SlideShare a Scribd company logo
Observing ultra-high energy cosmic rays with prototypes of
the Fluorescence detector Array of Single-pixel Telescopes
(FAST) in both hemispheres
1
Toshihiro Fujii (Hakubi Center for Advanced Research, Kyoto University, fujii@cr.scphys.kyoto-u.ac.jp)
Justin Albury, Jose Bellido, Ladislav Chytka, John Farmer, Petr Hamal, Pavel Horvath, Miroslav
Hrabovsky, Jiri Kvita, Max Malacari, Dusan Mandat, Massimo Mastrodicasa, John Matthews, Stanislav
Michal, Xiaochen Ni, Libor Nozka, Miroslav Palatka, Miroslav Pech, Paolo Privitera, Petr Schovanek,
Francesco Salamida, Radomir Smida, Stan Thomas, Petr Travnicek, Martin Vacula (FAST Collaboration)
25th July 2019, ICRC 2019, Madison, USA
Utah, USA ArgentinaUtah, USA
zzz
© Ryuunosuke Takeshige and Toshihiro Fujii (Kyoto University)
© Ryuunosuke Takeshige and Toshihiro Fujii (Kyoto University)
Ultra-high energy cosmic rays
(UHECR), 1020 eV
‣ Less deflection in galactic/extragalactic
magnetic fields
‣ Related with extremely energetic
astrophysical phenomena
‣ Spectrum suppression,
‣ Indicate nearby sources distributed
non-uniformly within ~50 Mpc
‣ Correlation between UHECRs and
nearby energetic sources or objects
‣ Next-generation astronomy
Low-energy cosmic rays
© Ryuunosuke Takeshige and Toshihiro Fujii (Kyoto University)
FLUX MAP ABOVE 8 EeVFLUX MAP ABOVE 8 EeV
Galactic center
Equatorial coordinates
Pierre Auger Collab., Science 357, 1266 (2017)
V. Verzi et al., PTEP, 12A103 (2017)
No conclusive results on UHECR sources...
E>8 EeV, 5.2σ (Auger)
(c) (d)
Figure 1. Aitoff projection of the UHECR maps in equatorial coordinates. The solid curves indicate the galactic plane (GP) and supergalactic plane (SGP). Our FoV
is defined as the region above the dashed curve at decl. = −10◦. (a) The points show the directions of the UHECRs E > 57 EeV observed by the TA SD array,
and the closed and open stars indicate the Galactic center (GC) and the anti-Galactic center (Anti-GC), respectively; (b) color contours show the number of observed
cosmic-ray events summed over a 20◦ radius circle; (c) number of background events from the geometrical exposure summed over a 20◦ radius circle (the same color
scale as (b) is used for comparison); (d) significance map calculated from (b) and (c) using Equation (1).
The event selection criteria above are somewhat looser
than those of our previous analyses of cosmic-ray anisotropy
(Fukushima et al. 2013) to increase the observed cosmic-ray
statistics. In our previous analyses, the largest signal counter
is surrounded by four working counters that are its nearest
neighbors to maintain the quality of the energy resolution and
angular resolution. Only 52 events survived those tighter cuts.
When the edge cut is abolished from the analysis (presented
here) to keep more cosmic-ray events, 20 events with E >
57 EeV are recovered compared with the tighter cut analysis.
A full Monte Carlo (MC) simulation, which includes detailed
detector responses (Abu-Zayyad et al. 2013a), predicted a 13.2
event increase in the number of events. The chance probability of
size anisotropy (Hayashida et al. 1999a, 1999b), namely to use
oversampling with a 20◦
radius. Being mindful that scanning
the parameter space of the analysis causes a large increase in
chance corrections, we have not varied this radius. The TA
and HiRes collaborations used this method previously (Kawata
et al. 2013; Ivanov et al. 2007) to test the AGASA intermediate-
scale anisotropy results with their data in the 1018
eV range.
The present letter reports on an extension of this method with
application to the E > 57 EeV energy region.
In our analysis, at each point in the sky map, cosmic-
ray events are summed over a 20◦
radius circle as shown in
Figure 1(b). The centers of tested directions are on a 0.◦
1 × 0.◦
1
grid from 0◦
to 360◦
in right ascension (R.A.) and −10◦
–90◦
in
Telescope Array Collab., ApJL 790:L21 (2014)
