SlideShare a Scribd company logo
Evaluation of Mathematical Models
for X-ray Spectrum Generation suitable for Industrial
             Radiography Applications




               Nityanand Gopalika, A. V. K Satish, V. Manoharan

                      Industrial Imaging and Modeling Lab
                              Imaging Technologies
                        John F. Welch Technology Centre
                                   Bangalore
Presentation Outline

 Different X-Ray generation models
 Validation approach:
       Variation of Photon Fluence / mR with Average
         Energy
       Relationship between Average Energy and kVp for
         different filters
       Half Value Layer (HVL) for different cases
       Dose validation with experiment
 Summary
Birch and Marshall model
Intensity produced in a solid target
 Governing Relationships dT
                Nρ
                       T                 −1
                               
                           v

         Iv =
                  A      ∫  dx 
                         T0
                            Q
                                
                                              dT   Physics
                                                       • Theoretical model
Effect of target absorption                            • Target absorption taken care
        T = (T02 − Cxρ ) 0.5                                   (improvement over Kramer's theory)

Substituting the above gives
                                                   −1
               Nρ
                    Tv
                           T0           dT                 µv
        Iv   =      ∫ 1 + m0C 2
                                      Q
                                         dx          exp(      (T 2 − T02 ) cot θ ) dT
                A   T0                                      Cρ

Characteristic Intensity
        I ch = K (U 0 − 1)1.63

                                      Drawbacks
                       Applicable only from 30-150 kV.
                       Small target angles greater error.
                       Back Scatter not considered.

                               Suited for medical applications
Ellery Storm Model
Thick target energy loss as an integral of thin target energy loss:
                     E0
                                dE               dE = Energy loss in thin strip of target
        I E0 ,K = ∫ I E0 ,k ,E          
                 E >k           −dE /dx          E = Initial electron energy at photon emission
Correction for electron backscatter losses, photon attenuation and target angle
                E0
                                dE 
    I E0 ,k =    ∫k
                E>
                    I E0 ,k ,E          (1−ηε E 0 ,k )*exp( −µ k x/ tanα )
                                −dE /dx 
Emission per unit solid angle in the photon energy
                                                   −3 k
                      11 ( E0 −k )(1−e          )  Ek                               1.0
    I E0 ,k ≅(           Z                        ) f E0 ,k ,α
                      4π              1      E0
                           ( k / E0 ) 3 (1−e Ek )
                                                                                          40 kV

                                                                                          60 kV
Photon Attenuation Correction Factor                                           C E0 , k

     f E0 ,k ,α ≅ exp(−0.2C E0 ,k ℜ E0 µ k / tan α )
                                                                                          100 kV
                                                                                    0.5

                                                                                          200kV
                                     E0  Initial Electron Energy
                                     Ek  K Edge Energy                                   300 kV

                                     K  Photon Energy                              0.0
                                                                                            10         20            40
                                     Z  Atomic Weight                                           Photon Energy (keV)


                                   Best suited for industrial applications
Photon Fluence /mR & Average Energy
                              Photon Fluence per Roentgen
Photon Fluence




                 4.E+10
                 3.E+10
     / mR




                 2.E+10
                 1.E+10
                                                                                              Photon Fluence /mR =
                                                                                                                            ∫Θ( E )*E*dE
                 0.E+00                                                                                                ∫Θ( E )*(µ ( E )/ ρ )*E*dE
                          0   50   100   150   200   250    300   350

                                    Average Energy

                                                                                                           Average energy

                                                                                         70
                                                                                         60


                                                                    Average energy kev
                                                                                                                                       no filter


                          Average Energy =
                                           ∫Θ( E )*dE                                    50
                                                                                         40
                                                                                                                                       1 mm aluminium
                                                                                                                                       2 mm aluminium

                                             ∫dE                                         30
                                                                                         20
                                                                                                                                       3 mm aluminium
                                                                                                                                       4 mm aluminium
                                                                                         10                                            5 mm aluminum
                                                                                         0
                                                                                              0       50         100          150
                                                                                                           kVP




