SlideShare a Scribd company logo
OBSERVER DESIGN FOR DESCRIPTOR SYSTEMS 
PD Observer Design for Linear Descriptor Systems 
Mahendra Kumar Gupta 
Research Scholar 
Department of Mathematics 
Indian Institute of Technology Patna, India 
Coauthors: Nutan Kumar Tomar1 & Shovan Bhaumik2 
1Department of Mathematics, Indian Institute of Technology Patna, India 
2Department of Electrical Engineering, Indian Institute of Technology Patna, India 
1 / 12
OBSERVER DESIGN FOR DESCRIPTOR SYSTEMS 
Introduction 
Linear Descriptor System 
Ex_ (t) = Ax(t) + Bu(t); 
y = Cx (1) 
System Description 
State x(t) 2 Rn 
Control u(t) 2 Rm 
Output y(t) 2 Rp 
E; A 2 Rnn, B 2 Rnm 
and C 2 Rpn 
Dual Normalizable 
The linear square descriptor system (1) is called Dual Normalizable if, 9 
matrix K of compatible dimension such that matrix (E + KC) is non-singular. 
Detectable 
The linear square descriptor system (1) is said to be Detectable if, 9 matrix L 
of compatible dimension such that matrix pair (E; A + LC) is stable. 
2 / 12
OBSERVER DESIGN FOR DESCRIPTOR SYSTEMS 
Descriptor system 
Ex_ (t) = Ax(t) + Bu(t); y = Cx (1) 
Checking Criteria: 
For descriptor system (1), some useful terms are defined by the following 
conditions: 
 
(a) rank 
EC 
 
= n, 
(b) rank 
 
E  A 
C 
 
= n 8  2 C+. 
Where C+ = fsjs 2 C; Re(s)  0g is the closed right half complex plane. 
(1) System (1) is called dual normalizable if condition (a) holds. 
(2) System (1) is said to be detectable if condition (b) holds. 
3 / 12
OBSERVER DESIGN FOR DESCRIPTOR SYSTEMS 
Observer Design: Need and definition 
Need of Observer 
Knowledge of the states of the system is important for feedback. But it is not 
always possible or necessary to measure all the state variables. In such 
cases, the states can be estimated from the output of another dynamical 
system, which is called an observer for the given system. 
Definition of Observer 
An observer is a mathematical realization which uses the input and output 
information of a given system and its output asymptotically approaches to the 
truth state values of the given system. 
4 / 12
OBSERVER DESIGN FOR DESCRIPTOR SYSTEMS 
Descriptor linear system 
Ex_ = Ax + Bu; 
y = Cx; (2) 
where E; A 2 Rnn, B 2 Rnm 
C 2 Rpn, x 2 Rn and u 2 Rm 
Assumptions: 
 
(H1) rank 
EC 
 
= n, 
(H2) rank 
 
E  A 
C 
 
= n 8  2 C+. 
Lemma 
Let any matrix pair (E;C), where E 2 Rnn and C 2 Rpn satisfies following 
condition:  
EC 
 
= n 
Then there exists a nonsingular matrix R such that 
rank 
 
I  RE 
C 
 
= rank(C) (3) 
5 / 12
OBSERVER DESIGN FOR DESCRIPTOR SYSTEMS 
Algorithm to find the matrix R 
1. Determine 
p := rank of matrix C 
n :=order of matrix E. 
2. Check 
(i) If rank 
 
I  E 
C 
 
= p. Take R = In and stop. 
 
(ii) If rank 
EC 
 
= n, then go to steps 3-8. 
3. Carry out the singular value decomposition (SVD) of matrix 
C = U1 
 
D1 0 
 
VT 
1 . 
4. Calculate P = V1 
 
D1 
1 UT 
1 0 
0 Inp 
 
. 
5. Calculate ~E = EP 
 
0 
Inp 
 
. 
6. Carry out the SVD of matrix ~E = U2 
 
D2 
0 
 
V2. 
7. Calculate R0 = 
 
0 Ip 
VT 
2 D1 
2 0 
 
UT 
2 . 
8. Calculate R = PR0. 
6 / 12
OBSERVER DESIGN FOR DESCRIPTOR SYSTEMS 
Lemma 2 
Under the assumption of Lemma 1, the following statements are equivalent. 
(1) Descriptor system (1) is detectable. 
(2) Matrix pair (RA;C), is detectable. 
Proof. 
It is obvious that equation (3) implies the existence of M 2 Rnp such that 
RE = I  MC: (4) 
Thus for any  2 C+, we have 
rank 
 