E>57 EeV, 3.4σ (TA)
E>39 EeV, 4.0σ (Auger)
Pierre Auger Collab., ApJL 853:L29 (2018)
8 EeV
Equatorial
Galactic
Equatorial
Fine pixelated camera
Low-cost and simplified telescope
✦ Target : > 1019.5 eV, ultra-high energy cosmic rays (UHECR) and neutral particles
✦ Huge target volume ⇒ Fluorescence detector array
Too expensive to cover a huge area
5
Smaller optics and single or a few pixels
Fluorescence detector Array of Single-pixel Telescopes
Segmented mirror telescope
Variable angles of elevation – steps.
15 deg 45 deg
6
✦ Each telescope: 4 PMTs, 30°×30° field-of-view (FoV)
✦ Reference design: 1 m2 aperture, 15°×15° FoV
per photo-multiplier tube (PMT)
✦ Each station: 12 telescopes, 48 PMTs, 30°×360°
FoV
✦ Deploy on a triangle grid with 20 km spacing, like
“Surface Detector Array”
✦ With 500 stations, a ground coverage is 150,000 km2
20 km
Fluorescence detector Array of Single-pixel Telescopes
ce Detectors
ope Array:700 km2
ale) 3
Pierre Auger: 3000 km2 Telescope Array:700 km2
(not drawn to scale) 3
Telescope Array (TA) Pierre Auger Observatory (Auger)
56 EeV
16
56 EeV zenith 500
1
2
3
1
3 2
PhotonsatdiaphragmPhotonsatdiaphragm
Photonsatdiaphragm
FAST(10%)
60 stations
17,000 km2
5 years: 5100 events (E > 57 EeV),
650 events (E > 100 EeV)
- Directional anisotropy on arrival directions,
energy spectrum, mass composition
Reference: T. Fujii et al., Astropart.Phys. 74 (2016) 64-72
www.fast-project.org
700 km2 3000 km2
© Ryuunosuke Takeshige and Toshihiro Fujii (Kyoto University)
© Ryuunosuke Takeshige and Toshihiro Fujii (Kyoto University)
1. Detector development for future project
2. Cross-calibration of Energy and Xmax
scales in current UHECR observatories.
9
FAST fluorescence prototypes in TA
Reference: D. Mandat et al., JINST 12, T07001 (2017)
Wavelength [nm]
260 280 300 320 340 360 380 400 420
Efficiency[%]
0
10
20
30
40
50
60
70
80
90
100
Mirror reflectivity
Filter transmission
Total efficiency
Figure 5. The typical spectral reflectance of the FAST mirror between 260 nm and 420 nm, along w
spectral transmission of the UV band-pass filter. The resultant total optical efficiency is shown in blac
filter used on the Cherenkov telescope of the MAGIC [18] observatory. The filter is constructed
a number of small segments in order to fit the FAST prototype’s octagonal aperture. The indiv
segments are fit together using brass “U” and “H” profiles, resulting in an aperture of 1 m2 in
6 Telescope support structure
The telescope’s mechanical support structure was built from commercially available alum
profiles. This allows for straightforward assembly/disassembly, and easy packing and transpo
to their light weight, while also providing an extremely stable and rigid platform for the
✦4 PMTs (20 cm, 8 dynodes R5912-03MOD, base
E7694-01)
✦1 m2 aperture of the UV band-pass filter (ZWB3),
segmented mirror of 1.6 m diameter
✦Total 3 telescopes installed at TA site by October 2018
✦Total 545 hours by June 2019
FAST observation set-up
10
✦ Remote controlling observation
✦ Synchronized operation with
external triggers from
Telescope Array fluorescence
detector (TA FD)
✦ 80% FoV of TA FD
TA FD FoV (12 telescopes, 33°×108°)
FAST FoV (3 telescopes, 30°×90°)
5. Run a Minuit SIMPLEX fitter to
determine the optimal aerosol
horizontal attenuation length and
scale height, letting the absolute
calibration float (the shape of the
trace should be more heavily
dependent on the atmospheric
composition than its
normalisation)
Time bins [100 ns]
0 100 200 300 400 500 600 700 800 900 1000
/100nsp.e.N
0
5
10
15
20
25
260 CLF shots from 2018/09/12 05:27:04.764472000
Summed trace
PMT 4
PMT 5
PMT 6
PMT 7
260 CLF shots from 2018/09/12 05:27:04.764472000
Time bins [100 ns]
0 100 200 300 400 500 600 700 800 900 1000
/100nsp.e.N
0
5
10
15
20
25 Measured trace
Best fit
= 0.51 kmaerH
= 16.28 kmaerL
Norm. = 0.76
VAOD = 0.03
/ndf = 0.922χ
NOTES:
- Hmix is not currently being used