                                         Literature data available below 150 kVp
Model Performance Verification
                                                 Average Energy Vs. kvp (Simulation)                                                                                Photon Fluence per roentgen Vs.
                                                                                                                                                                      Average Energy (Simulation)
                                  140
                                  120                                                                                                                    3.00E+05
                 Average Energy




                                                                                                     Thick = 1mm




                                                                                                                                   Photon Fluence / mR
                                  100                                                                Thick = 2mm                                         2.50E+05
                                                                                                                                                                                                                     Thick = 1mm
                                   80                                                                Thick = 3mm                                         2.00E+05                                                    Thick = 2mm
                                   60                                                                Thick = 4mm                                         1.50E+05                                                    Thick = 3mm
                                   40                                                                Thick = 5mm                                         1.00E+05                                                    Thick = 4mm
                                   20                                                                                                                                                                                Thick = 5mm
                                                                                                                                                         5.00E+04
                                    0                                                                                                                    0.00E+00
                                        0          100            200           300          400       500                                                          0     20   40    60    80   100 120 140
                                                                        kvp                                                                                                    Average Energy


                                                          Average Energy Vs. kvp                                                                                        Photon Fluence / mR Vs. Average Energy
                                                          (Simulation & Liturature)                                                                                            (Simulation & Literature)
                      140                                                                                                                          3.E+05




                                                                                                                      Photon Fluence / mR
                      120                                                                                                                          3.E+05
Average Energy




                      100                                                                                                                          2.E+05
                       80                                                             Thick = 5mm, Simulation                                      2.E+05
                       60
                                                                                      Thick = 5mm, Literature                                      1.E+05                                       Thick = 5mm, Simulation
                       40                                                                                                                                                                       Thick = 5mm, Experimental
                                                                                                                                                   5.E+04
                       20
                        0                                                                                                                          0.E+00
                                                                                                                                                             0           20     40        60      80       100       120    140
                                   0        50      100     150     200         250    300     350     400      450
                                                                          kvp                                                                                                         Average Energy




                                                                          High accuracy in the range of 30 – 150 kVp
HVL Study: Comparison with NIST Data
        Tube                                                                         HVL      Dose     Dose
      Potential Inherent                                                            (mm) -   Before    After
Cases (KvP)       Filter                     Added Filter                    Object NIST     Object   Object   % Error
  1      100    1 mm Be                   % Difference in HVL
                                            1.98 mm Al                         Al    2.77    12.668    6.744   -6.475
  2      100    3 mm Be                         5 mm Al                        Al    5.02     6.080    3.043   -0.106
  3      100
              8 3 mm Be                    4 mm Al + 5.2 mm Cu                 Al    13.5     0.025    0.012   2.393
  4      100 6 3 mm Be                     4 mm Al + 5.2 mm Cu                Cu     1.14     0.025    0.012   3.496
  5      120    3 mm Be                        6.87 mm Al                      Al    6.79     6.887    3.440   0.100
  6      150 4 3 mm Be                    5 mm Al + 0.25 mm Cu                 Al    10.2     8.405    4.177   0.610
         % Difference




