SlideShare a Scribd company logo
COSC 6405
2018/19 Sem I
Morphological Analysis
ስነ ‫ו‬እֶድ
‫ו‬እֶድ ָጅነُ
አ‫ו‬ድ
ስ‫ץ‬
የቃָ ክፍָ
ָጅ ָጅነُ
ቤُ ቤِ٤ [ቤ(ُኦ)٤]
ቤُ ከቤُ
ነُ ָጅነُ
ኦ٤ ቤِ٤ [ቤ(ُኦ)٤]
ከ ከቤُ
ስብ‫ץ‬ ‫ר‬በ‫ץ‬
ስብ‫ץ‬ ‫רـ‬በ‫נ‬٤
-ና- ُናን ُን
አָ…ኧ‫ו‬ አָ‫ר‬በ‫ונ‬ [አָ‫ר‬በ(‫ץ‬ኧ)‫ו‬]
NLP_Chapter #2 Morphological Analysis.pdf
NLP_Chapter #2 Morphological Analysis.pdf
NLP_Chapter #2 Morphological Analysis.pdf
NLP_Chapter #2 Morphological Analysis.pdf
NLP_Chapter #2 Morphological Analysis.pdf
Positive Comparative Superlative
good better best
bad worse worst
little less least
much
many
more most
NLP_Chapter #2 Morphological Analysis.pdf
NLP_Chapter #2 Morphological Analysis.pdf
Verbal Root (Examples) Pattern of Derivation Derived Noun
ጥ-ቅ-‫ו‬ CእCእC ጥእቅእ‫ו‬ [ጥቅ‫]ו‬
‫ו‬-‫ץ‬-ُ CእCC ‫ו‬እ‫ُץ‬ [‫]ُץו‬
‫ו‬-ָ-ስ CኧCC ‫ו‬ኧָስ [‫ָא‬ስ]
ን-ግ-‫ץ‬ CኧCኧC ንኧግኧ‫ץ‬ [ነገ‫]ץ‬
ድ-ክ-‫ו‬ CእCኣC ድእክኣ‫ו‬ [ድካ‫]ו‬
ֱ-‫ו‬-‫ו‬ CእCኧC ֱእ‫ו‬ኧ‫ו‬ [ֱ‫]וא‬
ግ-ብ-ዕ CእC ግእብ [ግብ]
ጥ-ው-‫ו‬ CኦC ጥኦ‫ו‬ [ጦ‫]ו‬
ቅ-ው-‫ץ‬-ጥ CኡCC ቅኡ‫ץ‬ጥ [‫ץשּׁ‬ጥ]
ድ-ብብ-ቅ CእC1C1እC ድእብብእቅ [ድብቅ]
Adjective (Examples) Morpheme Derived Noun
ደግ -ነُ ደግ-ነُ [ደግነُ]
ቅ‫ץ‬ብ -ኧُ ቅ‫ץ‬ብ-ኧُ [ቅ‫ץ‬በُ]
ብֱָ -ኣُ ብֱָ-ኣُ [ብָሃُ]
ብָጥ -ኦ ብָጥ-ኦ [ብָጦ]
Stem (Examples) Morpheme Derived Noun
ው‫ץ‬ድ- -ኧُ ው‫ץ‬ድ-ኧُ [ው‫ץ‬ደُ]
ቅዳስ- -ኤ ቅዳስ-ኤ [ቅዳሴ]
እ‫ץ‬ጅ- -እና እ‫ץ‬ጅ-እና [እ‫ץ‬ጅና]
ָ‫ו‬- -ኣُ ָ‫ו‬-ኣُ [ ָ‫]ُד‬
ስ‫ץ‬ቅ- -ኦ ስ‫ץ‬ቅ-ኦ [ስ‫בּץ‬ ]
٤ָ- -ኦٍ ٤ָ-ኦٍ [٤ֹٍ]
ውጥ- -ኤُ ውጥ-ኤُ [ውጤُ]
ፍֳግ- -ኣ ፍֳግ-ኣ [ፍֳጋ]
ናፍቅ- -ኦُ ናፍቅ-ኦُ [ናፍ‫]ُבּ‬
ድ‫ץ‬ግ- -ኢُ ድ‫ץ‬ግ-ኢُ [ድ‫ץ‬ጊُ]
‫וֹר‬ክ- -ኢ ‫וֹר‬ክ-ኢ [‫וֹר‬ኪ]
ዝ‫ץ‬ፍ- -ኢያ ዝ‫ץ‬ፍ-ኢያ [ዝ‫ץ‬ፊያ]
ጠ‫ושׂ‬- -ኤٍ ጠ‫ושׂ‬-ኤٍ [ጠ‫]ٍהשׂ‬
-ְድ ‫א‬- ‫א‬-ְድ [‫ְא‬ድ]
-ٍ
Stem-like Verb (Examples) Morpheme Derived Noun
ዝ‫ו‬- -ٍ ዝ‫ו‬-ٍ [ዝ‫]ٍו‬
ደስ- -ٍ ደስ-ٍ [ደስٍ]
Noun (Examples) Morpheme Derived Noun
ָጅ -ነُ ָጅ-ነُ [ָጅነُ]
እግ‫ץ‬ -ኧኛ እግ‫ץ‬-ኧኛ [እግ‫נ‬ኛ ]
ክብ‫ץ‬ -ኧُ ክብ‫ץ‬-ኧُ [ክብ‫]ُנ‬
ከ‫דـ‬ -ኤ ከ‫דـ‬ -ኤ [ከ‫]הـ‬
ጢ‫ו‬ -ኦ ጢ‫ו‬-ኦ [ጢ‫]ז‬
ኢُዮጵያ -ኣዊ ኢُዮጵያ-ኣዊ [ኢُዮጵያዊ]
እንግֵዝ -ኛ እንግֵዝ-ኛ [እንግֵዝኛ]
ኧ and ኦ
Classes of Compound Words Example Derived Noun
Noun + Noun ብ‫ُנ‬ + ‫ו‬ጣድ ብ‫ُנ‬ ‫ו‬ጣድ
Noun + [ኧ] + Noun ቤُ + [ኧ] + ‫א‬ንግስُ ቤ‫ـ‬ ‫א‬ንግስُ
Noun + Verbal Stems ָብ + ወֳድ- ָብ ወֳድ
Verbal Stem + [ኦ] + Verbal Stem ‫ُץר‬- + [ኦ] + አደ‫ץ‬- ‫ِץר‬ አደ‫ץ‬
Verbal Stem + [ኦ] + Noun ‫ُץר‬- + [ኦ] + አዳ‫ע‬ ‫ِץר‬ አዳ‫ע‬
Amharic nouns can be marked for:
i. Number by affixation of morphemes (and vowel changes) or repetition of words
Noun in Singular
Form (Examples)
Description of the Noun Morpheme Plural Form
Ending with consonant - - [ ]
