37. std::vector<Country> countries = DescendantsOf(Catalog(), Country())(croot);  Algorithm (conceptual) 1. IsDescendant<Catalog, Country>::value Catalog 2. Find all children types of Catalog SchemaTraits<Catalog>::Children = boost::mpl::vector<Book, Catalog> 3. Iterate over Boost.MPL vector Book Catalog 4. IsDescendant<Book, Country>::value 5. Use type-driven data access on each Catalog std::vector<Book>=children(Catalog&, Book*) Name Author Price For Catalogs repeat step (1) 6. Find all children types of Book SchemaTraits<Book>::Children = boost::mpl::vector<Name, Author, Price> Country Name 7. Iterate over Boost.MPL vector 8. IsDescendant<Name, Country>::value 9. IsDescendant<Price, Country>::value 10. IsDescendant<Author, Country>::value 11. Use type drive data access on each Book std::vector<Author>=children(Book&, Author*) 12. Find all children types of Author SchemaTraits<Author>::Children = boost::mpl::vector<Country, Name> 13. Repeat until Country objects are found 37 / 54
  • 38.  Strategic Programming Paradigm  A systematic way of creating recursive tree traversal  Developed in 1998 as a term rewriting language: Stratego  Why LEESA uses strategic programming  Generic  LEESA can be designed without knowing the types in a xml tree  Recursive  LEESA can handles mutually and/or self recursive types  Reusable  LEESA can be reused as a library for any xsd  Composable  LEESA can be extended by its users using policy-based templates  Basic combinators  Identity, Fail, Sequence, Choice, All, and One 38 / 54
  • 39. fullTD(node) fullTD(node) All(node, strategy) { { { visit(node); visit(node); forall children c of node forall children c of node All(node, fullTD); strategy(c); fullTD(c); } } } Pre-order traversal pseudo-code (fullTopDown) fullTD(node) { Recursive seq(node, visit, All(fullTD)); traversal (1 out of many) } seq(node,strategy1,strategy2) { strategy1(node); strategy2(node); } Basic All(node, strategy) Combinators { (2 out of 6) forall children c of node strategy(c); } 39 / 54
  • 40. template <class Strategy1, template <class Strategy> class Strategy2> class All Boost.MPL class Seq { Meta-information { template <class Data> template <class Data> void operator()(Data d) void operator()(Data d) { { foreach T in SchemaTraits<Data>::Children Strategy1(d); std::vector<T> t = children(d, (T *)0); Strategy2(d); Strategy(t); } } Type-driven }; }; Data Access Sequence + All = FullTD template <class Strategy> class FullTD { template <class data> void operator()(Data d) { Seq<Strategy,All<FullTD>>(d); } }; Note: Objects and constructors omitted for brevity 40 / 54
  • 41. * BOOST_AUTO(prices, DescendantsOf(Catalog(), Price())); Catalog  LEESA uses FullTopDown<Accumulator<Price>> +get_Book() 1  But schema unaware recursion in every sub-structure +get_Catalog() is inefficient 1 *  We know that Authors do not contain Prices Book Price 1 1 +get_Author() LEESA’s +get_Price() +get_Name() FullTD may be schema-aware 1 inefficient traversal is optimal * 1 1 Author Country +get_Name() +get_Country() IsDescendant <Catalog,Price> = True IsDescendant <Author,Price> = False Bypass unnecessary sub-structures (Author) using meta-programming 41 / 54
  • 42.  LEESA has compile-time schema conformance checking  LEESA queries compile only if they agree with the schema  Uses externalized schema and meta-programming  Error message using BOOST_MPL_ASSERT  Tries to reduce long and incomprehensible error messages  Shows assertion failures in terms of concepts  ParentChildConcept, DescendantKindConcept, etc.  Originally developed for C++0x concepts  Examples DescendantKindConcept Failure ParentChildConcept Failure 1. BOOST_AUTO(prices, DescendantsOf(Author(), Price()); 2. BOOST_AUTO(books, Catalog() >> Book() >> Book()); 3. BOOST_AUTO(countries, LevelDescendantsOf(Catalog(),_,Country()); LevelDescendantKindConcept Failure 42 / 54
  • 43.  Country is at least 2 “steps” away from a Catalog LevelDescendantsOf(Catalog(),_,Country()); 1>------ Build started: Project: library, Configuration: Release Win32 ------ 1> driver.cxx 1> using native typeof 1>C:mySVNLEESAincludeLEESA/SP_Accumulation.cpp(112): error C2664: 'boost::mpl::assertion_failed' : cannot convert parameter 1 from 'boost::mpl::failed ************LEESA::LevelDescendantKindConcept<ParentKind,DescendantKind,SkipCount,Custom>::* ***********' to 'boost::mpl::assert<false>::type' 1> with 1> [ 1> ParentKind=library::Catalog, 1> DescendantKind=library::Country, 1> SkipCount=1, 1> Custom=LEESA::Default 1> ] 1> No constructor could take the source type, or constructor overload resolution was ambiguous 1> driver.cxx(155) : see reference to class template instantiation 'LEESA::LevelDescendantsOp<Ancestor,Descendant,SkipCount,Custom>' being compiled 1> with 1> [ 1> Ancestor=LEESA::Carrier<library::Catalog>, 1> Descendant=LEESA::Carrier<library::Country>, 1> SkipCount=1, 1> Custom=LEESA::Default 1> ] 1>C:mySVNLEESAincludeLEESA/SP_Accumulation.cpp(112): error C2866: 'LEESA::LevelDescendantsOp<Ancestor,Descendant,SkipCount,Custom>::mpl_assertion_in_line_130' : a const static data member of a managed type must be initialized at the point of declaration 1> with 1> [ 1> Ancestor=LEESA::Carrier<library::Catalog>, 1> Descendant=LEESA::Carrier<library::Country>, 1> SkipCount=1, 1> Custom=LEESA::Default 1> ] 1> Generating Code... ========== Build: 0 succeeded, 1 failed, 0 up-to-date, 0 skipped ========== 43 / 54