E  A 
C 
 
= rank 
 
RE  RA 
C 
 
= rank 
 
I  MC  RA 
C 
 
= rank 
 
I  RA 
C 
 
: 
7 / 12
OBSERVER DESIGN FOR DESCRIPTOR SYSTEMS 
Detectability and Observer Design for Linear Descriptor Systems 
Restricted System Equivalent 
Ex_ = Ax + Bu; 
y = Cx; (5) 
Observer 
_^ 
x = Nx^ + RBu + Ly + My_ (6) 
Theorem 
If assumptions (H1) and (H2) hold for the system (2). Then there exists 
matrices N, L, and M of compatible dimensions such that the system (6) is 
observer for the system (5). 
8 / 12
OBSERVER DESIGN FOR DESCRIPTOR SYSTEMS 
Proof 
From systems (6) and (5) the error 
e = x  ^x (7) 
gives the dynamics: 
_ e = _ x  _^ 
x 
= x_  (Nx^ + RBu + Ly + MCx_ ) 
= REx_  (Nx^ + RBu + LCx) 
= R(Ax + Bu)  (N^x + RBu + LCx) 
= Ne + (RA  LC  N)x = Ne: (8) 
here, we have assumed that 
RE = I  MC (9) 
N = RA  LC (10) 
where N is stable. 
9 / 12
OBSERVER DESIGN FOR DESCRIPTOR SYSTEMS 
Example 
E = 
2 
4 
0 0 0 
0 1 0 
0 0 1 
3 
5 A = 
2 
4 
3 
5 B = 
1 0 0 
0 2 0 
0 0 3 
 
1 1 1 
T , C = 
 
1 0 0 
0 1 0 
 
: 
Results 
This  
system is not completely observable but completely detectable and 
rank 
I  E 
C 
 
= 2. 
Hence R = I3 and M = 
2 
4 
1 0 
0 0 
0 0 
3 
5. 
L = 
2 
4 
3 
5. Thus N = 
1:5 0 
0 1:5 
0 0 
2 
4 
:5 0 0 
0 :5 0 
0 0 3 
3 
5 
Taking x0 = 
 
