SlideShare a Scribd company logo
Cover Page 

 




Notational Engineering 
and the Search for New 
Intellectual Primitives 
 
 
Author: Jeffrey G. Long (jefflong@aol.com) 

Date: September 25, 2002 

Forum: Talk presented at the Lawrence Livermore National Laboratory.

 
 

                                 Contents 
Pages 1‐2: Proposal and Bio 

Pages 3‐31: Slides (but no text) for presentation 

 


                                  License 
This work is licensed under the Creative Commons Attribution‐NonCommercial 
3.0 Unported License. To view a copy of this license, visit 
http://creativecommons.org/licenses/by‐nc/3.0/ or send a letter to Creative 
Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA. 




                                Uploaded June 27, 2011 
Title: The Notation is the Limitation: Notational Engineering and the Search for New Intellectual 
Primitives  

Speaker: Jeffrey G. Long 

Date: September 25, 2002 

Estimated time: 60 minutes (45 for talk, 15 for Q&A) 

The abstractions we use enable our perception, thought and communication, but they can also limit it.  
This talk will first present the thesis that in order to understand complex systems, and to adequately 
respond to many of the other challenges facing society today, we will need to develop wholly new 
abstractions ‐ new intellectual primitives ‐ with which to see and describe nature.  It will argue that such 
an effort would be greatly accelerated, and made much more likely to succeed, by the creation of a 
proposed new discipline called "notational engineering,"  which will be described. 

As an example of notational engineering, the talk will then present a theory of representation which is 
based on a new intellectual primitive called a "ruleform".  The theory, called "Ultra‐Structure Theory,"  
sees entities, structures and relationships as by‐products of complex processes, and postulates that any 
process can be represented by a finite but possibly large set of rules.  It further hypothesizes that rules 
in any format can be converted into an If/Then format, and can be placed into a series of tables based 
on the particular "form" of the rules,  i.e. how many "If" conditions there are, and how many "Then" 
statements there are.  These place‐value tables are called "ruleforms", and they offer a practical and 
formal, yet highly abstract and concise way of organizing and representing myriad numbers of rules.   

Lastly, as an example of a recent application of Ultra‐Structure, the talk will briefly discuss a project that 
was done for the Department of Energy to describe the rules of English and the rules of DOE 
classification guidance such that a computer could determine the classification level and category of a 
text document.  The resulting knowledgebase consisted of tens of thousands of rules and was 
maintained directly by subject experts (in this case, certified document classifiers). 

Further information: 

Civilizations have traditionally developed notational systems by accident rather than systematically, so 
the hunt for new abstractions could be greatly facilitated by the systematic study of the history and 
evolution of a variety of types of notational system, e.g. the branches of mathematics, language and 
writing, musical notation, chemical notation, movement and dance notation, and money. In particular 
this search would be helped by a good general theory of the structure of notational revolutions such as 
occurred with Hindu‐Arabic numerals or the infinitesimal calculus.  This proposed new subject of 
"notational engineering" would have as a primary goal the development and systematic testing of new 
abstractions in many areas, including (e.g.) new ways of representing value besides money, and new 
ways of representing complex systems besides the current tools of mathematics, computer science and 
natural language.  

Ultra‐Structure Theory represents all knowledge of the world in tables of data rather than in the 
software of the system, so that the remaining  software is "merely" an inference engine that has very 
little subject‐specific knowledge.  This makes the knowledge (rules) easy to modify and liberates subject 
experts to directly manage the knowledge, rather than needing to communicate through a programmer 
to change program code.  
Ultra‐Structure Theory constitutes a merger of expert system and relational database theories which 
minimizes the need for software maintenance and maximizes system flexibility.  One prediction resulting 
from the theory is that all the members of each broad class of systems (e.g. all  corporations, all games, 
all legal systems, all biological systems) differ from each other in terms of the specific rules governing 
their behavior, but not in the form of these rules.  In other words, families of systems share the same 
"deep structure" or collection of ruleforms.  