Ending with vowel -
Personal Pronoun - - [ ]
Proper Noun -
Plural formation by repetition - - [ ]
Loanwords from Geez (do not have
similar patterns for plural formation)
ii. Definiteness by affixation of morphemes or vowels based on number, gender, and/or ending
of the noun.
Indefinite Noun
(Examples)
Ending of
the Noun
Number Gender Definite Noun
Feminine - [ ] / - [ ]
Singular
Masculine - [ ]
Consonant
Plural - [ ]
Feminine - [ ] / - [ ]
Singular
Masculine - [ ]
Vowel
Plural - [ ]
iii. Gender by affixation of the morpheme - , e.g. --> - [ ]
iv. Case
(a) Objective case by affixation of the morpheme - , e.g. (subjective case) --> - [ ]
(b) Possessive case by affixation of morphemes or vowels based on person, number, gender,
and/or ending of the noun (personal pronouns by prefixing -, e.g. --> - [ / ])
Subjective Case
(Examples)
Ending of
the Noun
Person Number Gender Possessive
Case
Singular - [ ]
First
Plural - [ ]
Masculine - [ ]
Singular
Feminine - [ ]
Second
Plural - [ ]
Masculine - [ ]
Singular
Feminine - [ ]
īlj
Ending with
consonant
Third
Plural - [ ]
Singular - [ ]
First
Plural - [ ]
Masculine - [ ]
Singular
Feminine - [ ]
Second
Plural - [ ]
Masculine - [ ]
Singular
Feminine - [ ]
Ending with
vowel
Third
Plural - [ ]
Amharic adjectives can be derived from:
i. Verbal Roots by infixing vowels between consonants (C) as shown below
ii. Nouns by suffixing bound morphemes
iii. Stems by suffixing bound morphemes
iv. Compound Words of nouns and adjectives by affixing the vowel -ኧ
e.g. ሆድ ሰፊ --> ሆድ-ኧ ሰፊ [ሆደ ሰፊ]
Verbal Root (Examples) Pattern of Derivation Derived Adjective
ድ-ር-ቅ CኧCኧC ድኧርኧቅ [ደረቅ]
ጥ-ቅ-ር CECUC ጥEቅUር [ጥቁር]
ጥ-ብ-ብ CኧC1C1IC ጥኧብIብ [ጠቢብ]
ፍ-ጥ-ን CኧC1C1ኣC ፍኧጥኣን [ፈጣን]
Noun (Examples) Morpheme Derived Adjective
ነገር -ኧኛ ነገር-ኧኛ [ነገረኛ]
ተራራ -ኣማ ተራራ-ኣማ [ተራራማ]
ፈርስ -ኣም ፈርስ-ኣም [ፈርሳም]
ህዝብ -ኣዊ ህዝብ-ኣዊ [ህዝባዊ]
Stems (Examples) Morpheme Derived Adjective
ደካም- -ኣ ደካም-ኣ [ደካማ]
ንቅ- -U ንቅ-U [ንቁ]
በል- -Iታ በል-Iታ [በሊታ]
Amharic adjectives can be marked for:
i. Number by affixation of morphemes or repetition of consonants (and affixing the vowel - )
Adjective in Singular
Form (Examples)
Description of the
Adjective
Morpheme Plural Form
Ending with consonant - - [ ]
Ending with vowel - - [ăȀ ň]
Plural formation by repetition of consonant - - [ ]
ii. Definiteness by affixation of morphemes or vowels based on number, gender, and/or ending
of the adjective.