- Hmol is set to 8 km

- Lmol is set to 14.2 km at sea-level,
suitable for a laser of 355 nm
wavelength

- Jitter in laser energy not yet taken
into account

- Telescope PSF not yet taken into
account

- PMT collection efficiency non-
uniformity not yet taken into account
Example of a decent fit. Typically the fit isn’t so
PRELIMINARY
Vertical laser signal
(280 shot average)
Vertical laser
at a distance
of 21 km
Azimuth [deg]
Elevation[deg]
Azimuth [deg]
Elevation[deg]
FAST 1
FAST 2
FA
ST
3
CLF direction
TA FD
TA FD
-2018/05/15
Time bin [100 ns]
200 250 300 350 400
/100nspeN
30−
20−
10−
0
10
20
30
40
50
Data
Simulation
Time bin [100 ns]
200 250 300 350 400
/100nspeN
30−
20−
10−
0
10
20
30
40
50
Data
Simulation
Time bin [100 ns]
200 250 300 350 400
/100nspeN
0
50
100
150
200
250
Data
Simulation
Time bin [100 ns]
200 250 300 350 400
/100nspeN
0
50
100
150
200
Data
Simulation
Time bin [100 ns]
150 200 250 300 350 400 450 500
/100nspeN
30−
20−
10−
0
10
20
30
40
50
Data
Simulation
Time bin [100 ns]
200 250 300 350 400
/100nspeN
0
50
100
150
200
Data
Simulation
Time bin [100 ns]
200 250 300 350 400
/100nspeN
30−
20−
10−
0
10
20
30
40
50
Data
Simulation
Time bin [100 ns]
200 250 300 350 400
/100nspeN
30−
20−
10−
0
10
20
30
40
50
Data
Simulation
4 / 9
UHECR signal and reconstruction
11
FAST waveform + expected signal from top-down reconstruction
(Data, simulation by the best-fit parameters)
FAST top-down reconstruction (Preliminary)
Zenith Azimuth Core(X) Core(Y) Xmax Energy
59.8 deg -96.7 deg 7.9 km -9.0 km 842 g/cm2 17.3 EeV
TA FD
(Preliminary)
Energy: 19.0 EeV
Rp: 6.1 km
Coincidence shower search between TA FD and FAST
12
16 16.5 17 17.5 18 18.5 19 19.5 20
log(E(eV))
1
10
2
10
Impactparameter[km]
TA FD events
Single-hit PMT (FAST)
Multi-hit PMTs
Preliminary
✦ Data period: 2018/Oct/06 - 2019/Jan/14, 52 hours with 3 FAST prototypes
✦ Event number: 236 (TA FD) -> 37 (significant signals with FAST, S/N > 6σ, Δt > 500 ns)
✦ The shower parameters are reconstructed by TA FD monocular analysis.
16 16.5 17 17.5 18 18.5 19 19.5 20
log(E(eV))
2
10
3
10
4
10
5
10
s]µTime-averagebrightness[pe/
TA FD events
Single-hit PMT (FAST)
Multi-hit PMTs
Preliminary
①
②
16 16.5 17 17.5 18 18.5 19 19.5 20
log(E(eV)
1
10
2
10
Entries
TA FD events
Single-hit PMT (FAST)
Multi-hit PMTs
Preliminary
✦ Maximum detectable impact parameter: ~20 km at 1019.5 eV with brighter signal showers
✦ 2 events above 10 EeV in 52 hours → ~25 events/year (15% duty cycle)
① Highest energy event
13
Event 2: SD: 15.8 EeV, Zen: 36.15◦
, Azi: 18.0◦
, Core(5.002,
-4.461), Date: 20190110, Time: 063617.657363 FD: 19.95 EeV,
Zen: 33.2◦
, Azi: 35.8◦
, Core(6.12, -5.26), Date: 20190110,
Time: 063617.657398690
Event 4: SD: 1.32 EeV, Zen: 39.07◦
, Azi: -4.84◦
, Core(9.045,
-2.982), Date: 20190110, Time: 070221.485684 FD: 1.86 EeV,
Zen: 33.9◦
, Azi: 10.0◦
, Core(9.8, -3.91), Date: 20190110, Time:
070221.485723180
FAST top-down reconstruction (Preliminary)
Zenith Azimuth Core(X) Core(Y) Xmax Energy
33.9 deg 19.3 deg 4.6 km -4.7 km 808 g/cm2 18.8 EeV
FAST dataTA data
Time bin [100 ns]
0 200 400 600 800 1000
/100nspeN
30−
20−
10−
0
10
20
30
40
50
Data
Simulation
Time bin [100 ns]
0 200 400 600 800 1000
/100nspeN
30−
20−
10−
0
10
20
30
40
50
Data
Simulation
Time bin [100 ns]
0 200 400 600 800 1000
/100nspeN
30−
20−
10−
0
10
20
30
40
50
Data
Simulation
Time bin [100 ns]
0 200 400 600 800 1000
/100nspeN
30−
20−
10−
0
10
20
30
40
50
Data
Simulation
Time bin [100 ns]
0 200 400 600 800 1000