Biographical Information: 

Mr. Long is a Systems Scientist.  From 1995‐2002 he worked for DynCorp Systems and Solutions, a 
Washington consulting and services firm, on a contract for DOE.  Prior to that he worked at The George 
Washington University as a Senior Research Scientist, first as director of the Notational Engineering 
Laboratory and then also as Deputy Director of the Declassification Productivity Research Center.  He 
holds a BA degree in Psychology from the University of California at Berkeley. 
The Notation is
      the Limitation
Notational Engineering and the
Search for New Intellectual Primitives




              Jeffrey G. Long
            September 25, 2002
             jefflong@aol.com
Proposed outline
P      d    li

 1: Background on the general problem:
  representation and notational systems

 2: Overview of Ultra-Structure: an approach to
  complex systems using a new abstraction

 3: Example: The Reviewers Assistance System


September 25, 2002   Copyright 2002 Jeff Long      2
1: The Problem




September 25, 2002   Copyright 2002 Jeff Long   3
Many, if not most, of our current problems arise from
     y,          ,                p
the way we represent them

 We may have pragmatic competence in using certain kinds
  of complex systems but we still don’t really understand
  them theoretically
    – economics, finance, markets
    – medicine, physiology, biology, ecology


 This is not because of the nature of the systems, but rather
  because our analytical tools – our notational systems and
  the abstractions they reify -- are inadequate



September 25, 2002        Copyright 2002 Jeff Long               4
Complexity is not a property of systems; rather,
perplexity is a property of the observer

 Systems appear complex under certain conditions; when
  better understood they may still be “complicated” but they
  are tractable to explanation

 Using the wrong, or too-limited, an analytical toolset
  creates these “complexity barriers”; they cannot be
  breached without a new notational system
  b     h d ih                 i l

 These problems cannot be solved by working harder,
  using faster computers, or moving to OO techniques; they
  do not arise due to lack of effort or lack of factual
  information
September 25, 2002     Copyright 2002 Jeff Long                5
So far we have explored maybe 12 major
   abstraction spaces




September 25, 2002   Copyright 2002 Jeff Long   6
Notational systems facilitate perception, cognition and
communication


 Each primary notational system maps a different
  “abstraction space”
      – Abstraction spaces are incommensurable
      – Perceiving these is a uniquely human ability
 Acquiring literacy in a notation is learning how to see
  a new abstraction space
 Having acquired such literacy, we see the world
  differently and can think about it differently



September 25, 2002         Copyright 2002 Jeff Long         7
Notational Theory Offers a New Intellectual Synthesis

 Broadened to include all notational systems (not just
  language), it sheds light on, and integrates:
  l       ) i h d li h            di
     – Whorf’s notion of linguistic relativity,
     – Chomsky’s notion of an innate linguistic capability
             y                          g         p      y
     – Toynbee’s notion of the evolution of civilizations by challenge
       and response
     – parts of numerous other theories in many areas




September 25, 2002          Copyright 2002 Jeff Long                     8
Conclusions From Section 1
 Every set of intellectual primitives, reified in a
       y                    p         ,
  notational system, has limitations: these appear to us
  in the form of a “complexity barrier”

 Many of the problems we face now as a civilization
  a e u da e ta y ep ese tat o a o otat o a
  are fundamentally representational or notational

 We need a more systematic way to develop and settle
  abstraction spaces: notational engineering



September 25, 2002     Copyright 2002 Jeff Long            9
2: O New Approach
           2 One N A       h




September 25, 2002   Copyright 2002 Jeff Long   10
Current engineering methods work well only under
certain conditions




September 25, 2002   Copyright 2002 Jeff Long      11
This is the area addressed by Ultra-Structure Theory


 Ultra-Structure Theory is a general theory of systems
  representation, developed/tested starting in 1985
 F
  Focuses on optimal computer representation of complex,
                 i l                        i    f     l
  conditional and changing rules
 Based on a new abstraction called ruleforms

 The breakthrough was to find the unchanging features of
  changing systems



September 25, 2002   Copyright 2002 Jeff Long               12
Unfortunately,
  Unfortunately Complex and Changing Needs Exist in
  Every Organization




       Needs


SW & DB

time 1                  time 2                   time 3...