Indefinite Adjective
(Examples)
Ending of the
Adjective
Number Gender Definite Adjective
Feminine - [ ] / - [ ]
Singular
Masculine - [ ]
Consonant
Plural - [ ]
Feminine - [ ] / - [ ]
Singular
Masculine - [ ]
Vowel
Plural - [ ]
iii. Gender by affixation of the morpheme - , e.g. --> - [ ]
iV. Case (Objective Case) by affixation of the morpheme - , e.g. --> - [ ]
Amharic verbal stems (from which various forms of verbs are formed) can be derived from:
i. Verbal Roots by
(a) affixing the vowel - - to produce C C1C1 C-, e.g. - - --> - [ -]
(b) repeating penultimate consonants and affixing the vowels - - and - - to produce
C C1 C1C1 C-, e.g. - - --> - [ -]
ii. Verbal Stems by affixing morphemes
Verbal Stem
(Examples)
Morpheme Derived Verbal Stem
- - - - [ -]
- - - - [ -]
- - - - [ -]
iii. Compound Words of
(a) stems and verbs, e.g. - + -->
(b) sub-words and verbs, e.g. + -->
Amharic verbs are marked for:
i. Person, gender, number, case, and tense/
/
/
/aspect
Singular Plural
Person
(Subjective Case)
Gender
Past Tense Non-Past Tense Past Tense Non-Past Tense
First - /- - - -
Masculine - /- - - - -
Second
Feminine - - - - - -
Masculine - - - - -
Third
Feminine - - - - -
Objective Case
Tense Subjective Case
Person Gender Singular Plural
First - - - -
Masculine - - /-
Second
Feminine - -
- -
Masculine - -
Third Person,
Singular,
Masculine
Third
Feminine - -
- -
First - - - -
Masculine - -
Second
Feminine - -
- -
Masculine - -
Past
Tense
Third Person,
Singular,
Feminine Third
Feminine - -
-- -
.
.
.
etc
.
.
.
etc
.
.
.
etc
.
.
.
etc
.
.
.
etc
.
.
.
etc
ii. Mood
Mood
Number Person Gender Completed
Action
Command Request Negative
First - /- - - - -
Masculine - /- - - -
Second
Feminine - - - - - - -
Masculine - - - - -
Singular
Third
Feminine - - - - -
First - - - - -
Second - - - - - - -
Plural
Third - - - - - - - -
Amharic verbs in general show high degree of inflection since person, case, gender, number,
tense, aspect, mood and others are marked on the verb. For example, indicates:
™ the subject (third person, masculine, singular)
™ the object (first person, plural)
™ negation …
™ past tense
• State machines are widely used in NLP for modeling phonology, morphology and syntax.
• State machines are formal models that consist of states, transitions among states, and
an input representation.
♦ States – represent the set of properties of an abstract machine
♦ Transitions – represent jumps from one state to another
♦ Inputs – sequences of symbols or letters that can be read by the machine
• A machine with finite number of states is called finite state machine (FSM).
• FSM has two special states: start state and final state.
• There are two types of FSMs: finite state automata and finite state transducers.
S0 S2
0
0
1 1 Input symbol
Final state
Transition
Start state
S1
1
• Finite state automaton (FSA) is finite state machine that only accepts a set of given
strings (a language).
• FSA can be deterministic or non-deterministic.
• In deterministic FSA, every state has one transition for each possible input.
♦ Example: A deterministic FSA that determines if a binary string contains
an even number of 0's.
♦ Strings accepted by this deterministic FSA are: ε, 1, 11, 111, 00, 010,
1010, 10110, etc.
S1
0
0
1
S2
1
S0
ε
• In non-deterministic FSA, an input can lead to one, more than one or no transition for
a given state.
♦ Example: A non-deterministic FSA that determines if a binary string
contains an even number of 0’s or an even number of 1’s.
♦ Strings accepted by this non-deterministic FSA are: ε, 1, 11, 111, 00,
010, 1010, 10110, 011, 11011, 1010101, etc.
S1
0
0
1
S2
1
S0
ε
S3
1
1
0
S4
0
ε
• FSAs can be used to recognize words in a language.
• Examples:
♦ Single word recognition
S0 S1
ሰ
S2 S3
በ ረ
S0 S1
w
S2 S3
a l
S4
k
S0 S1
ሰበረ
S0 S1
walk
♦ Recognition of multiple words
S0
ሰበ
S1
ብ
ረ
S2
ቀ
e
tern
in
al
S4
eth
c
i
anol
S5
opia
S3
S2
S0 S1
ሰበረ, ሰበቀ, ሰበብ
internal, eternal, ethical, ethiopia, ethanol
♦ Recognition of multiple words (for instance, Amharic pronouns: Eኔ, Eኛ, Aንተ,
Aንቺ, Eናንተ, Eስዎ, Eርስዎ, Eሱ, Eርሱ, Eሷ, Eርሷ, Eሳቸው, Eርሳቸው, Eነሱ, Eነርሱ)
E
Aን ሷ
ቺ
ር
ሱ
S0 S3 S6
S4
S2
S5
ተ
E
ሳቸው
ስዎ
ኔ
ኛ
ናነተ
ነ
ር
ነ
ሱ
S1
• One word and multiple inflections
S0
walk
S1 S2
s
ed
ing
S2
ሰበር S1
ኧን
ኧህ
ኣት
ኧው
ኣቸው
ኧኝ
ኧሽ
ኣችሁ
ኣችሁት
.
