SlideShare a Scribd company logo
Summer 2008 Internship
Report

    Advisor: Prof. Angela Y. Zhang
      The Chinese University of Hong Kong, Hong Kong




          Student: Pratik Poddar
        Indian Institute of Technology Bombay, India




    Topic: Non­Convex Optimization 
         Problems in Networks
                               
Introduction


3 topics to be discussed:
 1) Polyblock Algorithm for Monotonic Optimization
 2) Network Utility Maximization
 3) Internet Congestion Control Problem




                          
Basics of Optimization
    ●
        Standard Optimization problem
    ●
        Linear Optimization problem
    ●
        Convex Optimization problem
    ●
        Monotonic Optimization problem




                                
Polyblock Algorithm
    ●
        We have had two major events in the history of 
        optimization theory.
    ●
         The first was linear programming and simplex 
        method in late 1940s­ early 1950s.
    ●
        The second was convex optimization and interior 
        point method in late 1980s­ early 1990s. 



                                 
Polyblock Algorithm
    ●
        Convex optimization problems are known to be 
        solved, very reliably and efficiently.
    ●
        "..in fact, the great watershed in optimization isn't 
        between linearity and nonlinearity, but convexity 
        and nonconvexity" ­ R. Tyrrell Rockafellar, in  
        SIAM Review, 1993




                                   
Polyblock Algorithm
    ●
        Current research in optimization is mainly to have 
        that third event ­ Solving non­convex optimization 
        efficiently. Although solving convex optimization 
        problems is easy and non­convex optimization 
        problems is hard, but a variety of approaches have 
        been proposed to solve non­convex optimization 
        problems.



                                  
Polyblock Algorithm
    ●
        In 2000, H. Tuy proposed an algorithm to solve 
        optimization problems involving d.i functions under 
        monotonic constraints.
    ●
        This algorithm (Polyblock Algorithm) was inspired 
        by the idea of Polyhedral Outer Approximation 
        Method for maximizing a quasi­convex function 
        over a convex set.


                                 
Polyblock Algorithm
    ●
        What is a polyblock? 
    ●
        Then what is the difference between a polyblock and 
        a polyhedron?
    ●
        What are its properties?
    ●
        How is polyblock algorithm implemented?




                                    
Polyblock Algorithm as in
[1]




               
Implementation of Polyblock
Algorithm
    ●
        Consider the following optimization problem:            
                        minimize    x1 + x2                                         
                        such that     (x1­3)  + 9(x2­3) ≥ 0                  
                                               3


                                           5x1 + 6x2 – 36 ≤ 0                     
                                           (x1,x2) ∊ [0,6]2




                                            
Implementation of Polyblock
Algorithm
    ●
        Feasible region of the problem




                                 
Implementation of Polyblock
Algorithm




              
Introduction


3 topics to be discussed:
1) Polyblock Algorithm for Monotonic Optimization
2) Network Utility Maximization
3) Internet Congestion Control Problem




                         
Network Utility
Maximization
    ●
        The framework of Network Utility Maximization 
        (NUM) has found many applications in network rate 
        allocation algorithms and Internet Congestion 
        Control Protocols.




                                
Network Utility
Maximization
    ●
        Problem: Consider a network with L links, each with 
        a fixed capacity cl bps, and S sources (i.e. end 
        users), each transmitting at the rate of xs bps. Each 
        source s uses the set L(s) of links in its path and has 
        a utility function Us(xs). Each link l is shared by a set 
        S(l) of sources. So, Network Utility Maximization is 
        basically the problem of maximizing the total utility 
        of the system over source rates subject to congestion 
        constraints for all links.
                                    
Network Utility
Maximization

    Mathematically,




                       
Network Utility
Maximization
    ●
        Concave Utilities ­ Follows from Law of 
        Diminishing Marginal Utilities. Convex 
        Optimization Problem.
    ●
        U(x) = log (1+x)

        U(x)




                                       x

                                 
NUM for Concave Utilities
    ●
        The problem of Network Utility Maximization in 
        case of concave utilities is essentially a convex 
        optimization problem which is solvable efficiently 
        and exactly.