/100nspeN
30−
20−
10−
0
10
20
30
40
50
Data
Simulation
Time bin [100 ns]
0 200 400 600 800 1000
/100nspeN
30−
20−
10−
0
10
20
30
40
50
Data
Simulation
TA SD (Preliminary)
Zenith Azimuth Core(X) Core(Y) Energy
36.2 deg 18.0 deg 5.0 km -4.5 km 15.8 EeV
TA FD (Preliminary)
33.2 deg 35.8 deg 6.1 km -5.3 km 20.0 EeV
Event 14: SD: 12.3 EeV, Zen: 4.53◦
, Azi: 88.34◦
, Core(8.801,
-9.219), Date: 20190111, Time: 081213.261353 FD: 11.22 EeV,
Zen: 5.2◦
, Azi: 106.0◦
, Core(8.73, -9.26), Date: 20190111,
Time: 081213.261375409
Event 15: SD: 1.88 EeV, Zen: 36.65◦
, Azi: -35.8◦
, Core(6.097,
-3.238), Date: 20190111, Time: 084640.976253 FD: 1.70 EeV,
Zen: 31.0◦
, Azi: -27.9◦
, Core(7.76, -4.61), Date: 20190111,
Time: 084640.976304421
② Second highest energy event
14
Best fit comparison (Preliminary - SIMPLEX only)
Time bin [100 ns]
0 200 400 600 800 1000
/100nspeN
30−
20−
10−
0
10
20
30
40
50
Data
Simulation
Time bin [100 ns]
0 200 400 600 800 1000
/100nspeN
30−
20−
10−
0
10
20
30
40
50
Data
Simulation
0 200 400 60
/100nspeN
30−
20−
10−
0
10
20
30
40
50
0 200 400 60
/100nspeN
30−
20−
10−
0
10
20
30
40
50
3 / 15
Best fit comparison (Preliminary - SIMPLEX only)
Time bin [100 ns]
0 200 400 600 800 1000
/100nspeN
30−
20−
10−
0
10
20
30
40
50
Data
Simulation
Time bin [100 ns]
0 200 400 600 800 1000
/100nspeN
30−
20−
10−
0
10
20
30
40
50
Data
Simulation
Time bin [100 ns]
0 200 400 600 800 1000
/100nspeN
30−
20−
10−
0
10
20
30
40
50
Data
Simulation
Time bin [100 ns]
0 200 400 600 800 1000
/100nspeN
30−
20−
10−
0
10
20
30
40
50
Data
Simulation
3 / 15
FAST top-down reconstruction (Preliminary)
Zenith Azimuth Core(X) Core(Y) Xmax Energy
3.3 deg 110.5 deg 8.7 km -9.2 km 830 g/cm2 10.3 EeV
TA data
TA SD (Preliminary)
Zenith Azimuth Core(X) Core(Y) Energy
4.5 deg 88.3 deg 8.8 km -9.2 km 12.3 EeV
TA FD (Preliminary)
5.2 deg 106.0 deg 8.7 km -9.3 km 11.2 EeV
FAST data
Pierre Auger: 3000 km2 Telescope Array:700 km2
(not drawn to scale) 3
Installation of 1st FAST prototype in Auger
15
FD (Los Leones)
LIDAR dome
FAST
Pierre Auger Observatory
Malargue, Argentina
Start observation from April 11th, 2019
Time [100 ns]
360 380 400 420 440 460 480 500
/100nsp.e.N
50−
0
50
100
150
200
250
300
PMT 0
PMT 1
PMT 2
PMT 3
Time (100 ns)
0 1002003004005006007008009001000
/(100ns)p.e.N
20−
10−
0
10
20
30
40
PMT 0
Time (100 ns)
0 1002003004005006007008009001000
/(100ns)p.e.N
20−
10−
0
10
20
30
40
PMT 2
Time (100 ns)
0 1002003004005006007008009001000
/(100ns)p.e.N
0
50
100
150
200
250
300
350
PMT 1
Time (100 ns)
0 1002003004005006007008009001000
/(100ns)p.e.N
0
200
400
600
800
1000
1200
PMT 3
Cherenkov signal Horizontal laser signal
Time [100 ns]
360 380 400 420 440 460 480 500
/100nsp.e.N
0
50
100
150
200
250
300
PMT 0
PMT 1
PMT 2
PMT 3
Summary and future plans
16
Fluorescence detector Array of Single-pixel Telescopes
(FAST)
10×statistics compared to Auger and TA×4 with Xmax
Directional anisotropy on arrival direction, energy
spectrum and mass composition
Installed total 3 telescopes at Telescope Array site and 1st
telescope in the Pierre Auger Observatory
Stable observation with remote controlling
UHECR detections, and their reconstruction method
implemented.
We will continue to operate the telescopes and search for
UHECR in coincidence with current observatories.
A resolution study with the full FAST array
Developing new electronics, and preparing for stand-alone
operation New collaborators are welcome!http://www.fast-project.org
Argentina
Utah, USA