.
.
.
.
.
S0
• Multiple words and multiple inflections
S0
walk
S1 S2
s
ed
ing
jump
help
.
.
.
.
.
.
S2
ሰበር S1
ኧን
ኧህ
ኣት
ኧው
ኣቸው
ኧኝ
ኧሽ
ኣችሁ
ኣችሁት
.
.
.
.
.
.
S0
ገደል
ማረክ
.
.
.
.
.
.
• One word and multiple inflections with affixes
S3
ሰብር
S0 S2
Eንዲ
Eንዳይ
ከሚ
ሊ
የሚ
ኧን
ህ
ኣት
ኧው
ኣቸው
ብን
በት
ለት
ባቸው
.
.
.
.
.
.
.
.
.
.
.
.
S1
• Multiple words and multiple inflections with affixes
S3
ሰብር
S0 S2
Eንዲ
Eንዳይ
ከሚ
ሊ
የሚ
ኧን
ህ
ኣት
ኧው
ኣቸው
ብን
በት
ለት
ባቸው
.
.
.
.
.
.
.
.
.
.
.
.
S1
ማርክ
ገድል
.
.
.
.
.
.
• Marking part-of-speech
S0
[word] y
S3
cate
S2
S1 S5
ion
ism
ist
er y
S4
• Marking part-of-speech
S0
[word] y
Adj
cate
N
N V
ion
ism
ist
er y
N
• Collect words in a large corpus and compile into a trie data structure:
...walk walked walking walks wall walls want wanted wanting
wants warn warned warning warns ...
w a
l
l
k
e
s
d
i
n g
s
e
d
s
i
n g
d
n g
i
s
e
n
r
n t
.
.
.
Eንደሚሰብረው
Eንደሚሰብሩበት
Eንደሚሰብሩባቸው
Eንደሚሰብሩት
Eንደሚሰብር
Eንደሚገድለው
Eንደሚገድሉበት
Eንደሚገድሉባቸው
Eንደሚገድሉት
Eንደሚገድል
Eንደማይሰብረው
Eንደማይሰብሩበት
Eንደማይሰብሩባቸው
Eንደማይሰብሩት
Eንደማይሰብር
Eንደማይገድለው
Eንደማይገድሉበት
Eንደማይገድሉባቸው
Eንደማይገድሉት
Eንደማይገድል
.
.
.
Eንደ
ሚ
ማይ
ሰብር
ሰብር
ገድል
ገድል
ኧው
Uበት
Uባቸው
Uት
ኧው
Uበት
Uባቸው
Uት
ኧው
Uበት
Uባቸው
Uት
ኧው
Uበት
Uባቸው
Uት
• Identify frequent suffix trees
Discovered Morphology
• Stems - with common
suffix tree:
♦ walk
♦ want
♦ warn
• Morphemes - frequent
suffix tree:
♦ ε
♦ – ed
♦ – s
♦ – ing
w a
l
l
k
e
s
d
i
n g
s
e
d
s
i
n g
d
n g
i
s
e
n
r
n t
Discovered Morphology
• Stems - with common
suffix tree:
♦ ሰብር
♦ ገድል
• Morphemes - frequent
suffix tree:
♦ ε
♦ – ኧው
♦ – Uበት
♦ – Uባቸው
♦ – Uት
• Other affixes:
♦ – Eንደ
♦ – ሚ –
♦ – ማይ –
Eንደ
ሚ
ማይ
ሰብር
ሰብር
ገድል
ገድል
ኧው
Uበት
Uባቸው
Uት
ኧው
Uበት
Uባቸው
Uት
ኧው
Uበት
Uባቸው
Uት
ኧው
Uበት
Uባቸው
Uት

More Related Content

DOC
Amharic peace corps language manual 2015 - for merge
PDF
Learning Morphological Rules for Amharic Verbs Using Inductive Logic Programming
PDF
Ge'ez Verbs Morphology and Declaration Model
PPT
New microsoft power point slide (2)
PDF
Amharic-English Dictionary.pdf
PPTX
Hieber - An Introduction to Typology, Part I: Morphological Typology
PDF
A Grammar Of The Seneca Language Wallace Chafe
PPTX
EL1-MORPHOLOGY-REPORTING new topic (2).pptx
Amharic peace corps language manual 2015 - for merge
Learning Morphological Rules for Amharic Verbs Using Inductive Logic Programming
Ge'ez Verbs Morphology and Declaration Model
New microsoft power point slide (2)
Amharic-English Dictionary.pdf
Hieber - An Introduction to Typology, Part I: Morphological Typology
A Grammar Of The Seneca Language Wallace Chafe
EL1-MORPHOLOGY-REPORTING new topic (2).pptx

More from amarehope21 (14)

PPT
Elective(Intellegent agent )__cha.Two.ppt
PPT
Chapter 3. Literature review_______.ppt
PDF
Backpropagation_Backpropagation a step by step.pdf
PDF
IP Address Routing _________________2_IP Routing.pdf
PDF
1_________Elements of Moderen Network.pdf
PPTX
Chapter #1 Introduction to NConfigure and administer Server LP.pptx
PPT
INTRODUCTION TO INFORMATION RETRIEVALChapter 1-IR.ppt
PPTX
chapter 4 enterprise/product/service .ppt.pptx
PPTX
Advanced Networking link layer..chap-5.pptx
PDF
introduction to computer network lecture one
PPTX
chapter 2(IO and stream)/chapter 2, IO and stream
PPTX
CHAPTER FIVE WEBBASED MARKET5.pptx/ WEBBASED MARKET5
PDF
wireless networking chapter three WAN.pdf
PPTX
basic research in it introduction BRMIT.ppt