0 1 0 
T , z0 = 
 
10 11 12 
T , and u = t2. 
10 / 12
OBSERVER DESIGN FOR DESCRIPTOR SYSTEMS 
Detectability and Observer Design for Linear Descriptor Systems 
Truth and estimated value of first state 
20 
0 
-20 
First State 
Turth x(1) 
Estimated x(1) 
-40 
-60 
-80 
-100 
0 1 2 3 4 5 6 7 8 9 10 
Time (Sec) 
Truth and estimated value of second state 
50 
40 
30 
Second State 
Turth x(2) 
Estimated x(2) 
20 
10 
0 
-10 
0 1 2 3 4 5 6 7 8 9 10 
Time (Sec) 
Truth and estimated value of third state 
40 
30 
20 
Turth x(3) 
Estimated x(3) 
10 
0 
-10 
0 1 2 3 4 5 6 7 8 9 10 
Third State 
Time (Sec) 
11 / 12
OBSERVER DESIGN FOR DESCRIPTOR SYSTEMS 
References 
[1] S. J. Small. Runge-Kutta type methods for differential-algebraic equations in mechanics. University of Iowa, 2011. 
[2] Q. Zhang, C. Liu and X. Zhang. Complexity, analysis and control of singular biological systems. Springer, 2012. 
[3] A. Kumar and P. Daoutidis. Control of nonlinear differential algebraic equation systems with applications to chemical processes. CRC 
Press, 1999. 
[4] R. Riaza. Differential-algebraic systems: Analytical aspects and circuit applications. World Scientific, 2008. 
[5] D. G. Luenberger and A. Arbel. Econometrica: Journal of the Econometric Society (1977) 991. 
[6] D. G. Luenberger. IEEE Trans. Military Electronics 8(2) (1964) 74. 
[7] D. G. Luenberger. IEEE Trans. Autom. Control 11(2) (1966) 190. 
[8] D. G. Luenberger. IEEE Trans. Autom. Control 16(6) (1971) 596. 
[9] S. K. Spurgeon. Int. J. Systems Science 39(8) (2008) 751. 
[10] R. L. Carroll and D. Lindorff. IEEE Trans. Autom. Control 18(5) (1973) 428. 
[11] M. Verhaegen and P. Van Dooren. Syst. Control Lett. 8(1) (1986) 29. 
[12] B. Shafai and R. Carroll. Int. J. Control 45(3) (1987) 1075. 
[13] N. Minamide, N. Arii and Y. Uetake. Int. J. Control 50(6) (1989) 2141. 
[14] Y. Uetake. Int. J. Control 50(1) (1989) 89. 
[15] M. Darouach and M. Boutayeb. IEEE Trans. Autom. Control 40(7) (1995) 1323. 
[16] P. C. Müller and M. Hou. IEEE Trans. Autom. Control 38(11) (1993) 1666. 
[17] C.-W. Yang and H.-L. Tan. Int. J. Control 49(6) (1989) 1937. 
[18] F. Lewis. Automatica 26(2) (1990) 411. 
[19] M. El-Tohami, V. Lovass-Nagy and R. Mukundan. Int. J. Control 46(3) (1987) 841. 
[20] G.-R. Duan. Analysis and design of descriptor linear systems. Springer, 2010. 
[21] A.-G. Wu and G.-R. Duan. IEEE Trans. Syst. Man Cybern. Part B Cybern. 36(6) (2006) 1423. 
[22] H. S. Kim, T. K. Yeu and S. Kawaji. Trans. Control, Autom. Syst. Eng. 3(2) (2001) 77. 
[23] D. Koenig and S. Mammar. IEEE Trans. Autom. Control 47(12) (2002) 2057. 
[24] A.-G. Wu and G.-R. Duan. IEEE Trans. Circuits Syst. Regul. Pap. 53(12) (2006) 282. 
11 / 12
OBSERVER DESIGN FOR DESCRIPTOR SYSTEMS 
[25] Z. Gao and S. X. Ding. IET Control Theory Appl. 1(5) (2007) 1208. 
[26] A.-G. Wu, G.-R. Duan and W. Liu. Asian J. Control 14(2) (2012) 476. 
[27] Z. Gao. J. Franklin Institute 342(5) (2005) 551. 
[28] A.-G. Wu and G.-R. Duan. Int. J. Control Autom. Syst. 5(1) (2007) 93. 
[29] J. Ren and Q. Zhang. Int. J. Control Autom. Syst. 8(4) (2010) 735. 
[30] A.-G. Wu, G.-R. Duan and Y.-M. Fu. IEEE Trans. Syst. Man Cybern. Part B Cybern. 37(5) (2007) 1390. 
[31] H.-C. Ting, J.-L. Chang and Y.-P. Chen. Int. J. Control Autom. Syst. 9(5) (2011) 850. 
[32] M. K. Gupta, N. K. Tomar and S. Bhaumik. Detectability and observer design for linear descriptor system. In 22nd Mediterranean 
Conference on Control and Automation 2014, (Accepted). IEEE. 
[33] M. K. Gupta, N. K. Tomar and S. Bhaumik. On Observability of Irregular Descriptor Systems. In Advances in Control and Optimization 
of Dynamical Systems 2014 376. 
12 / 12
OBSERVER DESIGN FOR DESCRIPTOR SYSTEMS 
Thank you. 
12 / 12

More Related Content

PPTX
Laplace transform: UNIT STEP FUNCTION, SECOND SHIFTING THEOREM, DIRAC DELTA F...
PPTX
TIME RESPONSE ANALYSIS
PDF
Chapter10
PPTX
senior seminar
PPTX
Time domain analysis
PDF
Control Systems servo mechanisms.pdf
PPTX
state space representation,State Space Model Controllability and Observabilit...
PDF
Signals and Systems Formula Sheet
Laplace transform: UNIT STEP FUNCTION, SECOND SHIFTING THEOREM, DIRAC DELTA F...
TIME RESPONSE ANALYSIS
Chapter10
senior seminar
Time domain analysis
Control Systems servo mechanisms.pdf
state space representation,State Space Model Controllability and Observabilit...
Signals and Systems Formula Sheet

What's hot (20)