                                  
Network Utility
Maximization
    ●
        Non­Concave Utilities – In multimedia applications 
        on Internet, the utilities are non­concave. Non­
        convex optimization problem. 
    ●
        U(x) =  (1 + e­ax+b) ­1 


        U(x)




                                       x
                                    
NUM for Non-Concave
Utilities
    ●
        The problem is a non­convex optimization problem. 
        Three ways have been suggested to solve it.
    ●
        In [3],  a 'self­regulation' heuristic is proposed, 
        however it converges only to a sub­optimal solution.
    ●
        In [4], a set of sufficient and necessary conditions is 
        presented under which the canonical distributed 
        algorithm converges to a global optimal solution. 
        However, these conditions may not hold in most 
        cases.
                                   
NUM for Non-Concave
Utilities
    ●
        In [2], Using a family of convex SDP relaxations 
        based on the sum­of­squares method and 
        Positivestellensatz Theorem in real algebraic 
        geometry, a centralized computational method to 
        bound the total network utility in polynomial time is 
        proposed.
    ●
        This is effectively a centralized method to compute 
        the global optimum when the utilities can be 
        transformed into polynomial utilities.
                                  
NUM for Non-Concave
Utilities
    ●
        In summary, currently there is no theoretically 
        polynomial­time algorithm (distributed or 
        centralised) known for non­concave utility 
        maximization.
    ●
        We worked to find ways to convexify the above 
        problem. 




                                  
Idea and motivation
    ●
        The set may not be a convex set but if it can be 
        broken into a constant number of convex sets, we 
        can solve the problem in polynomial time.




                                 
Idea and motivation




              
Idea and motivation




              
Idea and motivation




              
Motivation
    ●
        By this method, we can solve NUM problem in 
        polynomial time. NUM finds applications in 
        network rate allocation algorithms and Internet 
        Congestion Control Protocol.




                                  
Introduction


Not so much related topics:
1) Polyblock Algorithm for Monotonic Optimization
2) Network Utility Maximization
3) Internet Congestion Control Problem




                         
Internet Congestion Control
    ●
        Internet relies on congestion control implemented in 
        the end­systems to prevent offered load exceeding 
        network capacity, as well as allocate network 
        resources to different users and applications.
    ●
        In the past, the applications (email, file transfer) had 
        concave utilities (i.e were elastic). As number of 
        multimedia applications are increasing, there are 
        various talks on different congestion controls.

                                    
Internet Congestion Control
    ●
        In [5], It has been argued that fairness congestion 
        control does not maximize the network's utility. 
        Infact, Admission control is shown to be better 
        control (in terms of both elastic and inelastic 
        utilities) than Fair Congestion Control in a 
        simplified case. 
    ●
        Let α be the desired rate of inelastic flows, m be the 
        number of inelastic flows and n be the number of 
        elastic flows. 
                                   
Fair Congestion Control
    ●
        Perform TCP­friendly congestion control. We model 
        it as the same fair congestion control as adopted for 
        elastic flows, with a slight difference. When the fair 
        share is smaller than α, then the fair share is used, 
        but when the fair share is greater than α, the 
        inelastic flow would still consume α.




                                  
Admission Control
    ●
        Perform admission control but no congestion control 
        once admitted. Assume the network already has n 
        elastic flows and m inelastic flows, a new inelastic 
        flow is admitted iff nε + (m­1)α <=1
    ●
        Here ε represents the minimum rate admission 
        control scheme tries to leave for elastic traffic. 
        Depending upon α, we can have two cases:


                                    
Aggressive Admission
Control
    ●
        ε <<< α – The arriving flow is admitted as long as it 
        is possible to allocate to it the desired rate of α, even 
        if this means all elastic flows have to run at their 
        minimum rate of ε.
    ●
        So, an inelastic flow is admitted iff (m+1)α ≤ 1 and 
        an elastic flow is always admitted.




                                    
Fair Admission Control
    ●
        ε = α – The arriving flow is admitted as long as its 
        desired rate is no greater than the prevailing fair 
        share for each elastic flow.
    ●
        So, an inelastic flow is admitted iff (m+n+1)α ≤ 1 
        and an elastic flow is always admitted.
    ●
        In [5], it is proved that Fair Admission control is 
        better than both Aggressive Admission contol and 
        Fair Congestion Control.