 September 25, 2002   Copyright 2002 Jeff Long               13
The theory is based upon a different way of describing
     complex systems and processes



  observable
   behaviors                                         surface structure
                                          generates
         rules                                    middle structure
                                          constrains
form of rules
f     f l                                          deep structure



     September 25, 2002   Copyright 2002 Jeff Long                   14
As Wolfram has recently argued, rules are a very
                       y g      ,              y
powerful way of describing things


 Multi-notational: can include all other notational
  systems
 Explicitly contingent
 Describe both behavior and mechanism
 H d d of th
  Hundreds f thousands can b represented and
                       d      be           t d d
  executed by a desktop computer




September 25, 2002     Copyright 2002 Jeff Long        15
Hypothesis: Any type of assertion can be
reformulated into one or more If-Then rules
   Natural language statements
   Musical scores
   Logical arguments
   Business processes
   Architectural drawings
   Mathematical statements
    M th      ti l t t     t

 But often several “atomic” rules are needed to create
                     atomic
  one “molecular” rule, e.g. “3 strikes and you’re out”


September 25, 2002     Copyright 2002 Jeff Long           16
If/Then Rules are Best Represented as Data (records)
Organized into Tables in a Relational Database
O     i d i t T bl i       R l ti   lD t b
                      If A and B   then consider C, D, E, F...

                          A B C D E F
                     1
                     2
   Rule #
                     3
                     4
                     5
                                                              }   1 Ruleform

                     n




September 25, 2002                 Copyright 2002 Jeff Long                    17
Structured and Ultra-Structured data are semantically
                                                    y
quite different
 Structured data separates algorithms and data, and is
  good for data processing and information retrieval
  tasks,e.g. reports, queries, data entry

 Ultra-Structured data has only “rules”, formatted in
  a manner that allows a very small inference engine
  to reason with them using standard deductive logic

 Th inference engine (“animation rules”) software
  The i f            i (“ i i          l ”) f
  has little or no knowledge of the external world


September 25, 2002   Copyright 2002 Jeff Long             18
The Ruleform Hypothesis

        Complex system structures are created by not-
        necessarily complex processes; and these
                 il       l                 d h
        processes are created by the animation of
        operating rules. Operating rules can be grouped
        into a small number of classes whose form is
        i           ll   b    f l         h    f     i
        prescribed by "ruleforms". While the operating
        rules of a system change over time, the ruleforms
        remain constant. A well-designed collection of
        ruleforms can anticipate all logically possible
        operating rules that might apply to the system,
        and constitutes the deep structure of the system.



September 25, 2002       Copyright 2002 Jeff Long           19
The CoRE Hypothesis
Th C RE H    th i

    We can create “Competency Rule Engines”, or
    CoREs,
    C RE consisting of <50 ruleforms, th t are
                   i ti   f 50 l f            that
    sufficient to represent all rules found among
    systems sharing broad family resemblances, e.g.
    all corporations. Th i d fi iti d
     ll         ti      Their definitive deep structure
                                                 t t
    will be permanent, unchanging, and robust for all
    members of the family, whose differences in
    manifest structures and b h i
         if                  d behaviors will b
                                            ill be
    represented entirely as differences in operating
    rules. The animation procedures for each engine
    will be relatively simple compared to current
    applications, requiring less than 100,000 lines of
    code in a third generation language.

September 25, 2002    Copyright 2002 Jeff Long            20
The deep structure of a system specifies its ontology

 What is common among all systems of type X?
 What is the fundamental nature of type X systems?
 What are the primary processes and entities involved
  in type X systems?
 What makes systems of type X different from
  systems of type Y?


 If we can answer these questions about a system,
  then we have achieved real understanding



September 25, 2002    Copyright 2002 Jeff Long           21
Conclusions From Section 2
 One example of a new abstraction is ruleforms To
                                         ruleforms.
  truly understand complex systems such as biological
  systems, we must get beyond appearances (surface
  structure) and rules (middle structure) to the stable
  ruleforms (deep structure).


 This is the goal of Ultra-Structure Theory.