  7      150    3 mm Be                   5 mm Al + 0.25 mm Cu                Cu     0.67     8.405    4.125   1.851
  8      150  2 3 mm Be             4 mm Al + 4 mm Cu + 1.51 mm Sn             Al     17      0.187    0.092   2.147
  9      150    3 mm Be             4 mm Al + 4 mm Cu + 1.51 mm Sn            Cu      2.5     0.187    0.087   7.005
 10      200  0 3 mm Be                  4.1 mm Al + 1.12 mm Cu                Al    14.9     9.782    4.831   1.217
 11      200    3 mm Be                  4.1 mm Al + 1.12 mm Cu               Cu     1.69     9.782    4.785   2.169
 12      200
             -2 3 mm Be      4 mm Al + 0.6 mm Cu + 4.16 mm Sn + 0.77 mm Pb     Al    19.8     0.141    0.070   1.665
 13      200 -4 3 mm Be      4 mm Al + 0.6 mm Cu + 4.16 mm Sn + 0.77 mm Pb    Cu      4.1     0.141    0.068   4.188
 14      250    3 mm Be                    5 mm Al + 3.2 mm Cu                 Al    18.5     9.624    4.740   1.504
 15      250 -6 3 mm Be                    5 mm Al + 3.2 mm Cu                Cu      3.2     9.624    4.695   2.425
 16      250    3 mm Be      4 mm Al + 0.6 mm Cu + 1.04 mm Sn + 2.72 mm Pb     Al     22      0.206    0.101   2.119
 17      250 -8 3 mm Be      4 mm Al + 0.6 mm Cu + 1.04 mm Sn + 2.72 mm Pb    Cu      5.2     0.206    0.102   0.613
 18      300    3 mm Be
                75                125 4 mm Al + 6.5 mm Sn
                                                    175            225         Al
                                                                                   27522      4.395    2.169
                                                                                                      325      1.280
 19      300    3 mm Be                    4 mm Al + 6.5 mm Sn                Cu      5.3     4.395    2.201   -0.149
 20      300    3 mm Be
                                                           kVp
                                     4.1 mm Al + 3 mm Sn + 5 mm Pb             Al     23      0.164    0.083   -0.839
 21      300    3 mm Be              4.1 mm Al + 3 mm Sn + 5 mm Pb            Cu      6.2     0.164    0.086   -4.415


      % Difference in HVL between NIST and simulation is within +/- 8%
Experimental Dose Measurement
Experimental Conditions:                                                               Simulation Conditions:
   X-Ray Tube:                                                                            Target Voltage : 20 < kV < 420 kVp
                                                                                          Current : 1 mA
                          1.    KM16010E-A MicroFocus                                     Target Material – W
                         2. Seifert ISOVOLT 420/10
                                                          Dose = 1.828*10-11∑φ(E).(µ(E)/ρ) air.E.dE
                     Dosimeter: Keithley 35050A Dosimeter

                          % Difference in Dose : Kevex, SDD = 1m                                                  % Difference in Dose: Seifert, SDD = 1m
                               (Experimental and Simulated)                                                            (Experimental and Simulated)
                6                                                                                     8
                                                                                                                                                      0.4 mm Cu Filter
                4                                                                                     6
                                                                                                                                                      9 mm Al Filter
                                                                                                      4




                                                                                       % Difference
                2
 % Difference




                                                                                                      2
                0
                                                                                                      0
                -2
                                                                                                      -2
                -4                                              0.4 mm Cu Filter                      -4
                -6                                              9 mm Al Filter                        -6
                -8                                                                                    -8
                     30   50      70       90      110        130     150        170                       30        130           230               330               430
                                                                                                                            Tube Potential (kvp)
                                       Tube Potential (kvp)



                           KM16010E-A MicroFocus                                                                Seifert ISOVOLT 420/10
                      Less than 7% difference is observed between simulation and experiments
Summary



 Ellery Storm Model best suited for X-ray Spectrum Generation
 Model performance metrics:
       Accuracy for Photon Fluence / mR > 95%
       Error in Average Energy < 5%
       Deviation in HVL < 8%
       Simulated Dose is in good agreement with Experiments
Nityanand gopalika   spectrum validation - nde 2003
Nityanand gopalika   spectrum validation - nde 2003

More Related Content

PDF
Solar Cells Lecture 5: Organic Photovoltaics
PDF
Solar Cells Lecture 4: What is Different about Thin-Film Solar Cells?
PDF
Solar Cells Lecture 2: Physics of Crystalline Solar Cells
PDF
Solar Cells Lecture 1: Introduction to Photovoltaics
PDF
Spectroscopic ellipsometry
PDF
Recent advances of MEIS for near surface analysis
PDF
Global Modeling of High-Frequency Devices
PDF
Cu stp 02_solar_resource
Solar Cells Lecture 5: Organic Photovoltaics
Solar Cells Lecture 4: What is Different about Thin-Film Solar Cells?
Solar Cells Lecture 2: Physics of Crystalline Solar Cells
Solar Cells Lecture 1: Introduction to Photovoltaics
Spectroscopic ellipsometry
Recent advances of MEIS for near surface analysis
Global Modeling of High-Frequency Devices
Cu stp 02_solar_resource