PDF
Laplace transform
PPTX
time response analysis
PPT
PPTX
Thesis presentation on inverted pendulum
PPT
Fourier Transform
PDF
6. steady state error
PPT
Z Transform
PDF
Ch5 transient and steady state response analyses(control)
PDF
BEC 26 control-Systems_unit-I_pdf
PDF
discrete-time-systems and discetre time fourier
PPTX
Laplace periodic function with graph
PPT
Routh array hurwitz criterion
PPT
Lyapunov stability
PDF
Frequency response analysis I
PDF
Analytic function 1
PPT
Filter- IIR - Digital signal processing(DSP)
PPTX
Sliding Mode Controller
PPTX
Newton cotes integration method
PPTX
State space analysis.pptx
PPT
1532 fourier series
Laplace transform
time response analysis
Thesis presentation on inverted pendulum
Fourier Transform
6. steady state error
Z Transform
Ch5 transient and steady state response analyses(control)
BEC 26 control-Systems_unit-I_pdf
discrete-time-systems and discetre time fourier
Laplace periodic function with graph
Routh array hurwitz criterion
Lyapunov stability
Frequency response analysis I
Analytic function 1
Filter- IIR - Digital signal processing(DSP)
Sliding Mode Controller
Newton cotes integration method
State space analysis.pptx
1532 fourier series
Ad

Similar to Observer design for descriptor linear systems (20)

PDF
On observer design methods for a
PDF
NONLINEAR OBSERVER DESIGN FOR L-V SYSTEM
PDF
NONLINEAR OBSERVER DESIGN FOR L-V SYSTEM
PDF
NONLINEAR OBSERVER DESIGN FOR L-V SYSTEM
PDF
NONLINEAR OBSERVER DESIGN FOR L-V SYSTEM
PDF
Simultaneous State and Actuator Fault Estimation With Fuzzy Descriptor PMID a...
PDF
Advanced Stability Analysis of Control Systems with Variable Parameters
PDF
Advanced Stability Analysis of Control Systems with Variable Parameters
PDF
T-S Fuzzy Observer and Controller of Doubly-Fed Induction Generator
PDF
Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...
PDF
On the State Observer Based Stabilization of T-S Systems with Maximum Converg...
PDF
Generalized synchronization of nonlinear oscillators via opcl coupling
PDF
Modern Control System (BE)
PDF
ADAPTIVE STABILIZATION AND SYNCHRONIZATION OF LÜ-LIKE ATTRACTOR
PDF
Adaptive Controller and Synchronizer Design for Hyperchaotic Zhou System with...
PDF
BEC- 26 control systems_unit-II
PDF
MATHEMATICAL MODELING OF COMPLEX REDUNDANT SYSTEM UNDER HEAD-OF-LINE REPAIR
PDF
Control of linear systems using
PDF
Adaptive Projective Lag Synchronization of T and Lu Chaotic Systems
On observer design methods for a
NONLINEAR OBSERVER DESIGN FOR L-V SYSTEM
NONLINEAR OBSERVER DESIGN FOR L-V SYSTEM
NONLINEAR OBSERVER DESIGN FOR L-V SYSTEM
NONLINEAR OBSERVER DESIGN FOR L-V SYSTEM
Simultaneous State and Actuator Fault Estimation With Fuzzy Descriptor PMID a...
Advanced Stability Analysis of Control Systems with Variable Parameters
Advanced Stability Analysis of Control Systems with Variable Parameters
T-S Fuzzy Observer and Controller of Doubly-Fed Induction Generator
Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...
On the State Observer Based Stabilization of T-S Systems with Maximum Converg...
Generalized synchronization of nonlinear oscillators via opcl coupling
Modern Control System (BE)
ADAPTIVE STABILIZATION AND SYNCHRONIZATION OF LÜ-LIKE ATTRACTOR
Adaptive Controller and Synchronizer Design for Hyperchaotic Zhou System with...
BEC- 26 control systems_unit-II
MATHEMATICAL MODELING OF COMPLEX REDUNDANT SYSTEM UNDER HEAD-OF-LINE REPAIR
Control of linear systems using
Adaptive Projective Lag Synchronization of T and Lu Chaotic Systems
Ad

Recently uploaded (20)