                                  
Idea
    ●
        Solving the optimization problem using the 
        polyblock algorithm would help us to prove (or 
        disprove) that admission control is better than fair 
        congestion control.
    ●
        Status: Coding to check it under progress.




                                   
Thank You...........




                 
Bibliography
    ●
        [1] H. Tuy, ”Monotonic Optimization: Problems and Solution Approaches”, 
        SIAM Journal on Optimization, 11:2(2000), 464­494
    ●
        [2]  M. Fazel, M. Chiang, ”Network Utility Maximization With Nonconcave 
        Utilities Using Sum­of­Squares Method”, Proc. IEEE CDC, December 2005
    ●
        [3] J.W.Lee, R.R. Mazumdar, N. Shroff, ”Non­convex optimization and rate 
        control for multi­class services in the Internet”, Proc. IEEE Infocom, March 
        2004 
    ●
        [4] M. Chiang, S. Zhang, P. Hande, ”Distributed rate allocation for inelastic 
        flows: Optimization framework, optimality conditions, and optimal 
        algorithms”, Proc. IEEE Infocom, March 2005 
    ●
        [5] D. M. Chiu, A. ­S. W. Tam, ”Fairness of traffic controls for inelastic 
        flows in the Internet”, Comput. Netw. (2007), doi:10.1016/j.comnet.
        2006.12.2006                         

More Related Content

PPTX
Blind audio source separation based on time-frequency structure models
PPT
Thulium doped fiber amplifiers
PDF
Irs fundamentals (1)
PPTX
Doppler Spread and Coherence Time.pptx
PPT
Fir and iir filter_design
PPT
EC 405, Fabrication of optical fibers
PPT
Optical Detectors -Principle & Types.ppt
PPTX
mtech final year project foundation.pptx
Blind audio source separation based on time-frequency structure models
Thulium doped fiber amplifiers
Irs fundamentals (1)
Doppler Spread and Coherence Time.pptx
Fir and iir filter_design
EC 405, Fabrication of optical fibers
Optical Detectors -Principle & Types.ppt
mtech final year project foundation.pptx

What's hot (20)

PPT
Chapter 03 cyclic codes
PDF
DSP_FOEHU - MATLAB 04 - The Discrete Fourier Transform (DFT)
PPTX
Optical detectors details and technologies with formulas
PDF
Convolution linear and circular using z transform day 5
PDF
Photonic Crystal Fiber (PCF) & Its Application.pdf
PPT
Discrete Fourier Transform
PPTX
Application of interpolation in CSE
PPT
Computer Vision - Image Filters
PDF
Implementation of FPGA Based Image Processing Algorithm using Xilinx System G...
DOC
bask, bfsk, bpsk
PPTX
Speech Signal Processing
PPTX
Oc ppt(38,39,40) optical sources
PPTX
Schelkunoff Polynomial Method for Antenna Synthesis
PPT
Propagation mechanisms
PDF
In sight into wavelets from theory to practice , soman k.p. ,ramachandran k.i...
PDF
Circular Convolution
PPTX
neural-networks (1)
PPTX
Resonator design
PDF
FPGA Based Digital Logic Circuits Operation for Beginners
PPTX
Structures of led
Chapter 03 cyclic codes
DSP_FOEHU - MATLAB 04 - The Discrete Fourier Transform (DFT)
Optical detectors details and technologies with formulas
Convolution linear and circular using z transform day 5
Photonic Crystal Fiber (PCF) & Its Application.pdf
Discrete Fourier Transform
Application of interpolation in CSE
Computer Vision - Image Filters
Implementation of FPGA Based Image Processing Algorithm using Xilinx System G...
bask, bfsk, bpsk
Speech Signal Processing
Oc ppt(38,39,40) optical sources
Schelkunoff Polynomial Method for Antenna Synthesis
Propagation mechanisms
In sight into wavelets from theory to practice , soman k.p. ,ramachandran k.i...
Circular Convolution
neural-networks (1)
Resonator design
FPGA Based Digital Logic Circuits Operation for Beginners
Structures of led
Ad

Similar to Non-convex Optimization in Networks (20)

