SlideShare a Scribd company logo
Normal Distribution
GiventhatZ isthe standard normal distribution.Findthe valuesforthe following
1 P ( Z> 0.2)
P ( Z< -0.2)
0.42074
6 P( -1.5 < Z< -0.6)
P ( Z > -1.5) – P ( Z > -0.6)
P ( Z< 1.5) – P ( Z <0.6)
0.93319- 0.72575
0.2075
11 P ( |z|≥1.334)
P ( z ≥1.334) + p ( -z≥ 1.334)
P ( z < −1.334) + 𝑃 ( 𝑧 <
−1.334)
0.0912 + 0.0912
0.1824
2 P ( Z <- 0.6)= 0.2743
{Mode SD 1 Shift3
P 1 ( -0.6)}
7 P ( 0 < Z < 1.511)
P ( Z > 0 ) – P ( Z > 1.511)
P ( Z < 0 ) – P ( Z < -1.511)
0.5-0.006539
0.4934
P (|z| ≤ 1.112)
1- P ( |Z|≥1.112)
1- [ P ( Z ≥ 1.112 ) + 𝑃 ( 𝑍 ≥
1.112 ) ]
1- [ P ( Z < -1.112) + P ( Z <- 1.112)]
1- [ 0.13307 + 0.13307]
1- 0.26614
0.7338
3 P ( Z >- 1.511)
P ( Z < 1.511)
[ we haveto change> to
< to find Z fromP 1
Calculator]
0.9346
8 P ( -1.013 <Z< -0.203)
P ( Z > -1.013 ) – P ( Z > -
0.203)
P ( Z < 1.013) – P ( Z <
0.203)
0.84447-0.58043
0.2640
4 P(Z<1.327)
0.9077
9 P ( -0.203 ≤ z ≤ 1.327)
P ( z > -0.203) – p ( z >
1.327)
P ( z < 0.203) – p ( z < -
1.327)
0.58043- 0.09225
0.48818
0.4882
5 P(0.2 < Z < 1.2)
P ( Z>0.2) – P ( Z >1.2)
P ( Z < - 0.2) – P ( Z < -
1.2)
0.42074 -0.11507
0.3056
10 P ( z < 0.549)
0.7085
Findthe z score foreach
of the following
P ( Z> z ) = 0.4207
P ( Z <- z ) = 0.4207
Z = 0.2
P ( Z > z ) = 0.1151
P ( Z <-z) = 0.1151
Z= 1.2
P(Z<z)=0.2743
Z= -0.6

More Related Content

PPTX
Example feedforward backpropagation
DOC
Hw8p5
PDF
Capítulo 03 materiais
PPTX
PPTX
Third presentataion fyp
PDF
Ejercicio
PPTX
Normal probability distribution
PPT
normal-distribution-2.ppt
Example feedforward backpropagation
Hw8p5
Capítulo 03 materiais
Third presentataion fyp
Ejercicio
Normal probability distribution
normal-distribution-2.ppt

Similar to Normal distribution SPM (20)

PPTX
Using the normal table in reverse for any normal variable x
PDF
Normal lecture
PPTX
Normal approximation to the poisson distribution
PPTX
Mean, s.d, quartiles, deciles, percentiles by using normal distribution
PPTX
Normal Distribution, Binomial Distribution, Poisson Distribution
PPTX
Normal distribution
PDF
Solution to the Practice Test 3A, Chapter 6 Normal Probability Distribution
PDF
L6.slides.pdf
XLS
Chapter 5
PPTX
Normal Distribution
PPTX
Standard normal distribution
DOC
QMT202/SET2
PPT
Normal distri
PDF
Lecture 10.4 bt
DOC
Chapter 04 answers
PPTX
lesson-2.3-determinng-probabilities-.1.pptx
PDF
Module 6 - Continuous Distribution_efcd52595b081d24a9bc3ca31b5f8d05.pdf
PDF
zScores_HANDOUT.pdf
PPTX
P4_COMPUTING PROBABILITIES USING THE STANDARD NORMAL TABLE.pptx
PDF
Solution to the Practice Test 3A, Normal Probability Distribution
Using the normal table in reverse for any normal variable x
Normal lecture
Normal approximation to the poisson distribution
Mean, s.d, quartiles, deciles, percentiles by using normal distribution
Normal Distribution, Binomial Distribution, Poisson Distribution
Normal distribution
Solution to the Practice Test 3A, Chapter 6 Normal Probability Distribution
L6.slides.pdf
Chapter 5
Normal Distribution
Standard normal distribution
QMT202/SET2
Normal distri
Lecture 10.4 bt
Chapter 04 answers
lesson-2.3-determinng-probabilities-.1.pptx
Module 6 - Continuous Distribution_efcd52595b081d24a9bc3ca31b5f8d05.pdf
zScores_HANDOUT.pdf
P4_COMPUTING PROBABILITIES USING THE STANDARD NORMAL TABLE.pptx
Solution to the Practice Test 3A, Normal Probability Distribution
Ad

More from Hanini Hamsan (20)