PPTX
ECG_Course_Presentation د.محمد صقران ppt
PPTX
INTRODUCTION TO EVS | Concept of sustainability
PDF
An interstellar mission to test astrophysical black holes
PDF
ELS_Q1_Module-11_Formation-of-Rock-Layers_v2.pdf
PPTX
famous lake in india and its disturibution and importance
PPTX
7. General Toxicologyfor clinical phrmacy.pptx
PDF
Unveiling a 36 billion solar mass black hole at the centre of the Cosmic Hors...
PDF
IFIT3 RNA-binding activity primores influenza A viruz infection and translati...
PPTX
GEN. BIO 1 - CELL TYPES & CELL MODIFICATIONS
PDF
MIRIDeepImagingSurvey(MIDIS)oftheHubbleUltraDeepField
PPTX
Cell Membrane: Structure, Composition & Functions
PPTX
Comparative Structure of Integument in Vertebrates.pptx
PPTX
TOTAL hIP ARTHROPLASTY Presentation.pptx
PPTX
Protein & Amino Acid Structures Levels of protein structure (primary, seconda...
PPTX
Classification Systems_TAXONOMY_SCIENCE8.pptx
PPTX
Taita Taveta Laboratory Technician Workshop Presentation.pptx
PPTX
The KM-GBF monitoring framework – status & key messages.pptx
PPTX
DRUG THERAPY FOR SHOCK gjjjgfhhhhh.pptx.
PDF
. Radiology Case Scenariosssssssssssssss
PDF
The scientific heritage No 166 (166) (2025)
ECG_Course_Presentation د.محمد صقران ppt
INTRODUCTION TO EVS | Concept of sustainability
An interstellar mission to test astrophysical black holes
ELS_Q1_Module-11_Formation-of-Rock-Layers_v2.pdf
famous lake in india and its disturibution and importance
7. General Toxicologyfor clinical phrmacy.pptx
Unveiling a 36 billion solar mass black hole at the centre of the Cosmic Hors...
IFIT3 RNA-binding activity primores influenza A viruz infection and translati...
GEN. BIO 1 - CELL TYPES & CELL MODIFICATIONS
MIRIDeepImagingSurvey(MIDIS)oftheHubbleUltraDeepField
Cell Membrane: Structure, Composition & Functions
Comparative Structure of Integument in Vertebrates.pptx
TOTAL hIP ARTHROPLASTY Presentation.pptx
Protein & Amino Acid Structures Levels of protein structure (primary, seconda...
Classification Systems_TAXONOMY_SCIENCE8.pptx
Taita Taveta Laboratory Technician Workshop Presentation.pptx
The KM-GBF monitoring framework – status & key messages.pptx
DRUG THERAPY FOR SHOCK gjjjgfhhhhh.pptx.
. Radiology Case Scenariosssssssssssssss
The scientific heritage No 166 (166) (2025)