Elective(Intellegent agent )__cha.Two.ppt
Chapter 3. Literature review_______.ppt
Backpropagation_Backpropagation a step by step.pdf
IP Address Routing _________________2_IP Routing.pdf
1_________Elements of Moderen Network.pdf
Chapter #1 Introduction to NConfigure and administer Server LP.pptx
INTRODUCTION TO INFORMATION RETRIEVALChapter 1-IR.ppt
chapter 4 enterprise/product/service .ppt.pptx
Advanced Networking link layer..chap-5.pptx
introduction to computer network lecture one
chapter 2(IO and stream)/chapter 2, IO and stream
CHAPTER FIVE WEBBASED MARKET5.pptx/ WEBBASED MARKET5
wireless networking chapter three WAN.pdf
basic research in it introduction BRMIT.ppt
Ad

Recently uploaded (20)

PPTX
Chapter 5: Probability Theory and Statistics
PDF
DP Operators-handbook-extract for the Mautical Institute
PPTX
OMC Textile Division Presentation 2021.pptx
PDF
Getting Started with Data Integration: FME Form 101
PDF
Transform Your ITIL® 4 & ITSM Strategy with AI in 2025.pdf
PDF
NewMind AI Weekly Chronicles – August ’25 Week III
PDF
August Patch Tuesday
PDF
gpt5_lecture_notes_comprehensive_20250812015547.pdf
PDF
Web App vs Mobile App What Should You Build First.pdf
PDF
Hindi spoken digit analysis for native and non-native speakers
PDF
Assigned Numbers - 2025 - Bluetooth® Document
PDF
A contest of sentiment analysis: k-nearest neighbor versus neural network
PDF
Zenith AI: Advanced Artificial Intelligence
PDF
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
PDF
project resource management chapter-09.pdf
PPTX
Tartificialntelligence_presentation.pptx
PPTX
O2C Customer Invoices to Receipt V15A.pptx
PPTX
Final SEM Unit 1 for mit wpu at pune .pptx
PPTX
observCloud-Native Containerability and monitoring.pptx
PDF
STKI Israel Market Study 2025 version august
Chapter 5: Probability Theory and Statistics
DP Operators-handbook-extract for the Mautical Institute
OMC Textile Division Presentation 2021.pptx
Getting Started with Data Integration: FME Form 101
Transform Your ITIL® 4 & ITSM Strategy with AI in 2025.pdf
NewMind AI Weekly Chronicles – August ’25 Week III
August Patch Tuesday
gpt5_lecture_notes_comprehensive_20250812015547.pdf
Web App vs Mobile App What Should You Build First.pdf
Hindi spoken digit analysis for native and non-native speakers
Assigned Numbers - 2025 - Bluetooth® Document
A contest of sentiment analysis: k-nearest neighbor versus neural network
Zenith AI: Advanced Artificial Intelligence
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
project resource management chapter-09.pdf
Tartificialntelligence_presentation.pptx
O2C Customer Invoices to Receipt V15A.pptx
Final SEM Unit 1 for mit wpu at pune .pptx
observCloud-Native Containerability and monitoring.pptx
STKI Israel Market Study 2025 version august
Ad

NLP_Chapter #2 Morphological Analysis.pdf

  • 1. COSC 6405 2018/19 Sem I Morphological Analysis
  • 3. ָጅ ָጅነُ ቤُ ቤِ٤ [ቤ(ُኦ)٤] ቤُ ከቤُ ነُ ָጅነُ ኦ٤ ቤِ٤ [ቤ(ُኦ)٤] ከ ከቤُ
  • 4. ስብ‫ץ‬ ‫ר‬በ‫ץ‬ ስብ‫ץ‬ ‫רـ‬በ‫נ‬٤ -ና- ُናን ُን አָ…ኧ‫ו‬ አָ‫ר‬በ‫ונ‬ [አָ‫ר‬በ(‫ץ‬ኧ)‫ו‬]
  • 10. Positive Comparative Superlative good better best bad worse worst little less least much many more most