What's hot (18)

PDF
A Mechanism Of Electron Pairing Relating To Supperconductivity
PDF
Energy Harvesting Conference Boston Nov. 2011
PPT
Electromagnetic Wave
PDF
Mit6 007 s11_lec20
PDF
R05010501 B A S I C E L E C T R I C A L E N G I N E E R I N G
PDF
Math Project
PPT
Phy electro
PDF
Presentación de productos SEOUL
PPT
Electromagnetics
PDF
Design, Simulation and Verification of Generalized Photovoltaic cells Model U...
PDF
Colorimetry: LED Fundamentals
PDF
Chapter 7
PDF
Ao24271274
DOCX
ENGINEERING PHYSICS -SEMICONDUCTING MATERIALS PROBLEMS KEYS
PDF
External Thermal Resistance - Substrates: LED Fundamentals
PDF
Plastica flessibile
A Mechanism Of Electron Pairing Relating To Supperconductivity
Energy Harvesting Conference Boston Nov. 2011
Electromagnetic Wave
Mit6 007 s11_lec20
R05010501 B A S I C E L E C T R I C A L E N G I N E E R I N G
Math Project
Phy electro
Presentación de productos SEOUL
Electromagnetics
Design, Simulation and Verification of Generalized Photovoltaic cells Model U...
Colorimetry: LED Fundamentals
Chapter 7
Ao24271274
ENGINEERING PHYSICS -SEMICONDUCTING MATERIALS PROBLEMS KEYS
External Thermal Resistance - Substrates: LED Fundamentals
Plastica flessibile
Ad

Similar to Nityanand gopalika spectrum validation - nde 2003 (20)

PDF
Semi-empirical Monte Carlo optical-gain modelling of Nuclear Imaging scintill...
PDF
Ennaoui cours rabat part ii
PDF
Simulation of Magnetically Confined Plasma for Etch Applications
PDF
propagacion vacio - espacio
PDF
Study of the impact of dielectric constant perturbation on electromagnetic
DOC
Nature of light a
PDF
Workshop problems solving
PDF
R-matrix calculations for electron impact excitation and modelling applicatio...
PDF
Laser tutorial 3 december 11, 2012
PPT
non linear optics
PPT
Basic i
PDF
Physics xii
PPT
Science Cafe Discovers a New Form of Alternative Energy
PDF
Master thesispresentation
PDF
Types of radioactive decay
PDF
Solucionario circuitos eléctricos - dorf, svoboda - 6ed
PDF
propagacion de onda medio dielectrico puro
PDF
Solution manual for introduction to electric circuits
PDF
Dorf svoboda-circuitos-elc3a9ctricos-6ta-edicion
PDF
[E book] introduction to electric circuits 6th ed [r. c. dorf and j. a. svoboda]
Semi-empirical Monte Carlo optical-gain modelling of Nuclear Imaging scintill...
Ennaoui cours rabat part ii
Simulation of Magnetically Confined Plasma for Etch Applications
propagacion vacio - espacio
Study of the impact of dielectric constant perturbation on electromagnetic
Nature of light a
Workshop problems solving
R-matrix calculations for electron impact excitation and modelling applicatio...
Laser tutorial 3 december 11, 2012
non linear optics
Basic i
Physics xii
Science Cafe Discovers a New Form of Alternative Energy
Master thesispresentation
Types of radioactive decay
Solucionario circuitos eléctricos - dorf, svoboda - 6ed
propagacion de onda medio dielectrico puro
Solution manual for introduction to electric circuits
Dorf svoboda-circuitos-elc3a9ctricos-6ta-edicion
[E book] introduction to electric circuits 6th ed [r. c. dorf and j. a. svoboda]
Ad