More Related Content

PDF
FAST実験2:新型大気蛍光望遠鏡の性能評価
PDF
Next-Generation Observatory: Fluorescence detector Array of Single Pixel Tele...
PDF
First results from a prototype for the Fluorescence detector Array of Single-...
PDF
Development of a prototype for Fluorescence detector Array of Single-pixel Te...
PDF
A Conceptual Design for a Large Ground Array of Fluorescence Detectors
PDF
次世代極高エネルギー宇宙線のための新型大気蛍光望遠鏡の開発
PDF
Fluorescence detector Array of Single-pixel Telescopes (FAST) project
PDF
Future Prospects on UHECR and UHE Photon
FAST実験2:新型大気蛍光望遠鏡の性能評価
Next-Generation Observatory: Fluorescence detector Array of Single Pixel Tele...
First results from a prototype for the Fluorescence detector Array of Single-...
Development of a prototype for Fluorescence detector Array of Single-pixel Te...
A Conceptual Design for a Large Ground Array of Fluorescence Detectors
次世代極高エネルギー宇宙線のための新型大気蛍光望遠鏡の開発
Fluorescence detector Array of Single-pixel Telescopes (FAST) project
Future Prospects on UHECR and UHE Photon

What's hot (20)

PDF
The FAST Project - Next Generation UHECR Observatory -
PDF
A next-generation ground array for the detection of ultrahigh-energy cosmic r...
PDF
Fluorescence technique - FAST
PDF
Latest results of ultra-high-energy cosmic ray measurements with prototypes o...
PDF
FAST実験3:新型大気蛍光望遠鏡の試験観測報告
PDF
Approximately a thousand_ultra_difuse_galaxies_in_the_coma_cluster
PPT
Cosmology Research in China
PDF
tw1979_current_topics_paper
PPTX
TU2.L09.4 - POLARIMETRIC SCATTERING ANALYSIS FOR ACCURATE OBSERVATION OF STR...
PDF
A Low Power & Low Noise Multi-Channel ASIC for X-Ray and Gamma-Ray Spectroscopy
PDF
Talents up grazioli cesare_20_05_2013
PPTX
Overview of hyperspectral remote sensing of impervious surfaces
PDF
Gefran controls used for evaluating the focusing performance of mirrors in Ch...
PPT
Sano_IGARSS2011.ppt
PPTX
WMB-IP=TU1-TO2_5-110726_1040=110722.pptx
PPTX
Chini_NN_IGARSS2011.pptx
PPTX
GAIA @SpaceUpParis
PDF
1374 bae[1]
PDF
Usuda_2014p91452F
PDF
GMT AITC brief_final
The FAST Project - Next Generation UHECR Observatory -
A next-generation ground array for the detection of ultrahigh-energy cosmic r...
Fluorescence technique - FAST
Latest results of ultra-high-energy cosmic ray measurements with prototypes o...
FAST実験3:新型大気蛍光望遠鏡の試験観測報告
Approximately a thousand_ultra_difuse_galaxies_in_the_coma_cluster
Cosmology Research in China
tw1979_current_topics_paper
TU2.L09.4 - POLARIMETRIC SCATTERING ANALYSIS FOR ACCURATE OBSERVATION OF STR...
A Low Power & Low Noise Multi-Channel ASIC for X-Ray and Gamma-Ray Spectroscopy
Talents up grazioli cesare_20_05_2013
Overview of hyperspectral remote sensing of impervious surfaces
Gefran controls used for evaluating the focusing performance of mirrors in Ch...
Sano_IGARSS2011.ppt
WMB-IP=TU1-TO2_5-110726_1040=110722.pptx
Chini_NN_IGARSS2011.pptx
GAIA @SpaceUpParis
1374 bae[1]
Usuda_2014p91452F
GMT AITC brief_final
Ad

Similar to Observing ultra-high energy cosmic rays with prototypes of the Fluorescence detector Array of Single-pixel Telescopes (FAST) in both hemispheres (20)

