NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.
Considerations for a Standardized Test for 
Potential‐Induced Degradation of Crystalline 
Silicon PV Modules
2012 PVMRW
Peter Hacke
February 29, 2012
NREL/PR-5200-54581
2
Major contributions from:
Steve Glick
Ryan Smith
Mike Kempe
Steve Johnston
Joel Pankow
Sarah Kurtz
Kent Terwilliger
Dirk Jordan
Steve Rummel
Alan Anderberg
Bill Sekulic
3
Motivation
• Over the past decade, there have been observations of module 
degradation and power loss because of the stress that system 
voltage bias exerts.  
• More sensitive modules
• Higher system voltage
• This results in part from qualification tests and standards not 
adequately evaluating for the durability of modules to the long‐term 
effects of high voltage bias that they experience in fielded arrays. 
• This talk deals with factors for consideration, progress, and 
information still needed for a standardized test for degradation due 
to system voltage stress.
“Oh no! our modules are down 40%,
we think it is potential–induced degradation”
‐anonymous module manufacturer, 2010
4
Timeline for system voltage durability
• Need for a better standard for system voltage durability brought up 
several times in the last decades, but did not get traction. Lack of field 
data, proposed tests overly harsh.
• I brought this up again in the Fall 2010 Working Group 2 (WG 2) meeting 
(Köln) and got a small working together, but most people were in the 
process of getting experience about system voltage effects.
• Spring 2011 WG 2 meeting (Shanghai), indications of increased urgency 
for a standard, assembled more people for this task team.
• Fall 2011 WG 2 meeting (Montreal), presented an initial draft for 
comments.
• Present day…
5
Goals for a standard – two steps
1. Stand‐alone test (new standard): 
System voltage durability test for crystalline silicon 
modules – design qualification and type approval, 
submitted as a New Work Item Proposal to IEC, Dec. 
2011.
2. Incorporate test into IEC 61215
Seek to incorporate above stand‐alone test with any 
necessary supplements within IEC 61215
– add test after clause 10.13, Damp Heat Test 1000 h 
under consideration.
6
Design standard for a climate: Köppen climate classification
GROUP C: Temperate/mesothermal climates
Maritime/oceanic climates: (Cfb, Cwb, Cfc)
Humid subtropical climates (Cfa, Cwa)
Consider for standard: Humid subtropical,
and Humid Oceanic.
Need to design for the market. More
stressful environments exist, and that
should be noted in the eventual standard.
7
Experimental Overview
1) HV Test bed in Florida USA
• 2 module types fielded in February 2011
2) Chamber testing of the same 2 module designs
tested in Florida
• 85% RH; 85°C, 60°C, 50°C
Pmax vs t
3) Comparison of failure rates for determination of
acceleration factors and failure mechanisms for
input into standardized test
8
Definitions
S. Pingel et al., “Potential Induced Degradation of Solar Cells and Panels,” 35th IEEE PVSC, Honolulu, 2010, pp. 2817–2822.
Electroluminescence of mc‐Si module strings indicating 
shunting in the negative portion of a center mounted or 
floating string
 Electrochemical corrosion
c‐Si
Mon & Ross
JPL, 1985 Polarization   
c‐Si
Swanson
SunPower, 2005
?Other power loss   
thin‐films    
unpublished
 Delamination, corrosion
a‐Si
Wohlgemuth
BP Solar, 2000
9
Definitions
S. Pingel et al., “Potential Induced Degradation of Solar Cells and Panels,” 35th IEEE PVSC, Honolulu, 2010, pp. 2817–2822.
Electroluminescence of mc‐Si module strings indicating 
shunting in the negative portion of a center mounted or 
floating string
 Electrochemical corrosion
c‐Si
Mon & Ross
JPL, 1985 Polarization   
c‐Si
Swanson
SunPower, 2005
?Other power loss   
thin‐films    
unpublished
 Delamination, corrosion
a‐Si
Wohlgemuth
BP Solar, 2000
Needs an 
unambiguous 
name
10
Definitions – this standard will cover
S. Pingel et al., “Potential Induced Degradation of Solar Cells and Panels,” 35th IEEE PVSC, Honolulu, 2010, pp. 2817–2822.