  • 13. Verbal Root (Examples) Pattern of Derivation Derived Noun ጥ-ቅ-‫ו‬ CእCእC ጥእቅእ‫ו‬ [ጥቅ‫]ו‬ ‫ו‬-‫ץ‬-ُ CእCC ‫ו‬እ‫ُץ‬ [‫]ُץו‬ ‫ו‬-ָ-ስ CኧCC ‫ו‬ኧָስ [‫ָא‬ስ] ን-ግ-‫ץ‬ CኧCኧC ንኧግኧ‫ץ‬ [ነገ‫]ץ‬ ድ-ክ-‫ו‬ CእCኣC ድእክኣ‫ו‬ [ድካ‫]ו‬ ֱ-‫ו‬-‫ו‬ CእCኧC ֱእ‫ו‬ኧ‫ו‬ [ֱ‫]וא‬ ግ-ብ-ዕ CእC ግእብ [ግብ] ጥ-ው-‫ו‬ CኦC ጥኦ‫ו‬ [ጦ‫]ו‬ ቅ-ው-‫ץ‬-ጥ CኡCC ቅኡ‫ץ‬ጥ [‫ץשּׁ‬ጥ] ድ-ብብ-ቅ CእC1C1እC ድእብብእቅ [ድብቅ] Adjective (Examples) Morpheme Derived Noun ደግ -ነُ ደግ-ነُ [ደግነُ] ቅ‫ץ‬ብ -ኧُ ቅ‫ץ‬ብ-ኧُ [ቅ‫ץ‬በُ] ብֱָ -ኣُ ብֱָ-ኣُ [ብָሃُ] ብָጥ -ኦ ብָጥ-ኦ [ብָጦ]
  • 14. Stem (Examples) Morpheme Derived Noun ው‫ץ‬ድ- -ኧُ ው‫ץ‬ድ-ኧُ [ው‫ץ‬ደُ] ቅዳስ- -ኤ ቅዳስ-ኤ [ቅዳሴ] እ‫ץ‬ጅ- -እና እ‫ץ‬ጅ-እና [እ‫ץ‬ጅና] ָ‫ו‬- -ኣُ ָ‫ו‬-ኣُ [ ָ‫]ُד‬ ስ‫ץ‬ቅ- -ኦ ስ‫ץ‬ቅ-ኦ [ስ‫בּץ‬ ] ٤ָ- -ኦٍ ٤ָ-ኦٍ [٤ֹٍ] ውጥ- -ኤُ ውጥ-ኤُ [ውጤُ] ፍֳግ- -ኣ ፍֳግ-ኣ [ፍֳጋ] ናፍቅ- -ኦُ ናፍቅ-ኦُ [ናፍ‫]ُבּ‬ ድ‫ץ‬ግ- -ኢُ ድ‫ץ‬ግ-ኢُ [ድ‫ץ‬ጊُ] ‫וֹר‬ክ- -ኢ ‫וֹר‬ክ-ኢ [‫וֹר‬ኪ] ዝ‫ץ‬ፍ- -ኢያ ዝ‫ץ‬ፍ-ኢያ [ዝ‫ץ‬ፊያ] ጠ‫ושׂ‬- -ኤٍ ጠ‫ושׂ‬-ኤٍ [ጠ‫]ٍהשׂ‬ -ְድ ‫א‬- ‫א‬-ְድ [‫ְא‬ድ] -ٍ Stem-like Verb (Examples) Morpheme Derived Noun ዝ‫ו‬- -ٍ ዝ‫ו‬-ٍ [ዝ‫]ٍו‬ ደስ- -ٍ ደስ-ٍ [ደስٍ]
  • 15. Noun (Examples) Morpheme Derived Noun ָጅ -ነُ ָጅ-ነُ [ָጅነُ] እግ‫ץ‬ -ኧኛ እግ‫ץ‬-ኧኛ [እግ‫נ‬ኛ ] ክብ‫ץ‬ -ኧُ ክብ‫ץ‬-ኧُ [ክብ‫]ُנ‬ ከ‫דـ‬ -ኤ ከ‫דـ‬ -ኤ [ከ‫]הـ‬ ጢ‫ו‬ -ኦ ጢ‫ו‬-ኦ [ጢ‫]ז‬ ኢُዮጵያ -ኣዊ ኢُዮጵያ-ኣዊ [ኢُዮጵያዊ] እንግֵዝ -ኛ እንግֵዝ-ኛ [እንግֵዝኛ] ኧ and ኦ Classes of Compound Words Example Derived Noun Noun + Noun ብ‫ُנ‬ + ‫ו‬ጣድ ብ‫ُנ‬ ‫ו‬ጣድ Noun + [ኧ] + Noun ቤُ + [ኧ] + ‫א‬ንግስُ ቤ‫ـ‬ ‫א‬ንግስُ Noun + Verbal Stems ָብ + ወֳድ- ָብ ወֳድ Verbal Stem + [ኦ] + Verbal Stem ‫ُץר‬- + [ኦ] + አደ‫ץ‬- ‫ِץר‬ አደ‫ץ‬ Verbal Stem + [ኦ] + Noun ‫ُץר‬- + [ኦ] + አዳ‫ע‬ ‫ِץר‬ አዳ‫ע‬
  • 16. Amharic nouns can be marked for: i. Number by affixation of morphemes (and vowel changes) or repetition of words Noun in Singular Form (Examples) Description of the Noun Morpheme Plural Form Ending with consonant - - [ ] Ending with vowel - Personal Pronoun - - [ ] Proper Noun - Plural formation by repetition - - [ ] Loanwords from Geez (do not have similar patterns for plural formation) ii. Definiteness by affixation of morphemes or vowels based on number, gender, and/or ending of the noun. Indefinite Noun (Examples) Ending of the Noun Number Gender Definite Noun Feminine - [ ] / - [ ] Singular Masculine - [ ] Consonant Plural - [ ] Feminine - [ ] / - [ ] Singular Masculine - [ ] Vowel Plural - [ ]
  • 17. iii. Gender by affixation of the morpheme - , e.g. --> - [ ] iv. Case (a) Objective case by affixation of the morpheme - , e.g. (subjective case) --> - [ ] (b) Possessive case by affixation of morphemes or vowels based on person, number, gender, and/or ending of the noun (personal pronouns by prefixing -, e.g. --> - [ / ]) Subjective Case (Examples) Ending of the Noun Person Number Gender Possessive Case Singular - [ ] First Plural - [ ] Masculine - [ ] Singular Feminine - [ ] Second Plural - [ ] Masculine - [ ] Singular Feminine - [ ] īlj Ending with consonant Third Plural - [ ] Singular - [ ] First Plural - [ ] Masculine - [ ] Singular Feminine - [ ] Second Plural - [ ] Masculine - [ ] Singular Feminine - [ ] Ending with vowel Third Plural - [ ]
  • 18. Amharic adjectives can be derived from: i. Verbal Roots by infixing vowels between consonants (C) as shown below ii. Nouns by suffixing bound morphemes iii. Stems by suffixing bound morphemes iv. Compound Words of nouns and adjectives by affixing the vowel -ኧ e.g. ሆድ ሰፊ --> ሆድ-ኧ ሰፊ [ሆደ ሰፊ] Verbal Root (Examples) Pattern of Derivation Derived Adjective ድ-ር-ቅ CኧCኧC ድኧርኧቅ [ደረቅ] ጥ-ቅ-ር CECUC ጥEቅUር [ጥቁር] ጥ-ብ-ብ CኧC1C1IC ጥኧብIብ [ጠቢብ] ፍ-ጥ-ን CኧC1C1ኣC ፍኧጥኣን [ፈጣን] Noun (Examples) Morpheme Derived Adjective ነገር -ኧኛ ነገር-ኧኛ [ነገረኛ] ተራራ -ኣማ ተራራ-ኣማ [ተራራማ] ፈርስ -ኣም ፈርስ-ኣም [ፈርሳም] ህዝብ -ኣዊ ህዝብ-ኣዊ [ህዝባዊ] Stems (Examples) Morpheme Derived Adjective ደካም- -ኣ ደካም-ኣ [ደካማ] ንቅ- -U ንቅ-U [ንቁ] በል- -Iታ በል-Iታ [በሊታ]