September 25, 2002   Copyright 2002 Jeff Long             22
3: Application Example: the
  Reviewer’s Assistance System



September 25, 2002   Copyright 2002 Jeff Long   23
DOE Reviewer’s Assistance System Requirements


 650 guides defining 65,000 topics that are or may be
  classified
 E
  Extensive background knowledge required to interpret
          i b k        dk     l d        i d i
  guidance
 Guidance changes over time
 Terminology in documents changes over time
 The objective is advanced concept spotting, not document
  understanding



September 25, 2002   Copyright 2002 Jeff Long            24
Normally This Would be Done Using an Expert
System Shell


 ES often have trouble with >1,000 rules; RAS has
  >100,000 rules
 K i
  Key issue i the maintainability of rules by experts
             is h       i i bili   f l b
 There are many benefits from using relational database to
  store rules as data, including:
     – Built-in referential integrity
     – Easy report-writing and queries
     – S bj t experts can maintain knowledgebase directly, without
       Subject     t        i t i k    l d b     di tl      ith t
         relying on KE or Programmers



September 25, 2002          Copyright 2002 Jeff Long                 25
RAS D fi
     Defines G id
             Guidance Concepts and All P
                       C      t   d    Possible
                                           ibl
Lexical Expressions of Those Concepts




                      System                        Define
Convert Guides                                  Interpretations
                      Ready




    Read               Apply                     Document
  Document            Guidance                   Reviewed


September 25, 2002   Copyright 2002 Jeff Long                     26
Rules Specify Relations Between Topics, Concepts, and
Tokens
T k




September 25, 2002   Copyright 2002 Jeff Long           27
Conclusions From Section 3
            C l i       F    S i

 A rule-based system can provide precise and rigorous
  interpretation of key DOE terms and concepts

 A rule-based system stored as tables in a relational
  database allows creation of a knowledgebase which can
  become as large as necessary

 Such a knowledgebase is very easy to specify, change and
  review directly by subject experts


September 25, 2002   Copyright 2002 Jeff Long             28
References
 Long, J., and Denning, D., “Ultra-Structure: A design theory for
  complex systems and processes.” In Communications of the ACM
                         processes
  (January 1995)
 Long, J., “A new notation for representing business and other rules.”
  In Long, J. (guest editor), Semiotica Special Issue on Notational
  Engineering, Volume 125-1/3 (1999)
 Long, J., “How could the notation be the limitation?” In Long, J.
  (guest editor), Semiotica Special Issue on Notational Engineering,
  Volume 125-1/3 (1999)
           125 1/3
 Long, J., "Automated Identification of Sensitive Information in
  Documents Using Ultra-Structure". In Proceedings of the 20th Annual
  ASEM Conference, American Society for Engineering Management
  (October 1999)




 September 25, 2002        Copyright 2002 Jeff Long                       29

More Related Content

PDF
Enhancing Collaborative Distance Learning through Wiki and Cognitive Mapping
PDF
The Culture of Scheme Programming
PDF
Natural Language Inference: for Humans and Machines
PDF
Pattern-based competence management
PDF
Multimodal Deep Learning (D4L4 Deep Learning for Speech and Language UPC 2017)
PDF
Uncovering Analogness and Digitalness in Interactive Media
PDF
Speaker ID II (D4L1 Deep Learning for Speech and Language UPC 2017)
PDF
Ik ben een aanrader goeroe-lezing
Enhancing Collaborative Distance Learning through Wiki and Cognitive Mapping
The Culture of Scheme Programming
Natural Language Inference: for Humans and Machines
Pattern-based competence management
Multimodal Deep Learning (D4L4 Deep Learning for Speech and Language UPC 2017)
Uncovering Analogness and Digitalness in Interactive Media
Speaker ID II (D4L1 Deep Learning for Speech and Language UPC 2017)
Ik ben een aanrader goeroe-lezing

Similar to Notational engineering and the search for new intellectual primitives (20)

PDF
The hunt for new abstractions
PDF
Understanding complex systems
PDF
Why we dont understand complex systems
PDF
New ways to represent complex systems and processes
PDF
Notational engineering
PDF
Notational systems and abstractions
PDF
The evolution of abstractions
PDF
Managing and benefiting from multi million rule systems
PDF
Ten lessons from a study of ten notational systems
PDF
Mathematics rules and scientific representations
PDF
Notational evolution and revolution
PDF
Notation as a basis for societal evolution
PDF
Notational systems and the abstract built environment
PDF
Automated identification of sensitive information
PDF
The nature of notational engineering
PDF
Applying a new software development paradigm to biology
PDF
Notational systems and cognitive evolution
PDF
Call for a new notation
PDF
Issues in the study of abstractions
PDF
What Is A Structural Representation
The hunt for new abstractions
Understanding complex systems
Why we dont understand complex systems
New ways to represent complex systems and processes
Notational engineering
Notational systems and abstractions
The evolution of abstractions
Managing and benefiting from multi million rule systems
Ten lessons from a study of ten notational systems
Mathematics rules and scientific representations
Notational evolution and revolution
Notation as a basis for societal evolution
Notational systems and the abstract built environment
Automated identification of sensitive information
The nature of notational engineering
Applying a new software development paradigm to biology
Notational systems and cognitive evolution
Call for a new notation
Issues in the study of abstractions
What Is A Structural Representation
Ad