Electroluminescence of mc‐Si module strings indicating 
shunting in the negative portion of a center mounted or 
floating string
 Electrochemical corrosion
c‐Si
Mon & Ross
JPL, 1985 Polarization   
c‐Si
Swanson
SunPower, 2005
?Other power loss   
thin‐films    
unpublished
 Delamination, corrosion
a‐Si
Wohlgemuth
BP Solar, 2000
11
Definitions – this standard will cover
S. Pingel et al., “Potential Induced Degradation of Solar Cells and Panels,” 35th IEEE PVSC, Honolulu, 2010, pp. 2817–2822.
Electroluminescence of mc‐Si module strings indicating 
shunting in the negative portion of a center mounted or 
floating string
Polarization   
c‐Si
Swanson
SunPower, 2005
12
System voltage durability
• Designed to cover c‐Si
• More than just PID of conventional cells/modules
‐ Polarization (like SunPower)
‐ Non‐reversible elements of PID
‐ Rear junction bifacial cells.  ECN bifacial/Yingli ‘Panda’
‐ HIT cells
‐ Framed/unframed modules of various types
‐ Long term view for harmonization with thin film 
system voltage durability
13
Factors for test – leakage current
Glass (Na content)
Circuit resistance factors – cutting relevant series R cuts degradation 
Glass‐face
(H2O, conductive dirt)
Frame materials, 
tapes, and design
Interfaces
Encapsulant
Grounding scheme
(grounded vs. ungrounded)
Voltage potential of active layer, and leakage from that 
voltage to ground govern degradation in susceptible modules 
T. J. McMahone, Prog. Photovolt: Res. Appl. 2004; 12:235–248
14
Test factors
• Voltage
• Mounting/grounding
• Humidity, surface 
conductivity
• Temperature
-40%
-35%
-30%
-25%
-20%
-15%
-10%
-5%
0%
5%
1 2 3 4 5 6 7 8 9
Voltage position (1=negative, 9=most positive)
%changeinpower
Power Loss vs. Position in String:
Polarization, SunPower Modules
R . M. Swanson, The surface polarization effect in high-efficiency
solar cells, PVSEC-15, Shanghai
15
Test factors
Completing the circuit to ground in a manner 
representative of mfg. module mounting scheme
Leakage current may be measured as in indicator of 
module package resistance
• Voltage
• Mounting/grounding
• Humidity, surface 
conductivity
• Temperature
16
Test factors
Al foil, carbon film, etc, for surface conductivity
+ Quick/cheap
+ Good screening test
– Won’t differentiate humidity effects
(water leaches Na‐lime glass)
– unclear how it connects to textured glass
– bypasses frame or laminate mount’s ability to  
reduce degradation, limiting fixes to PID
www.bangkoksolar.com
From: C. R. Osterwald, Solar Energy Materials & Solar Cells 79 (2003) 21–33
* Modules that lack a frame and use mounting points bonded to the backsheet glass 
show no damage [to the extent tested].
* Damage rates can be slowed if leakage currents that are caused by voltage 
potentials between the frame and the internal circuitry are reduced.
• Voltage
• Mounting/grounding
• Humidity, surface 
conductivity
• Temperature
Photo: Erik Eikelboom 2011:10:17
17
Test factors
Module leakage vs. humidity
P. Hacke et. al., 25th EPVSEC, 6‐10 September 2010, Valencia, Spain
Surface conductivity of soda‐lime glass vs. humidity
Because we need to measure the 
performance of not only the module 
laminate, but the frame or mounts, the 
standard as written uses humidity for the 
circuit to ground.