PDF
Ultra-high-energy cosmic ray detection using next-generation prototypes of th...
PDF
FAST実験6:新型大気蛍光望遠鏡による観測報告とピエールオージェ観測所への設置計画
PDF
FAST実験7:新型大気蛍光望遠鏡による極高エネルギー宇宙線観測報告
PDF
大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究
PDF
Latest updates and results from the Fluorescence detector Array of Single-pix...
PDF
Detecting Ultra-High Energy Cosmic Rays with Prototypes of FAST in Both Hemis...
PDF
GCOS1: Global Cosmic Ray Observatory (GCOS) の構想と全体報告
PDF
Results from telescope_array_experiment
PDF
First results from the full-scale prototype for the Fluorescence detector Arr...
PDF
Marietta College Colloquium
PDF
The second data_release_of_the_iphas
PPT
Astronomical observations.ppt
PDF
Detection of lyman_alpha_emission_from_a_triply_imaged_z_6_85_galaxy_behind_m...
PDF
Photometry of the UWISH2 extended H2 source catalogue
PDF
TA2/GCOS (Global Cosmic Ray Observatory)
PDF
Survey & X-ray (Chandra) Spectral analysis of Fermi LAT gamma pulsars
PDF
Aa16869 11
PDF
Future ground arrays for ultrahigh-energy cosmic rays: recent updates and per...
PDF
Initial Calibration of CCD Images for the Dark Energy Survey- Deokgeun Park
PDF
Atmospheric monitoring with the Fluorescence detector Array of Single-pixel T...
Ultra-high-energy cosmic ray detection using next-generation prototypes of th...
FAST実験6:新型大気蛍光望遠鏡による観測報告とピエールオージェ観測所への設置計画
FAST実験7:新型大気蛍光望遠鏡による極高エネルギー宇宙線観測報告
大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究
Latest updates and results from the Fluorescence detector Array of Single-pix...
Detecting Ultra-High Energy Cosmic Rays with Prototypes of FAST in Both Hemis...
GCOS1: Global Cosmic Ray Observatory (GCOS) の構想と全体報告
Results from telescope_array_experiment
First results from the full-scale prototype for the Fluorescence detector Arr...
Marietta College Colloquium
The second data_release_of_the_iphas
Astronomical observations.ppt
Detection of lyman_alpha_emission_from_a_triply_imaged_z_6_85_galaxy_behind_m...
Photometry of the UWISH2 extended H2 source catalogue
TA2/GCOS (Global Cosmic Ray Observatory)
Survey & X-ray (Chandra) Spectral analysis of Fermi LAT gamma pulsars
Aa16869 11
Future ground arrays for ultrahigh-energy cosmic rays: recent updates and per...
Initial Calibration of CCD Images for the Dark Energy Survey- Deokgeun Park
Atmospheric monitoring with the Fluorescence detector Array of Single-pixel T...
Ad

More from Toshihiro FUJII (7)

PDF
極高エネルギー宇宙線観測用の新型大気蛍光望遠鏡での再構成プログラム開発と最新成果
PDF
FAST Experiment 16 : Machine learning with the Fluorescence detector Array of...
PDF
FAST実験17: FASTミニアレイ建設に向けた進捗報告(日本物理学会2024年春季大会)
PDF
FAST実験14:新型大気蛍光望遠鏡による南北半球での極高エネルギー宇宙線観測と自立稼働へ向けた開発研究
PDF
20220906_FAST_JPS_nagasawa.pdf
PDF
FAST実験5:新型大気蛍光望遠鏡の遠隔運用と宇宙線観測報告
PDF
FAST実験4:大気蛍光望遠鏡による極高エネルギー宇宙線観測報告
極高エネルギー宇宙線観測用の新型大気蛍光望遠鏡での再構成プログラム開発と最新成果
FAST Experiment 16 : Machine learning with the Fluorescence detector Array of...
FAST実験17: FASTミニアレイ建設に向けた進捗報告(日本物理学会2024年春季大会)
FAST実験14:新型大気蛍光望遠鏡による南北半球での極高エネルギー宇宙線観測と自立稼働へ向けた開発研究
20220906_FAST_JPS_nagasawa.pdf
FAST実験5:新型大気蛍光望遠鏡の遠隔運用と宇宙線観測報告
FAST実験4:大気蛍光望遠鏡による極高エネルギー宇宙線観測報告

Recently uploaded (20)