  • 19. Amharic adjectives can be marked for: i. Number by affixation of morphemes or repetition of consonants (and affixing the vowel - ) Adjective in Singular Form (Examples) Description of the Adjective Morpheme Plural Form Ending with consonant - - [ ] Ending with vowel - - [ăȀ ň] Plural formation by repetition of consonant - - [ ] ii. Definiteness by affixation of morphemes or vowels based on number, gender, and/or ending of the adjective. Indefinite Adjective (Examples) Ending of the Adjective Number Gender Definite Adjective Feminine - [ ] / - [ ] Singular Masculine - [ ] Consonant Plural - [ ] Feminine - [ ] / - [ ] Singular Masculine - [ ] Vowel Plural - [ ] iii. Gender by affixation of the morpheme - , e.g. --> - [ ] iV. Case (Objective Case) by affixation of the morpheme - , e.g. --> - [ ]
  • 20. Amharic verbal stems (from which various forms of verbs are formed) can be derived from: i. Verbal Roots by (a) affixing the vowel - - to produce C C1C1 C-, e.g. - - --> - [ -] (b) repeating penultimate consonants and affixing the vowels - - and - - to produce C C1 C1C1 C-, e.g. - - --> - [ -] ii. Verbal Stems by affixing morphemes Verbal Stem (Examples) Morpheme Derived Verbal Stem - - - - [ -] - - - - [ -] - - - - [ -] iii. Compound Words of (a) stems and verbs, e.g. - + --> (b) sub-words and verbs, e.g. + -->
  • 21. Amharic verbs are marked for: i. Person, gender, number, case, and tense/ / / /aspect Singular Plural Person (Subjective Case) Gender Past Tense Non-Past Tense Past Tense Non-Past Tense First - /- - - - Masculine - /- - - - - Second Feminine - - - - - - Masculine - - - - - Third Feminine - - - - - Objective Case Tense Subjective Case Person Gender Singular Plural First - - - - Masculine - - /- Second Feminine - - - - Masculine - - Third Person, Singular, Masculine Third Feminine - - - - First - - - - Masculine - - Second Feminine - - - - Masculine - - Past Tense Third Person, Singular, Feminine Third Feminine - - -- - . . . etc . . . etc . . . etc . . . etc . . . etc . . . etc
  • 22. ii. Mood Mood Number Person Gender Completed Action Command Request Negative First - /- - - - - Masculine - /- - - - Second Feminine - - - - - - - Masculine - - - - - Singular Third Feminine - - - - - First - - - - - Second - - - - - - - Plural Third - - - - - - - - Amharic verbs in general show high degree of inflection since person, case, gender, number, tense, aspect, mood and others are marked on the verb. For example, indicates: ™ the subject (third person, masculine, singular) ™ the object (first person, plural) ™ negation … ™ past tense