PPTX
Non concave network utility maximization - A distributed optimization approach
PDF
The International Journal of Engineering and Science (The IJES)
DOCX
Solving Optimization Problems using the Matlab Optimization.docx
PPTX
The Stochastic Network Calculus: A Modern Approach.pptx
PDF
Derivative Free Optimization and Robust Optimization
PDF
Optimizing IP Networks for Uncertain Demands Using Outbound Traffic Constraints
PDF
Java networking 2012 ieee projects @ Seabirds ( Chennai, Bangalore, Hyderabad...
PDF
(Online) Convex Reinforcement Learning and applications to Energy Management ...
PDF
Efficient end-to-end learning for quantizable representations
PPTX
Taming limits with approximate networking
ODP
Applying Linear Optimization Using GLPK
PDF
Virginia Smith, Researcher, UC Berkeley at MLconf SF 2016
PDF
Mixed integer nonlinear programming (MINLP)-based bandwidth utility function ...
PPTX
Linear Programming
PDF
Spreadsheet Modeling & Decision Analysis
PDF
Review
PPTX
Introduction to Mathematical Modeling. Optimization
PDF
DEEP REINFORCEMENT LEARNING BASED OPTIMAL ROUTING WITH SOFTWARE-DEFINED NETWO...
ODP
Artificial Intelligence and Optimization with Parallelism
Non concave network utility maximization - A distributed optimization approach
The International Journal of Engineering and Science (The IJES)
Solving Optimization Problems using the Matlab Optimization.docx
The Stochastic Network Calculus: A Modern Approach.pptx
Derivative Free Optimization and Robust Optimization
Optimizing IP Networks for Uncertain Demands Using Outbound Traffic Constraints
Java networking 2012 ieee projects @ Seabirds ( Chennai, Bangalore, Hyderabad...
(Online) Convex Reinforcement Learning and applications to Energy Management ...
Efficient end-to-end learning for quantizable representations
Taming limits with approximate networking
Applying Linear Optimization Using GLPK
Virginia Smith, Researcher, UC Berkeley at MLconf SF 2016
Mixed integer nonlinear programming (MINLP)-based bandwidth utility function ...
Linear Programming
Spreadsheet Modeling & Decision Analysis
Review
Introduction to Mathematical Modeling. Optimization
DEEP REINFORCEMENT LEARNING BASED OPTIMAL ROUTING WITH SOFTWARE-DEFINED NETWO...
Artificial Intelligence and Optimization with Parallelism
Ad

More from Pratik Poddar (10)

PDF
Guide to wall street quant jobs for IITians
PDF
Art of Puzzle Solving
PPTX
Clipr Introduction
PDF
Clipr rodinhood openhouse
PDF
Grad School101
PDF
What is Cryptography?
PDF
Audio Watermarking and Steganography
PDF
Identity Based Encryption
PDF
Security Attacks on RSA
PDF
Ant Colony Optimization
Guide to wall street quant jobs for IITians
Art of Puzzle Solving
Clipr Introduction
Clipr rodinhood openhouse
Grad School101
What is Cryptography?
Audio Watermarking and Steganography
Identity Based Encryption
Security Attacks on RSA
Ant Colony Optimization

Recently uploaded (20)

PDF
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
PPTX
Detection-First SIEM: Rule Types, Dashboards, and Threat-Informed Strategy
PDF
Electronic commerce courselecture one. Pdf
PPTX
Understanding_Digital_Forensics_Presentation.pptx
PPTX
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
PPTX
ACSFv1EN-58255 AWS Academy Cloud Security Foundations.pptx
PPTX
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
PDF
Approach and Philosophy of On baking technology
PDF
NewMind AI Weekly Chronicles - August'25 Week I
PDF
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
PDF
The Rise and Fall of 3GPP – Time for a Sabbatical?
PDF
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
PDF
Mobile App Security Testing_ A Comprehensive Guide.pdf
PPTX
20250228 LYD VKU AI Blended-Learning.pptx
PDF
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
PPTX
Cloud computing and distributed systems.
PPTX
Spectroscopy.pptx food analysis technology
PDF
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
PDF
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
PDF
KodekX | Application Modernization Development
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
Detection-First SIEM: Rule Types, Dashboards, and Threat-Informed Strategy
Electronic commerce courselecture one. Pdf
Understanding_Digital_Forensics_Presentation.pptx
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
ACSFv1EN-58255 AWS Academy Cloud Security Foundations.pptx
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
Approach and Philosophy of On baking technology
NewMind AI Weekly Chronicles - August'25 Week I
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
The Rise and Fall of 3GPP – Time for a Sabbatical?
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
Mobile App Security Testing_ A Comprehensive Guide.pdf
20250228 LYD VKU AI Blended-Learning.pptx
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
Cloud computing and distributed systems.
Spectroscopy.pptx food analysis technology
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
KodekX | Application Modernization Development