More from Nityanand Gopalika (9)

PDF
Nityanand gopalika digital radiography performance study
PDF
Nityanand gopalika digital detectors for industrial applications
PDF
Patents by nityanand gopalika
PDF
Nityanand gopalika Patent3
PDF
Nityanand gopalika Patent2
PDF
Nityanand gopalika Patent1
PDF
Nityanand gopalika
PDF
Nityanand gopalika
PDF
Nityanand gopalika
Nityanand gopalika digital radiography performance study
Nityanand gopalika digital detectors for industrial applications
Patents by nityanand gopalika
Nityanand gopalika Patent3
Nityanand gopalika Patent2
Nityanand gopalika Patent1
Nityanand gopalika
Nityanand gopalika
Nityanand gopalika

Recently uploaded (20)

PPTX
TLE Review Electricity (Electricity).pptx
PDF
Reach Out and Touch Someone: Haptics and Empathic Computing
PDF
Getting Started with Data Integration: FME Form 101
PDF
gpt5_lecture_notes_comprehensive_20250812015547.pdf
PPT
Teaching material agriculture food technology
PDF
Per capita expenditure prediction using model stacking based on satellite ima...
PDF
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
PDF
Mobile App Security Testing_ A Comprehensive Guide.pdf
PDF
NewMind AI Weekly Chronicles - August'25-Week II
PDF
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
PPTX
Digital-Transformation-Roadmap-for-Companies.pptx
PDF
A comparative analysis of optical character recognition models for extracting...
PDF
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
PDF
Heart disease approach using modified random forest and particle swarm optimi...
PPTX
Group 1 Presentation -Planning and Decision Making .pptx
PPTX
Spectroscopy.pptx food analysis technology
PDF
Diabetes mellitus diagnosis method based random forest with bat algorithm
PDF
Spectral efficient network and resource selection model in 5G networks
PPTX
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
PPTX
cloud_computing_Infrastucture_as_cloud_p
TLE Review Electricity (Electricity).pptx
Reach Out and Touch Someone: Haptics and Empathic Computing
Getting Started with Data Integration: FME Form 101
gpt5_lecture_notes_comprehensive_20250812015547.pdf
Teaching material agriculture food technology
Per capita expenditure prediction using model stacking based on satellite ima...
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
Mobile App Security Testing_ A Comprehensive Guide.pdf
NewMind AI Weekly Chronicles - August'25-Week II
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
Digital-Transformation-Roadmap-for-Companies.pptx
A comparative analysis of optical character recognition models for extracting...
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
Heart disease approach using modified random forest and particle swarm optimi...
Group 1 Presentation -Planning and Decision Making .pptx
Spectroscopy.pptx food analysis technology
Diabetes mellitus diagnosis method based random forest with bat algorithm
Spectral efficient network and resource selection model in 5G networks
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
cloud_computing_Infrastucture_as_cloud_p