  • 23. • State machines are widely used in NLP for modeling phonology, morphology and syntax. • State machines are formal models that consist of states, transitions among states, and an input representation. ♦ States – represent the set of properties of an abstract machine ♦ Transitions – represent jumps from one state to another ♦ Inputs – sequences of symbols or letters that can be read by the machine • A machine with finite number of states is called finite state machine (FSM). • FSM has two special states: start state and final state. • There are two types of FSMs: finite state automata and finite state transducers. S0 S2 0 0 1 1 Input symbol Final state Transition Start state S1 1
  • 24. • Finite state automaton (FSA) is finite state machine that only accepts a set of given strings (a language). • FSA can be deterministic or non-deterministic. • In deterministic FSA, every state has one transition for each possible input. ♦ Example: A deterministic FSA that determines if a binary string contains an even number of 0's. ♦ Strings accepted by this deterministic FSA are: ε, 1, 11, 111, 00, 010, 1010, 10110, etc. S1 0 0 1 S2 1 S0 ε
  • 25. • In non-deterministic FSA, an input can lead to one, more than one or no transition for a given state. ♦ Example: A non-deterministic FSA that determines if a binary string contains an even number of 0’s or an even number of 1’s. ♦ Strings accepted by this non-deterministic FSA are: ε, 1, 11, 111, 00, 010, 1010, 10110, 011, 11011, 1010101, etc. S1 0 0 1 S2 1 S0 ε S3 1 1 0 S4 0 ε
  • 26. • FSAs can be used to recognize words in a language. • Examples: ♦ Single word recognition S0 S1 ሰ S2 S3 በ ረ S0 S1 w S2 S3 a l S4 k S0 S1 ሰበረ S0 S1 walk
  • 27. ♦ Recognition of multiple words S0 ሰበ S1 ብ ረ S2 ቀ e tern in al S4 eth c i anol S5 opia S3 S2 S0 S1 ሰበረ, ሰበቀ, ሰበብ internal, eternal, ethical, ethiopia, ethanol
  • 28. ♦ Recognition of multiple words (for instance, Amharic pronouns: Eኔ, Eኛ, Aንተ, Aንቺ, Eናንተ, Eስዎ, Eርስዎ, Eሱ, Eርሱ, Eሷ, Eርሷ, Eሳቸው, Eርሳቸው, Eነሱ, Eነርሱ) E Aን ሷ ቺ ር ሱ S0 S3 S6 S4 S2 S5 ተ E ሳቸው ስዎ ኔ ኛ ናነተ ነ ር ነ ሱ S1
  • 29. • One word and multiple inflections S0 walk S1 S2 s ed ing S2 ሰበር S1 ኧን ኧህ ኣት ኧው ኣቸው ኧኝ ኧሽ ኣችሁ ኣችሁት . . . . . . S0
  • 30. • Multiple words and multiple inflections S0 walk S1 S2 s ed ing jump help . . . . . . S2 ሰበር S1 ኧን ኧህ ኣት ኧው ኣቸው ኧኝ ኧሽ ኣችሁ ኣችሁት . . . . . . S0 ገደል ማረክ . . . . . .
  • 31. • One word and multiple inflections with affixes S3 ሰብር S0 S2 Eንዲ Eንዳይ ከሚ ሊ የሚ ኧን ህ ኣት ኧው ኣቸው ብን በት ለት ባቸው . . . . . . . . . . . . S1
  • 32. • Multiple words and multiple inflections with affixes S3 ሰብር S0 S2 Eንዲ Eንዳይ ከሚ ሊ የሚ ኧን ህ ኣት ኧው ኣቸው ብን በት ለት ባቸው . . . . . . . . . . . . S1 ማርክ ገድል . . . . . .
  • 33. • Marking part-of-speech S0 [word] y S3 cate S2 S1 S5 ion ism ist er y S4
  • 34. • Marking part-of-speech S0 [word] y Adj cate N N V ion ism ist er y N
  • 35. • Collect words in a large corpus and compile into a trie data structure: ...walk walked walking walks wall walls want wanted wanting wants warn warned warning warns ... w a l l k e s d i n g s e d s i n g d n g i s e n r n t
  • 37. • Identify frequent suffix trees Discovered Morphology • Stems - with common suffix tree: ♦ walk ♦ want ♦ warn • Morphemes - frequent suffix tree: ♦ ε ♦ – ed ♦ – s ♦ – ing w a l l k e s d i n g s e d s i n g d n g i s e n r n t
  • 38. Discovered Morphology • Stems - with common suffix tree: ♦ ሰብር ♦ ገድል • Morphemes - frequent suffix tree: ♦ ε ♦ – ኧው ♦ – Uበት ♦ – Uባቸው ♦ – Uት • Other affixes: ♦ – Eንደ ♦ – ሚ – ♦ – ማይ – Eንደ ሚ ማይ ሰብር ሰብር ገድል ገድል ኧው Uበት Uባቸው Uት ኧው Uበት Uባቸው Uት ኧው Uበት Uባቸው Uት ኧው Uበት Uባቸው Uት