• Voltage
• Mounting/grounding
• Humidity, surface 
conductivity
• Temperature
18
Test factors
Degradation vs. time of mc-Si modules, -600 V, 85% RH
P. Hacke et al., Testing and Analysis for Lifetime Prediction of Crystalline Silicon PV Modules
Undergoing Degradation by System Voltage Stress, 38th IEEE PVSC, Austin, 2012
50 °C
60°C
85°C
• Voltage
• Mounting/grounding
• Humidity, surface 
conductivity
• Temperature
RH= 85%
• Temperature dependence, repeatable
• Arrhenius behavior over temperature range, unless alternate conduction paths exist
19
Test levels
D. Buemi, Thin‐Film PV Powers the Number 1 Global Solar 
Integrator, davebuemi.com, accessed Feb 22, 2012
• System voltage, now effectively 
governed by IEC 61730‐2’s 
partial discharge test, not PID, 
generally
• Test at rated system voltage
• Maximum nameplate value (behind‐the‐
fence/utilities don’t run to UL code)
• Both polarities (if not polarity is specified)
• Slight acceleration since actual operating V 
lower 
• Voltage
• Mounting/grounding
• Humidity, surface 
conductivity
• Temperature
20
“For continuous metallic frames encasing the 
perimeter of the module, the ground terminal of the 
high voltage power supply shall be connected … to a 
module grounding point of the module. “
“If (1) the PV module is provided or is specified for use 
with means for mounting and (2) the module is 
designed and specified not to be connected to ground, 
then such method of mounting the module shall be 
implemented to the extent possible.”
Test levels
• Voltage
• Mounting/grounding
• Humidity, surface 
conductivity
• Temperature
http://www.solarframeworks.com
SolarFrameWorks Co, BIPV Cool Ply
Accessed Feb 22, 2012
Draft standard:
21
Test levels
• Voltage
• Mounting/grounding
• Humidity, surface 
conductivity
• Temperature
• 85% RH damp heat chamber, a level that chambers 
are capable of holding, uniformly
22
Test levels
• Voltage
• Mounting/grounding
• Humidity, surface 
conductivity
• Temperature
What level of stress in an accelerated tests reproduces 
well the failure modes we seek to test for ?
How long should it be stressed at that temperature? 
What is the acceleration factor?
23
Failure mode in fielded module
Series resistance losses, as seen in chamber tests, are not 
yet observed in the field
Module mounted in Florida, USA after ten months with the active layer biased at 
‐1500 V during the day degraded to 0.35 Pmax_0
EL Thermography
PL (in Voc)
Dark=recombination
PL (in Jsc)
Light=series resistance
24
Step‐stress for determination of failure modeOpticalELThermography
SiNx oxidation: not seen in field!
PL (in Voc)
Dark=recombination
PL (in Jsc)
Light=series resistanceMixed mode –
Series resistance/recombination
PID recombination
50°C, 50%RH 70°C, 70%RH 85°C, 85%RH
Each step:
–1000 V stress 145 h
+1000 V recovery 145 h
(145 h preconditioning at T & RH level
25
Performance of two module types
In Florida, USA
–600 V applied 
logarithmically with 
irradiance
333 days
In chamber
85% RH
–600 V
Type 2, 85°
Type 2, 60°
Type 2, 50°
Type 1
Type 2
More details at 2012 IEEE PVSC
26
Performance of two module types
In Florida, USA
–600 V applied 
logarithmically with 
irradiance
333 days
In chamber
85% RH
–600 V
Type 2, 85°
Type 2, 60°
Type 2, 50°
Type 1
Type 2 Module Type 1: Acceptable 
performance in the field 
survives with less than 5% 
power drop in chamber 
with 85% RH, 60°C, rated 
system voltage, for 96 h
27
Performance of two module types
In Florida, USA
–600 V applied 
logarithmically with 
irradiance
333 days
In chamber
85% RH
–600 V
Type 2, 85°
Type 2, 60°
Type 2, 50°
Type 1
Type 2 Module Type 1: Acceptable 
performance in the field 
survives with less than 5% 
power drop in chamber 
with 85% RH, 60°C, rated 
system voltage, for 96 h
Module Type 2: 5% 
power drop in 4934 h 
in Florida and 12 h in 
chamber at 60° C, 
(considered a failing 
module)
More details at 2012 IEEE PVSC
28
Test levels
Use condition: Florida, USA, ‐600 V simulated array V
Acceleration condition: 85% RH, T as plotted
Failure: 0.95 Pmax_0
AF = 427 at 60°C, 85% RH
Test duration, 96 h
Field equivalent: 4.7 y
“The following conditions shall be applied:
• Chamber air temperature 60 °C ± 2°C
• Chamber relative humidity 85 % ± 5 % RH
• Test duration 96 h
• Voltage: module rated system voltage and polarities”
(one module per polarity)”
• Voltage
• Mounting/grounding
• Humidity, surface 
conductivity
• Temperature
Draft standard:
29
Next steps: Testing at multiple labs
Determine reproducibility
• 2‐3 samples per condition 
• Presumably 85% RH‐60°C, but consider alternates 
for post IEC‐61215 tests
• 5 labs
• NREL
• ASU
• …let us know if you are interested!