Non-convex Optimization in Networks

  • 1. Summer 2008 Internship Report Advisor: Prof. Angela Y. Zhang The Chinese University of Hong Kong, Hong Kong Student: Pratik Poddar Indian Institute of Technology Bombay, India Topic: Non­Convex Optimization  Problems in Networks    
  • 3. Basics of Optimization ● Standard Optimization problem ● Linear Optimization problem ● Convex Optimization problem ● Monotonic Optimization problem    
  • 4. Polyblock Algorithm ● We have had two major events in the history of  optimization theory. ●  The first was linear programming and simplex  method in late 1940s­ early 1950s. ● The second was convex optimization and interior  point method in late 1980s­ early 1990s.     
  • 5. Polyblock Algorithm ● Convex optimization problems are known to be  solved, very reliably and efficiently. ● "..in fact, the great watershed in optimization isn't  between linearity and nonlinearity, but convexity  and nonconvexity" ­ R. Tyrrell Rockafellar, in   SIAM Review, 1993    
  • 6. Polyblock Algorithm ● Current research in optimization is mainly to have  that third event ­ Solving non­convex optimization  efficiently. Although solving convex optimization  problems is easy and non­convex optimization  problems is hard, but a variety of approaches have  been proposed to solve non­convex optimization  problems.    
  • 7. Polyblock Algorithm ● In 2000, H. Tuy proposed an algorithm to solve  optimization problems involving d.i functions under  monotonic constraints. ● This algorithm (Polyblock Algorithm) was inspired  by the idea of Polyhedral Outer Approximation  Method for maximizing a quasi­convex function  over a convex set.    
  • 8. Polyblock Algorithm ● What is a polyblock?  ● Then what is the difference between a polyblock and  a polyhedron? ● What are its properties? ● How is polyblock algorithm implemented?    
  • 9. Polyblock Algorithm as in [1]    
  • 10. Implementation of Polyblock Algorithm ● Consider the following optimization problem:                             minimize    x1 + x2                                                          such that     (x1­3)  + 9(x2­3) ≥ 0                   3                                    5x1 + 6x2 – 36 ≤ 0                                                         (x1,x2) ∊ [0,6]2    
  • 11. Implementation of Polyblock Algorithm ● Feasible region of the problem    
  • 14. Network Utility Maximization ● The framework of Network Utility Maximization  (NUM) has found many applications in network rate  allocation algorithms and Internet Congestion  Control Protocols.    
  • 15. Network Utility Maximization ● Problem: Consider a network with L links, each with  a fixed capacity cl bps, and S sources (i.e. end  users), each transmitting at the rate of xs bps. Each  source s uses the set L(s) of links in its path and has  a utility function Us(xs). Each link l is shared by a set  S(l) of sources. So, Network Utility Maximization is  basically the problem of maximizing the total utility  of the system over source rates subject to congestion  constraints for all links.    
  • 16. Network Utility Maximization Mathematically,    
  • 17. Network Utility Maximization ● Concave Utilities ­ Follows from Law of  Diminishing Marginal Utilities. Convex  Optimization Problem. ● U(x) = log (1+x) U(x) x    
  • 18. NUM for Concave Utilities ● The problem of Network Utility Maximization in  case of concave utilities is essentially a convex  optimization problem which is solvable efficiently  and exactly.    
  • 19. Network Utility Maximization ● Non­Concave Utilities – In multimedia applications  on Internet, the utilities are non­concave. Non­ convex optimization problem.  ● U(x) =  (1 + e­ax+b) ­1  U(x) x    
  • 20. NUM for Non-Concave Utilities ● The problem is a non­convex optimization problem.  Three ways have been suggested to solve it. ● In [3],  a 'self­regulation' heuristic is proposed,  however it converges only to a sub­optimal solution. ● In [4], a set of sufficient and necessary conditions is  presented under which the canonical distributed  algorithm converges to a global optimal solution.  However, these conditions may not hold in most  cases.    