PDF
698559309-SOALAN-UASA-MATEMATIK-FORM-1-2023.pdf
PDF
SET-2-MT-Tahun 6-1 matematik UASA Tahun 6
PDF
Pilihaturan dan gabungan Matematik Tambahan
PDF
Janjang Add Maths
DOCX
Fungsi kuadratik
DOCX
Gradient line add maths
DOCX
DOCX
Janjang
DOCX
Fungsi Add Maths
DOCX
Nota pecahan hasil tambah
DOCX
Isipadu 3D Solid Geometri math modern
DOC
Kecerunan Bawah Graf Math Modern SPM Contoh Jawapan
DOCX
Diffrentiation SPM
DOCX
Binomial distribution SPM
DOCX
Integration SPM
DOCX
Index number SPM
DOCX
Logarithma
DOCX
Indices
DOCX
Integration
DOCX
Quadratic function
698559309-SOALAN-UASA-MATEMATIK-FORM-1-2023.pdf
SET-2-MT-Tahun 6-1 matematik UASA Tahun 6
Pilihaturan dan gabungan Matematik Tambahan
Janjang Add Maths
Fungsi kuadratik
Gradient line add maths
Janjang
Fungsi Add Maths
Nota pecahan hasil tambah
Isipadu 3D Solid Geometri math modern
Kecerunan Bawah Graf Math Modern SPM Contoh Jawapan
Diffrentiation SPM
Binomial distribution SPM
Integration SPM
Index number SPM
Logarithma
Indices
Integration
Quadratic function
Ad

Recently uploaded (20)

PDF
LDMMIA Reiki Yoga Finals Review Spring Summer
PDF
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
PDF
What if we spent less time fighting change, and more time building what’s rig...
PDF
International_Financial_Reporting_Standa.pdf
PDF
Paper A Mock Exam 9_ Attempt review.pdf.
PDF
IGGE1 Understanding the Self1234567891011
PDF
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
PDF
MBA _Common_ 2nd year Syllabus _2021-22_.pdf
PDF
Practical Manual AGRO-233 Principles and Practices of Natural Farming
PPTX
202450812 BayCHI UCSC-SV 20250812 v17.pptx
PDF
David L Page_DCI Research Study Journey_how Methodology can inform one's prac...
PPTX
Virtual and Augmented Reality in Current Scenario
PDF
1.3 FINAL REVISED K-10 PE and Health CG 2023 Grades 4-10 (1).pdf
PPTX
TNA_Presentation-1-Final(SAVE)) (1).pptx
PDF
My India Quiz Book_20210205121199924.pdf
PDF
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين
PDF
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
PPTX
CHAPTER IV. MAN AND BIOSPHERE AND ITS TOTALITY.pptx
PDF
FORM 1 BIOLOGY MIND MAPS and their schemes
PPTX
Share_Module_2_Power_conflict_and_negotiation.pptx
LDMMIA Reiki Yoga Finals Review Spring Summer
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
What if we spent less time fighting change, and more time building what’s rig...
International_Financial_Reporting_Standa.pdf
Paper A Mock Exam 9_ Attempt review.pdf.
IGGE1 Understanding the Self1234567891011
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
MBA _Common_ 2nd year Syllabus _2021-22_.pdf
Practical Manual AGRO-233 Principles and Practices of Natural Farming
202450812 BayCHI UCSC-SV 20250812 v17.pptx
David L Page_DCI Research Study Journey_how Methodology can inform one's prac...
Virtual and Augmented Reality in Current Scenario
1.3 FINAL REVISED K-10 PE and Health CG 2023 Grades 4-10 (1).pdf
TNA_Presentation-1-Final(SAVE)) (1).pptx
My India Quiz Book_20210205121199924.pdf
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
CHAPTER IV. MAN AND BIOSPHERE AND ITS TOTALITY.pptx
FORM 1 BIOLOGY MIND MAPS and their schemes
Share_Module_2_Power_conflict_and_negotiation.pptx

Normal distribution SPM

  • 1. Normal Distribution GiventhatZ isthe standard normal distribution.Findthe valuesforthe following 1 P ( Z> 0.2) P ( Z< -0.2) 0.42074 6 P( -1.5 < Z< -0.6) P ( Z > -1.5) – P ( Z > -0.6) P ( Z< 1.5) – P ( Z <0.6) 0.93319- 0.72575 0.2075 11 P ( |z|≥1.334) P ( z ≥1.334) + p ( -z≥ 1.334) P ( z < −1.334) + 𝑃 ( 𝑧 < −1.334) 0.0912 + 0.0912 0.1824 2 P ( Z <- 0.6)= 0.2743 {Mode SD 1 Shift3 P 1 ( -0.6)} 7 P ( 0 < Z < 1.511) P ( Z > 0 ) – P ( Z > 1.511) P ( Z < 0 ) – P ( Z < -1.511) 0.5-0.006539 0.4934 P (|z| ≤ 1.112) 1- P ( |Z|≥1.112) 1- [ P ( Z ≥ 1.112 ) + 𝑃 ( 𝑍 ≥ 1.112 ) ] 1- [ P ( Z < -1.112) + P ( Z <- 1.112)] 1- [ 0.13307 + 0.13307] 1- 0.26614 0.7338 3 P ( Z >- 1.511) P ( Z < 1.511) [ we haveto change> to < to find Z fromP 1 Calculator] 0.9346 8 P ( -1.013 <Z< -0.203) P ( Z > -1.013 ) – P ( Z > - 0.203) P ( Z < 1.013) – P ( Z < 0.203) 0.84447-0.58043 0.2640 4 P(Z<1.327) 0.9077 9 P ( -0.203 ≤ z ≤ 1.327) P ( z > -0.203) – p ( z > 1.327) P ( z < 0.203) – p ( z < - 1.327) 0.58043- 0.09225 0.48818 0.4882 5 P(0.2 < Z < 1.2) P ( Z>0.2) – P ( Z >1.2) P ( Z < - 0.2) – P ( Z < - 1.2) 0.42074 -0.11507 0.3056 10 P ( z < 0.549) 0.7085
  • 2. Findthe z score foreach of the following P ( Z> z ) = 0.4207 P ( Z <- z ) = 0.4207 Z = 0.2 P ( Z > z ) = 0.1151 P ( Z <-z) = 0.1151 Z= 1.2 P(Z<z)=0.2743 Z= -0.6