Observer design for descriptor linear systems

  • 1. OBSERVER DESIGN FOR DESCRIPTOR SYSTEMS PD Observer Design for Linear Descriptor Systems Mahendra Kumar Gupta Research Scholar Department of Mathematics Indian Institute of Technology Patna, India Coauthors: Nutan Kumar Tomar1 & Shovan Bhaumik2 1Department of Mathematics, Indian Institute of Technology Patna, India 2Department of Electrical Engineering, Indian Institute of Technology Patna, India 1 / 12
  • 2. OBSERVER DESIGN FOR DESCRIPTOR SYSTEMS Introduction Linear Descriptor System Ex_ (t) = Ax(t) + Bu(t); y = Cx (1) System Description State x(t) 2 Rn Control u(t) 2 Rm Output y(t) 2 Rp E; A 2 Rnn, B 2 Rnm and C 2 Rpn Dual Normalizable The linear square descriptor system (1) is called Dual Normalizable if, 9 matrix K of compatible dimension such that matrix (E + KC) is non-singular. Detectable The linear square descriptor system (1) is said to be Detectable if, 9 matrix L of compatible dimension such that matrix pair (E; A + LC) is stable. 2 / 12
  • 3. OBSERVER DESIGN FOR DESCRIPTOR SYSTEMS Descriptor system Ex_ (t) = Ax(t) + Bu(t); y = Cx (1) Checking Criteria: For descriptor system (1), some useful terms are defined by the following conditions: (a) rank EC = n, (b) rank E A C = n 8 2 C+. Where C+ = fsjs 2 C; Re(s) 0g is the closed right half complex plane. (1) System (1) is called dual normalizable if condition (a) holds. (2) System (1) is said to be detectable if condition (b) holds. 3 / 12
  • 4. OBSERVER DESIGN FOR DESCRIPTOR SYSTEMS Observer Design: Need and definition Need of Observer Knowledge of the states of the system is important for feedback. But it is not always possible or necessary to measure all the state variables. In such cases, the states can be estimated from the output of another dynamical system, which is called an observer for the given system. Definition of Observer An observer is a mathematical realization which uses the input and output information of a given system and its output asymptotically approaches to the truth state values of the given system. 4 / 12
  • 5. OBSERVER DESIGN FOR DESCRIPTOR SYSTEMS Descriptor linear system Ex_ = Ax + Bu; y = Cx; (2) where E; A 2 Rnn, B 2 Rnm C 2 Rpn, x 2 Rn and u 2 Rm Assumptions: (H1) rank EC = n, (H2) rank E A C = n 8 2 C+. Lemma Let any matrix pair (E;C), where E 2 Rnn and C 2 Rpn satisfies following condition: EC = n Then there exists a nonsingular matrix R such that rank I RE C = rank(C) (3) 5 / 12
  • 6. OBSERVER DESIGN FOR DESCRIPTOR SYSTEMS Algorithm to find the matrix R 1. Determine p := rank of matrix C n :=order of matrix E. 2. Check (i) If rank I E C = p. Take R = In and stop. (ii) If rank EC = n, then go to steps 3-8. 3. Carry out the singular value decomposition (SVD) of matrix C = U1 D1 0 VT 1 . 4. Calculate P = V1 D1 1 UT 1 0 0 Inp . 5. Calculate ~E = EP 0 Inp . 6. Carry out the SVD of matrix ~E = U2 D2 0 V2. 7. Calculate R0 = 0 Ip VT 2 D1 2 0 UT 2 . 8. Calculate R = PR0. 6 / 12
  • 7. OBSERVER DESIGN FOR DESCRIPTOR SYSTEMS Lemma 2 Under the assumption of Lemma 1, the following statements are equivalent. (1) Descriptor system (1) is detectable. (2) Matrix pair (RA;C), is detectable. Proof. It is obvious that equation (3) implies the existence of M 2 Rnp such that RE = I MC: (4) Thus for any 2 C+, we have rank E A C = rank RE RA C = rank I MC RA C = rank I RA C : 7 / 12
  • 8. OBSERVER DESIGN FOR DESCRIPTOR SYSTEMS Detectability and Observer Design for Linear Descriptor Systems Restricted System Equivalent Ex_ = Ax + Bu; y = Cx; (5) Observer _^ x = Nx^ + RBu + Ly + My_ (6) Theorem If assumptions (H1) and (H2) hold for the system (2). Then there exists matrices N, L, and M of compatible dimensions such that the system (6) is observer for the system (5). 8 / 12
  • 9. OBSERVER DESIGN FOR DESCRIPTOR SYSTEMS Proof From systems (6) and (5) the error e = x ^x (7) gives the dynamics: _ e = _ x _^ x = x_ (Nx^ + RBu + Ly + MCx_ ) = REx_ (Nx^ + RBu + LCx) = R(Ax + Bu) (N^x + RBu + LCx) = Ne + (RA LC N)x = Ne: (8) here, we have assumed that RE = I MC (9) N = RA LC (10) where N is stable. 9 / 12