More from Jeff Long (10)

PDF
Four ways to represent computer executable rules
PDF
Case study of rules as relational data
PDF
Case study of rules as relational data
PDF
Developing applications that stand the test of time
PDF
Towards a new paradigm to resolve the software crisis
PDF
A metaphsical system that includes numbers rules and bricks
PDF
The co evolution of symbol systems and society
PDF
Representing emergence with rules
PDF
The evolution of symbol systems and society
PDF
Towards a new metaphysics of complex processes
Four ways to represent computer executable rules
Case study of rules as relational data
Case study of rules as relational data
Developing applications that stand the test of time
Towards a new paradigm to resolve the software crisis
A metaphsical system that includes numbers rules and bricks
The co evolution of symbol systems and society
Representing emergence with rules
The evolution of symbol systems and society
Towards a new metaphysics of complex processes
Ad

Recently uploaded (20)

PDF
WOOl fibre morphology and structure.pdf for textiles
PDF
gpt5_lecture_notes_comprehensive_20250812015547.pdf
PDF
NewMind AI Weekly Chronicles - August'25-Week II
PPTX
Digital-Transformation-Roadmap-for-Companies.pptx
PDF
Unlocking AI with Model Context Protocol (MCP)
PDF
Microsoft Solutions Partner Drive Digital Transformation with D365.pdf
PDF
Accuracy of neural networks in brain wave diagnosis of schizophrenia
PPTX
SOPHOS-XG Firewall Administrator PPT.pptx
PDF
Agricultural_Statistics_at_a_Glance_2022_0.pdf
PPTX
TLE Review Electricity (Electricity).pptx
PDF
Video forgery: An extensive analysis of inter-and intra-frame manipulation al...
PDF
project resource management chapter-09.pdf
PDF
DASA ADMISSION 2024_FirstRound_FirstRank_LastRank.pdf
PDF
Transform Your ITIL® 4 & ITSM Strategy with AI in 2025.pdf
PDF
Encapsulation_ Review paper, used for researhc scholars
PDF
Heart disease approach using modified random forest and particle swarm optimi...
PDF
Encapsulation theory and applications.pdf
PPTX
OMC Textile Division Presentation 2021.pptx
PDF
MIND Revenue Release Quarter 2 2025 Press Release
PDF
A comparative analysis of optical character recognition models for extracting...
WOOl fibre morphology and structure.pdf for textiles
gpt5_lecture_notes_comprehensive_20250812015547.pdf
NewMind AI Weekly Chronicles - August'25-Week II
Digital-Transformation-Roadmap-for-Companies.pptx
Unlocking AI with Model Context Protocol (MCP)
Microsoft Solutions Partner Drive Digital Transformation with D365.pdf
Accuracy of neural networks in brain wave diagnosis of schizophrenia
SOPHOS-XG Firewall Administrator PPT.pptx
Agricultural_Statistics_at_a_Glance_2022_0.pdf
TLE Review Electricity (Electricity).pptx
Video forgery: An extensive analysis of inter-and intra-frame manipulation al...
project resource management chapter-09.pdf
DASA ADMISSION 2024_FirstRound_FirstRank_LastRank.pdf
Transform Your ITIL® 4 & ITSM Strategy with AI in 2025.pdf
Encapsulation_ Review paper, used for researhc scholars
Heart disease approach using modified random forest and particle swarm optimi...
Encapsulation theory and applications.pdf
OMC Textile Division Presentation 2021.pptx
MIND Revenue Release Quarter 2 2025 Press Release
A comparative analysis of optical character recognition models for extracting...

Notational engineering and the search for new intellectual primitives