Nityanand gopalika spectrum validation - nde 2003

  • 1. Evaluation of Mathematical Models for X-ray Spectrum Generation suitable for Industrial Radiography Applications Nityanand Gopalika, A. V. K Satish, V. Manoharan Industrial Imaging and Modeling Lab Imaging Technologies John F. Welch Technology Centre Bangalore
  • 2. Presentation Outline  Different X-Ray generation models  Validation approach:  Variation of Photon Fluence / mR with Average Energy  Relationship between Average Energy and kVp for different filters  Half Value Layer (HVL) for different cases  Dose validation with experiment  Summary
  • 3. Birch and Marshall model Intensity produced in a solid target Governing Relationships dT Nρ T −1   v Iv = A ∫  dx  T0 Q  dT Physics • Theoretical model Effect of target absorption • Target absorption taken care T = (T02 − Cxρ ) 0.5 (improvement over Kramer's theory) Substituting the above gives −1 Nρ Tv  T0   dT  µv Iv = ∫ 1 + m0C 2  Q   dx  exp( (T 2 − T02 ) cot θ ) dT A T0    Cρ Characteristic Intensity I ch = K (U 0 − 1)1.63 Drawbacks  Applicable only from 30-150 kV.  Small target angles greater error.  Back Scatter not considered. Suited for medical applications
  • 4. Ellery Storm Model Thick target energy loss as an integral of thin target energy loss: E0  dE  dE = Energy loss in thin strip of target I E0 ,K = ∫ I E0 ,k ,E   E >k  −dE /dx  E = Initial electron energy at photon emission Correction for electron backscatter losses, photon attenuation and target angle E0  dE  I E0 ,k = ∫k E> I E0 ,k ,E  (1−ηε E 0 ,k )*exp( −µ k x/ tanα )  −dE /dx  Emission per unit solid angle in the photon energy −3 k 11 ( E0 −k )(1−e ) Ek 1.0 I E0 ,k ≅( Z ) f E0 ,k ,α 4π 1 E0 ( k / E0 ) 3 (1−e Ek ) 40 kV 60 kV Photon Attenuation Correction Factor C E0 , k f E0 ,k ,α ≅ exp(−0.2C E0 ,k ℜ E0 µ k / tan α ) 100 kV 0.5 200kV E0  Initial Electron Energy Ek  K Edge Energy 300 kV K  Photon Energy 0.0 10 20 40 Z  Atomic Weight Photon Energy (keV) Best suited for industrial applications
  • 5. Photon Fluence /mR & Average Energy Photon Fluence per Roentgen Photon Fluence 4.E+10 3.E+10 / mR 2.E+10 1.E+10 Photon Fluence /mR = ∫Θ( E )*E*dE 0.E+00 ∫Θ( E )*(µ ( E )/ ρ )*E*dE 0 50 100 150 200 250 300 350 Average Energy Average energy 70 60 Average energy kev no filter Average Energy = ∫Θ( E )*dE 50 40 1 mm aluminium 2 mm aluminium ∫dE 30 20 3 mm aluminium 4 mm aluminium 10 5 mm aluminum 0 0 50 100 150 kVP Literature data available below 150 kVp
  • 6. Model Performance Verification Average Energy Vs. kvp (Simulation) Photon Fluence per roentgen Vs. Average Energy (Simulation) 140 120 3.00E+05 Average Energy Thick = 1mm Photon Fluence / mR 100 Thick = 2mm 2.50E+05 Thick = 1mm 80 Thick = 3mm 2.00E+05 Thick = 2mm 60 Thick = 4mm 1.50E+05 Thick = 3mm 40 Thick = 5mm 1.00E+05 Thick = 4mm 20 Thick = 5mm 5.00E+04 0 0.00E+00 0 100 200 300 400 500 0 20 40 60 80 100 120 140 kvp Average Energy Average Energy Vs. kvp Photon Fluence / mR Vs. Average Energy (Simulation & Liturature) (Simulation & Literature) 140 3.E+05 Photon Fluence / mR 120 3.E+05 Average Energy 100 2.E+05 80 Thick = 5mm, Simulation 2.E+05 60 Thick = 5mm, Literature 1.E+05 Thick = 5mm, Simulation 40 Thick = 5mm, Experimental 5.E+04 20 0 0.E+00 0 20 40 60 80 100 120 140 0 50 100 150 200 250 300 350 400 450 kvp Average Energy High accuracy in the range of 30 – 150 kVp