  • 10. OBSERVER DESIGN FOR DESCRIPTOR SYSTEMS Example E = 2 4 0 0 0 0 1 0 0 0 1 3 5 A = 2 4 3 5 B = 1 0 0 0 2 0 0 0 3 1 1 1 T , C = 1 0 0 0 1 0 : Results This system is not completely observable but completely detectable and rank I E C = 2. Hence R = I3 and M = 2 4 1 0 0 0 0 0 3 5. L = 2 4 3 5. Thus N = 1:5 0 0 1:5 0 0 2 4 :5 0 0 0 :5 0 0 0 3 3 5 Taking x0 = 0 1 0 T , z0 = 10 11 12 T , and u = t2. 10 / 12
  • 11. OBSERVER DESIGN FOR DESCRIPTOR SYSTEMS Detectability and Observer Design for Linear Descriptor Systems Truth and estimated value of first state 20 0 -20 First State Turth x(1) Estimated x(1) -40 -60 -80 -100 0 1 2 3 4 5 6 7 8 9 10 Time (Sec) Truth and estimated value of second state 50 40 30 Second State Turth x(2) Estimated x(2) 20 10 0 -10 0 1 2 3 4 5 6 7 8 9 10 Time (Sec) Truth and estimated value of third state 40 30 20 Turth x(3) Estimated x(3) 10 0 -10 0 1 2 3 4 5 6 7 8 9 10 Third State Time (Sec) 11 / 12
  • 12. OBSERVER DESIGN FOR DESCRIPTOR SYSTEMS References [1] S. J. Small. Runge-Kutta type methods for differential-algebraic equations in mechanics. University of Iowa, 2011. [2] Q. Zhang, C. Liu and X. Zhang. Complexity, analysis and control of singular biological systems. Springer, 2012. [3] A. Kumar and P. Daoutidis. Control of nonlinear differential algebraic equation systems with applications to chemical processes. CRC Press, 1999. [4] R. Riaza. Differential-algebraic systems: Analytical aspects and circuit applications. World Scientific, 2008. [5] D. G. Luenberger and A. Arbel. Econometrica: Journal of the Econometric Society (1977) 991. [6] D. G. Luenberger. IEEE Trans. Military Electronics 8(2) (1964) 74. [7] D. G. Luenberger. IEEE Trans. Autom. Control 11(2) (1966) 190. [8] D. G. Luenberger. IEEE Trans. Autom. Control 16(6) (1971) 596. [9] S. K. Spurgeon. Int. J. Systems Science 39(8) (2008) 751. [10] R. L. Carroll and D. Lindorff. IEEE Trans. Autom. Control 18(5) (1973) 428. [11] M. Verhaegen and P. Van Dooren. Syst. Control Lett. 8(1) (1986) 29. [12] B. Shafai and R. Carroll. Int. J. Control 45(3) (1987) 1075. [13] N. Minamide, N. Arii and Y. Uetake. Int. J. Control 50(6) (1989) 2141. [14] Y. Uetake. Int. J. Control 50(1) (1989) 89. [15] M. Darouach and M. Boutayeb. IEEE Trans. Autom. Control 40(7) (1995) 1323. [16] P. C. Müller and M. Hou. IEEE Trans. Autom. Control 38(11) (1993) 1666. [17] C.-W. Yang and H.-L. Tan. Int. J. Control 49(6) (1989) 1937. [18] F. Lewis. Automatica 26(2) (1990) 411. [19] M. El-Tohami, V. Lovass-Nagy and R. Mukundan. Int. J. Control 46(3) (1987) 841. [20] G.-R. Duan. Analysis and design of descriptor linear systems. Springer, 2010. [21] A.-G. Wu and G.-R. Duan. IEEE Trans. Syst. Man Cybern. Part B Cybern. 36(6) (2006) 1423. [22] H. S. Kim, T. K. Yeu and S. Kawaji. Trans. Control, Autom. Syst. Eng. 3(2) (2001) 77. [23] D. Koenig and S. Mammar. IEEE Trans. Autom. Control 47(12) (2002) 2057. [24] A.-G. Wu and G.-R. Duan. IEEE Trans. Circuits Syst. Regul. Pap. 53(12) (2006) 282. 11 / 12
  • 13. OBSERVER DESIGN FOR DESCRIPTOR SYSTEMS [25] Z. Gao and S. X. Ding. IET Control Theory Appl. 1(5) (2007) 1208. [26] A.-G. Wu, G.-R. Duan and W. Liu. Asian J. Control 14(2) (2012) 476. [27] Z. Gao. J. Franklin Institute 342(5) (2005) 551. [28] A.-G. Wu and G.-R. Duan. Int. J. Control Autom. Syst. 5(1) (2007) 93. [29] J. Ren and Q. Zhang. Int. J. Control Autom. Syst. 8(4) (2010) 735. [30] A.-G. Wu, G.-R. Duan and Y.-M. Fu. IEEE Trans. Syst. Man Cybern. Part B Cybern. 37(5) (2007) 1390. [31] H.-C. Ting, J.-L. Chang and Y.-P. Chen. Int. J. Control Autom. Syst. 9(5) (2011) 850. [32] M. K. Gupta, N. K. Tomar and S. Bhaumik. Detectability and observer design for linear descriptor system. In 22nd Mediterranean Conference on Control and Automation 2014, (Accepted). IEEE. [33] M. K. Gupta, N. K. Tomar and S. Bhaumik. On Observability of Irregular Descriptor Systems. In Advances in Control and Optimization of Dynamical Systems 2014 376. 12 / 12
  • 14. OBSERVER DESIGN FOR DESCRIPTOR SYSTEMS Thank you. 12 / 12