• Samples from 3 manufacturers
Thank you

More Related Content

PDF
Photovoltaic Module Weather Durability & Reliability
PPTX
Soil degradation and regeneration
PDF
Vlsi Design And Test For Systems Dependability Shojiro Asai
PDF
DNV GL Scorecard_final version
PDF
IEC 62804 Status Update
PPTX
You Be the Judge: A Ratings Tool for Selecting the Best Solar Module
PDF
Mc calley pserc_final_report_s35_special_protection_schemes_dec_2010_nm_nsrc
PDF
Energy Storage 01
Photovoltaic Module Weather Durability & Reliability
Soil degradation and regeneration
Vlsi Design And Test For Systems Dependability Shojiro Asai
DNV GL Scorecard_final version
IEC 62804 Status Update
You Be the Judge: A Ratings Tool for Selecting the Best Solar Module
Mc calley pserc_final_report_s35_special_protection_schemes_dec_2010_nm_nsrc
Energy Storage 01

Recently uploaded (20)

PDF
Hybrid horned lizard optimization algorithm-aquila optimizer for DC motor
PDF
A proposed approach for plagiarism detection in Myanmar Unicode text
PDF
Comparative analysis of machine learning models for fake news detection in so...
PPTX
Modernising the Digital Integration Hub
PDF
Convolutional neural network based encoder-decoder for efficient real-time ob...
PDF
STKI Israel Market Study 2025 version august
PDF
Credit Without Borders: AI and Financial Inclusion in Bangladesh
PDF
Produktkatalog für HOBO Datenlogger, Wetterstationen, Sensoren, Software und ...
PPT
What is a Computer? Input Devices /output devices
PDF
How ambidextrous entrepreneurial leaders react to the artificial intelligence...
PPT
Geologic Time for studying geology for geologist
PPT
Module 1.ppt Iot fundamentals and Architecture
PDF
NewMind AI Weekly Chronicles – August ’25 Week III
PPTX
The various Industrial Revolutions .pptx
PPTX
Final SEM Unit 1 for mit wpu at pune .pptx
PPTX
Custom Battery Pack Design Considerations for Performance and Safety
PPTX
Build Your First AI Agent with UiPath.pptx
PDF
The influence of sentiment analysis in enhancing early warning system model f...
PDF
Enhancing plagiarism detection using data pre-processing and machine learning...
PDF
How IoT Sensor Integration in 2025 is Transforming Industries Worldwide
Hybrid horned lizard optimization algorithm-aquila optimizer for DC motor
A proposed approach for plagiarism detection in Myanmar Unicode text
Comparative analysis of machine learning models for fake news detection in so...
Modernising the Digital Integration Hub
Convolutional neural network based encoder-decoder for efficient real-time ob...
STKI Israel Market Study 2025 version august
Credit Without Borders: AI and Financial Inclusion in Bangladesh
Produktkatalog für HOBO Datenlogger, Wetterstationen, Sensoren, Software und ...
What is a Computer? Input Devices /output devices
How ambidextrous entrepreneurial leaders react to the artificial intelligence...
Geologic Time for studying geology for geologist
Module 1.ppt Iot fundamentals and Architecture
NewMind AI Weekly Chronicles – August ’25 Week III
The various Industrial Revolutions .pptx
Final SEM Unit 1 for mit wpu at pune .pptx
Custom Battery Pack Design Considerations for Performance and Safety
Build Your First AI Agent with UiPath.pptx
The influence of sentiment analysis in enhancing early warning system model f...
Enhancing plagiarism detection using data pre-processing and machine learning...
How IoT Sensor Integration in 2025 is Transforming Industries Worldwide
Ad
Ad

Nrel pid presentation_csi