  • 7. HVL Study: Comparison with NIST Data Tube HVL Dose Dose Potential Inherent (mm) - Before After Cases (KvP) Filter Added Filter Object NIST Object Object % Error 1 100 1 mm Be % Difference in HVL 1.98 mm Al Al 2.77 12.668 6.744 -6.475 2 100 3 mm Be 5 mm Al Al 5.02 6.080 3.043 -0.106 3 100 8 3 mm Be 4 mm Al + 5.2 mm Cu Al 13.5 0.025 0.012 2.393 4 100 6 3 mm Be 4 mm Al + 5.2 mm Cu Cu 1.14 0.025 0.012 3.496 5 120 3 mm Be 6.87 mm Al Al 6.79 6.887 3.440 0.100 6 150 4 3 mm Be 5 mm Al + 0.25 mm Cu Al 10.2 8.405 4.177 0.610 % Difference 7 150 3 mm Be 5 mm Al + 0.25 mm Cu Cu 0.67 8.405 4.125 1.851 8 150 2 3 mm Be 4 mm Al + 4 mm Cu + 1.51 mm Sn Al 17 0.187 0.092 2.147 9 150 3 mm Be 4 mm Al + 4 mm Cu + 1.51 mm Sn Cu 2.5 0.187 0.087 7.005 10 200 0 3 mm Be 4.1 mm Al + 1.12 mm Cu Al 14.9 9.782 4.831 1.217 11 200 3 mm Be 4.1 mm Al + 1.12 mm Cu Cu 1.69 9.782 4.785 2.169 12 200 -2 3 mm Be 4 mm Al + 0.6 mm Cu + 4.16 mm Sn + 0.77 mm Pb Al 19.8 0.141 0.070 1.665 13 200 -4 3 mm Be 4 mm Al + 0.6 mm Cu + 4.16 mm Sn + 0.77 mm Pb Cu 4.1 0.141 0.068 4.188 14 250 3 mm Be 5 mm Al + 3.2 mm Cu Al 18.5 9.624 4.740 1.504 15 250 -6 3 mm Be 5 mm Al + 3.2 mm Cu Cu 3.2 9.624 4.695 2.425 16 250 3 mm Be 4 mm Al + 0.6 mm Cu + 1.04 mm Sn + 2.72 mm Pb Al 22 0.206 0.101 2.119 17 250 -8 3 mm Be 4 mm Al + 0.6 mm Cu + 1.04 mm Sn + 2.72 mm Pb Cu 5.2 0.206 0.102 0.613 18 300 3 mm Be 75 125 4 mm Al + 6.5 mm Sn 175 225 Al 27522 4.395 2.169 325 1.280 19 300 3 mm Be 4 mm Al + 6.5 mm Sn Cu 5.3 4.395 2.201 -0.149 20 300 3 mm Be kVp 4.1 mm Al + 3 mm Sn + 5 mm Pb Al 23 0.164 0.083 -0.839 21 300 3 mm Be 4.1 mm Al + 3 mm Sn + 5 mm Pb Cu 6.2 0.164 0.086 -4.415 % Difference in HVL between NIST and simulation is within +/- 8%
  • 8. Experimental Dose Measurement Experimental Conditions: Simulation Conditions: X-Ray Tube: Target Voltage : 20 < kV < 420 kVp Current : 1 mA 1. KM16010E-A MicroFocus Target Material – W 2. Seifert ISOVOLT 420/10 Dose = 1.828*10-11∑φ(E).(µ(E)/ρ) air.E.dE Dosimeter: Keithley 35050A Dosimeter % Difference in Dose : Kevex, SDD = 1m % Difference in Dose: Seifert, SDD = 1m (Experimental and Simulated) (Experimental and Simulated) 6 8 0.4 mm Cu Filter 4 6 9 mm Al Filter 4 % Difference 2 % Difference 2 0 0 -2 -2 -4 0.4 mm Cu Filter -4 -6 9 mm Al Filter -6 -8 -8 30 50 70 90 110 130 150 170 30 130 230 330 430 Tube Potential (kvp) Tube Potential (kvp) KM16010E-A MicroFocus Seifert ISOVOLT 420/10 Less than 7% difference is observed between simulation and experiments
  • 9. Summary  Ellery Storm Model best suited for X-ray Spectrum Generation  Model performance metrics:  Accuracy for Photon Fluence / mR > 95%  Error in Average Energy < 5%  Deviation in HVL < 8%  Simulated Dose is in good agreement with Experiments