  • 44.  (Nearly) all LEESA queries are expression templates  Hand rolled. Not using Boost.Proto Catalog() >> Book() >> Author() >> Name() 3 ChainExpr n io LResultType ut ec Ex 2 ChainExpr GetChildren<Author, Name> of er LResultType rd O 1 ChainExpr GetChildren<Book, Author> LResultType Catalog GetChildren<Catalog, Book> template <class L, class H> ChainExpr<L, GetChildren<typename ExpressionTraits<L>::result_type, H> > operator >> (L l, H h) { typedef typename ExpressionTraits<L>::result_type LResultType; typedef GetChildren<LResultType, H> GC; return ChainExpr<L, GC>(l, h); } 44 / 54
  • 45.  (Nearly) all LEESA queries are expression templates  Hand rolled. Not using Boost.Proto  Every LEESA expression becomes a unary function object  LEESA query  Systematically composed unary function objects Catalog() >>= Book() >> Author() >> Name() ChainExpr 1 2 Catalog DepthFirstGetChildren<Catalog, Book> Catalog 2b ChainExpr 2a ChainExpr GetChildren<Author, Name> Book GetChildren<Book, Author> 45 / 54
  • 46.  XML Programming in C++, specifically data-binding  What XML data binding stole from us!  Restoring order: LEESA  LEESA by examples  LEESA in detail  Architecture of LEESA  Type-driven data access  XML schema representation using Boost.MPL  LEESA descendant axis and strategic programming  Compile-time schema conformance checking  LEESA expression templates  Evaluation: productivity, performance, compilers  C++0x and LEESA  LEESA in future 46 / 54
  • 47.  Reduction in boilerplate traversal code  Results from the 2009 paper in the Working Conference on Domain-Specific Languages, Oxford, UK 87% reduction in traversal code 47 / 54
  • 48.  CodeSynthesis xsd data binding tool on the catalog xsd  Abstraction penalty from construction, copying, and destruction of internal containers (std::vector<T> and LEESA::Carrier<T>)  GNU Profiler: Highest time spent in std::vector<T>::insert and iterator dereference functions (data binding) 33 seconds for parsing, validating, and object model construction 48 / 54
  • 49. Compilation time affects programmer productivity  Experiment  An XML schema containing 300 types (4 recursive)  gcc 4.5 (with and without variadic templates) (data binding) 49 / 54
  • 50. Experiment: Total time to build an executable from an xsd on 4 compilers  XML schema containing 300 types (4 recursive)  5 LEESA expressions (all using descendant axis)  Tested on Intel Core 2 Duo 2.67 GHz, 4 GB laptop 79 44 18 15 54 126 112 101 60 95 95 95 95 50 / 54
  • 51.  Readability improvements  Lambdas!  LEESA actions (e.g., Select, Sort) can use C++0x lambdas  static_assert for improved error reporting  auto for naming LEESA expressions  Performance improvements (run-time)  Rvalue references and move semantics  Optimize away internal copies of large containers  Performance improvements (Compile-time)  Variadic templates  Faster schema conformance checking  No need to use BOOST_MPL_LIMIT_VECTOR_SIZE and Boost.Preprocessor tricks  Simplifying LEESA’s implementation  Trailing return-type syntax and decltype  Right angle bracket syntax 51 / 54
  • 52.  Become a part of the Boost libraries!?  Extend LEESA to support  Google Protocol Buffers (GPB)  Apache Thrift  Or any “schema-first” data binding in C++  Better support from data binding tools?  Parallelization on multiple cores  Parallelize query execution on multiple cores behind LEESA’s high-level declarative programming API  Co-routine style programming model  LEESA expressions return containers  Expression to container  expensive!  Expression to iterator  cheap!  Compute result only when needed (lazy)  XML literal construction  Checked against schema at compile-time 52 / 54
  • 53. LEESA  Native XML Processing Using Multi-paradigm Design in C++ XML Programming Concerns Representation Traversal Static Schema and access to (up, down, conformance richly-typed sideways) checking hierarchical data Statically Structure-shy fixed depth Breadth-first Depth-first Object-oriented Generative Programming Programming Metaprogramming Generic Strategic programming Programming C++ Multi-paradigm Solution 53 / 54