  • 21. NUM for Non-Concave Utilities ● In [2], Using a family of convex SDP relaxations  based on the sum­of­squares method and  Positivestellensatz Theorem in real algebraic  geometry, a centralized computational method to  bound the total network utility in polynomial time is  proposed. ● This is effectively a centralized method to compute  the global optimum when the utilities can be  transformed into polynomial utilities.    
  • 22. NUM for Non-Concave Utilities ● In summary, currently there is no theoretically  polynomial­time algorithm (distributed or  centralised) known for non­concave utility  maximization. ● We worked to find ways to convexify the above  problem.     
  • 23. Idea and motivation ● The set may not be a convex set but if it can be  broken into a constant number of convex sets, we  can solve the problem in polynomial time.    
  • 27. Motivation ● By this method, we can solve NUM problem in  polynomial time. NUM finds applications in  network rate allocation algorithms and Internet  Congestion Control Protocol.    
  • 29. Internet Congestion Control ● Internet relies on congestion control implemented in  the end­systems to prevent offered load exceeding  network capacity, as well as allocate network  resources to different users and applications. ● In the past, the applications (email, file transfer) had  concave utilities (i.e were elastic). As number of  multimedia applications are increasing, there are  various talks on different congestion controls.    
  • 30. Internet Congestion Control ● In [5], It has been argued that fairness congestion  control does not maximize the network's utility.  Infact, Admission control is shown to be better  control (in terms of both elastic and inelastic  utilities) than Fair Congestion Control in a  simplified case.  ● Let α be the desired rate of inelastic flows, m be the  number of inelastic flows and n be the number of  elastic flows.     
  • 31. Fair Congestion Control ● Perform TCP­friendly congestion control. We model  it as the same fair congestion control as adopted for  elastic flows, with a slight difference. When the fair  share is smaller than α, then the fair share is used,  but when the fair share is greater than α, the  inelastic flow would still consume α.    
  • 32. Admission Control ● Perform admission control but no congestion control  once admitted. Assume the network already has n  elastic flows and m inelastic flows, a new inelastic  flow is admitted iff nε + (m­1)α <=1 ● Here ε represents the minimum rate admission  control scheme tries to leave for elastic traffic.  Depending upon α, we can have two cases:    
  • 33. Aggressive Admission Control ● ε <<< α – The arriving flow is admitted as long as it  is possible to allocate to it the desired rate of α, even  if this means all elastic flows have to run at their  minimum rate of ε. ● So, an inelastic flow is admitted iff (m+1)α ≤ 1 and  an elastic flow is always admitted.    
  • 34. Fair Admission Control ● ε = α – The arriving flow is admitted as long as its  desired rate is no greater than the prevailing fair  share for each elastic flow. ● So, an inelastic flow is admitted iff (m+n+1)α ≤ 1  and an elastic flow is always admitted. ● In [5], it is proved that Fair Admission control is  better than both Aggressive Admission contol and  Fair Congestion Control.    
  • 35. Idea ● Solving the optimization problem using the  polyblock algorithm would help us to prove (or  disprove) that admission control is better than fair  congestion control. ● Status: Coding to check it under progress.    
  • 37. Bibliography ● [1] H. Tuy, ”Monotonic Optimization: Problems and Solution Approaches”,  SIAM Journal on Optimization, 11:2(2000), 464­494 ● [2]  M. Fazel, M. Chiang, ”Network Utility Maximization With Nonconcave  Utilities Using Sum­of­Squares Method”, Proc. IEEE CDC, December 2005 ● [3] J.W.Lee, R.R. Mazumdar, N. Shroff, ”Non­convex optimization and rate  control for multi­class services in the Internet”, Proc. IEEE Infocom, March  2004  ● [4] M. Chiang, S. Zhang, P. Hande, ”Distributed rate allocation for inelastic  flows: Optimization framework, optimality conditions, and optimal  algorithms”, Proc. IEEE Infocom, March 2005  ● [5] D. M. Chiu, A. ­S. W. Tam, ”Fairness of traffic controls for inelastic  flows in the Internet”, Comput. Netw. (2007), doi:10.1016/j.comnet.   2006.12.2006