PDF
AlphaEarth Foundations and the Satellite Embedding dataset
PPTX
7. General Toxicologyfor clinical phrmacy.pptx
PDF
The scientific heritage No 166 (166) (2025)
DOCX
Viruses (History, structure and composition, classification, Bacteriophage Re...
PPTX
2Systematics of Living Organisms t-.pptx
PDF
SEHH2274 Organic Chemistry Notes 1 Structure and Bonding.pdf
PDF
ELS_Q1_Module-11_Formation-of-Rock-Layers_v2.pdf
PPTX
Introduction to Cardiovascular system_structure and functions-1
PPTX
2. Earth - The Living Planet earth and life
PDF
Unveiling a 36 billion solar mass black hole at the centre of the Cosmic Hors...
PPTX
GEN. BIO 1 - CELL TYPES & CELL MODIFICATIONS
PDF
HPLC-PPT.docx high performance liquid chromatography
PPT
protein biochemistry.ppt for university classes
PPTX
neck nodes and dissection types and lymph nodes levels
PPTX
The KM-GBF monitoring framework – status & key messages.pptx
PPTX
BIOMOLECULES PPT........................
PPTX
Comparative Structure of Integument in Vertebrates.pptx
PDF
An interstellar mission to test astrophysical black holes
PDF
Placing the Near-Earth Object Impact Probability in Context
PPTX
ECG_Course_Presentation د.محمد صقران ppt
AlphaEarth Foundations and the Satellite Embedding dataset
7. General Toxicologyfor clinical phrmacy.pptx
The scientific heritage No 166 (166) (2025)
Viruses (History, structure and composition, classification, Bacteriophage Re...
2Systematics of Living Organisms t-.pptx
SEHH2274 Organic Chemistry Notes 1 Structure and Bonding.pdf
ELS_Q1_Module-11_Formation-of-Rock-Layers_v2.pdf
Introduction to Cardiovascular system_structure and functions-1
2. Earth - The Living Planet earth and life
Unveiling a 36 billion solar mass black hole at the centre of the Cosmic Hors...
GEN. BIO 1 - CELL TYPES & CELL MODIFICATIONS
HPLC-PPT.docx high performance liquid chromatography
protein biochemistry.ppt for university classes
neck nodes and dissection types and lymph nodes levels
The KM-GBF monitoring framework – status & key messages.pptx
BIOMOLECULES PPT........................
Comparative Structure of Integument in Vertebrates.pptx
An interstellar mission to test astrophysical black holes
Placing the Near-Earth Object Impact Probability in Context
ECG_Course_Presentation د.محمد صقران ppt

Observing ultra-high energy cosmic rays with prototypes of the Fluorescence detector Array of Single-pixel Telescopes (FAST) in both hemispheres

  • 1. Observing ultra-high energy cosmic rays with prototypes of the Fluorescence detector Array of Single-pixel Telescopes (FAST) in both hemispheres 1 Toshihiro Fujii (Hakubi Center for Advanced Research, Kyoto University, fujii@cr.scphys.kyoto-u.ac.jp) Justin Albury, Jose Bellido, Ladislav Chytka, John Farmer, Petr Hamal, Pavel Horvath, Miroslav Hrabovsky, Jiri Kvita, Max Malacari, Dusan Mandat, Massimo Mastrodicasa, John Matthews, Stanislav Michal, Xiaochen Ni, Libor Nozka, Miroslav Palatka, Miroslav Pech, Paolo Privitera, Petr Schovanek, Francesco Salamida, Radomir Smida, Stan Thomas, Petr Travnicek, Martin Vacula (FAST Collaboration) 25th July 2019, ICRC 2019, Madison, USA Utah, USA ArgentinaUtah, USA
  • 2. zzz © Ryuunosuke Takeshige and Toshihiro Fujii (Kyoto University)
  • 3. © Ryuunosuke Takeshige and Toshihiro Fujii (Kyoto University) Ultra-high energy cosmic rays (UHECR), 1020 eV ‣ Less deflection in galactic/extragalactic magnetic fields ‣ Related with extremely energetic astrophysical phenomena ‣ Spectrum suppression, ‣ Indicate nearby sources distributed non-uniformly within ~50 Mpc ‣ Correlation between UHECRs and nearby energetic sources or objects ‣ Next-generation astronomy Low-energy cosmic rays
  • 4. © Ryuunosuke Takeshige and Toshihiro Fujii (Kyoto University) FLUX MAP ABOVE 8 EeVFLUX MAP ABOVE 8 EeV Galactic center Equatorial coordinates Pierre Auger Collab., Science 357, 1266 (2017) V. Verzi et al., PTEP, 12A103 (2017) No conclusive results on UHECR sources... E>8 EeV, 5.2σ (Auger) (c) (d) Figure 1. Aitoff projection of the UHECR maps in equatorial coordinates. The solid curves indicate the galactic plane (GP) and supergalactic plane (SGP). Our FoV is defined as the region above the dashed curve at decl. = −10◦. (a) The points show the directions of the UHECRs E > 57 EeV observed by the TA SD array, and the closed and open stars indicate the Galactic center (GC) and the anti-Galactic center (Anti-GC), respectively; (b) color contours show the number of observed cosmic-ray events summed over a 20◦ radius circle; (c) number of background events from the geometrical exposure summed over a 20◦ radius circle (the same color scale as (b) is used for comparison); (d) significance map calculated from (b) and (c) using Equation (1). The event selection criteria above are somewhat looser than those of our previous analyses of cosmic-ray anisotropy (Fukushima et al. 2013) to increase the observed cosmic-ray statistics. In our previous analyses, the largest signal counter is surrounded by four working counters that are its nearest neighbors to maintain the quality of the energy resolution and angular resolution. Only 52 events survived those tighter cuts. When the edge cut is abolished from the analysis (presented here) to keep more cosmic-ray events, 20 events with E > 57 EeV are recovered compared with the tighter cut analysis. A full Monte Carlo (MC) simulation, which includes detailed detector responses (Abu-Zayyad et al. 2013a), predicted a 13.2 event increase in the number of events. The chance probability of size anisotropy (Hayashida et al. 1999a, 1999b), namely to use oversampling with a 20◦ radius. Being mindful that scanning the parameter space of the analysis causes a large increase in chance corrections, we have not varied this radius. The TA and HiRes collaborations used this method previously (Kawata et al. 2013; Ivanov et al. 2007) to test the AGASA intermediate- scale anisotropy results with their data in the 1018 eV range. The present letter reports on an extension of this method with application to the E > 57 EeV energy region. In our analysis, at each point in the sky map, cosmic- ray events are summed over a 20◦ radius circle as shown in Figure 1(b). The centers of tested directions are on a 0.◦ 1 × 0.◦ 1 grid from 0◦ to 360◦ in right ascension (R.A.) and −10◦ –90◦ in Telescope Array Collab., ApJL 790:L21 (2014) E>57 EeV, 3.4σ (TA) E>39 EeV, 4.0σ (Auger) Pierre Auger Collab., ApJL 853:L29 (2018) 8 EeV Equatorial Galactic Equatorial
  • 5. Fine pixelated camera Low-cost and simplified telescope ✦ Target : > 1019.5 eV, ultra-high energy cosmic rays (UHECR) and neutral particles ✦ Huge target volume ⇒ Fluorescence detector array Too expensive to cover a huge area 5 Smaller optics and single or a few pixels Fluorescence detector Array of Single-pixel Telescopes Segmented mirror telescope Variable angles of elevation – steps. 15 deg 45 deg
  • 6. 6 ✦ Each telescope: 4 PMTs, 30°×30° field-of-view (FoV) ✦ Reference design: 1 m2 aperture, 15°×15° FoV per photo-multiplier tube (PMT) ✦ Each station: 12 telescopes, 48 PMTs, 30°×360° FoV ✦ Deploy on a triangle grid with 20 km spacing, like “Surface Detector Array” ✦ With 500 stations, a ground coverage is 150,000 km2 20 km Fluorescence detector Array of Single-pixel Telescopes ce Detectors ope Array:700 km2 ale) 3 Pierre Auger: 3000 km2 Telescope Array:700 km2 (not drawn to scale) 3 Telescope Array (TA) Pierre Auger Observatory (Auger) 56 EeV 16 56 EeV zenith 500 1 2 3 1 3 2 PhotonsatdiaphragmPhotonsatdiaphragm Photonsatdiaphragm FAST(10%) 60 stations 17,000 km2 5 years: 5100 events (E > 57 EeV), 650 events (E > 100 EeV) - Directional anisotropy on arrival directions, energy spectrum, mass composition Reference: T. Fujii et al., Astropart.Phys. 74 (2016) 64-72 www.fast-project.org 700 km2 3000 km2
  • 7. © Ryuunosuke Takeshige and Toshihiro Fujii (Kyoto University)
  • 8. © Ryuunosuke Takeshige and Toshihiro Fujii (Kyoto University) 1. Detector development for future project 2. Cross-calibration of Energy and Xmax scales in current UHECR observatories.
  • 9. 9 FAST fluorescence prototypes in TA Reference: D. Mandat et al., JINST 12, T07001 (2017) Wavelength [nm] 260 280 300 320 340 360 380 400 420 Efficiency[%] 0 10 20 30 40 50 60 70 80 90 100 Mirror reflectivity Filter transmission Total efficiency Figure 5. The typical spectral reflectance of the FAST mirror between 260 nm and 420 nm, along w spectral transmission of the UV band-pass filter. The resultant total optical efficiency is shown in blac filter used on the Cherenkov telescope of the MAGIC [18] observatory. The filter is constructed a number of small segments in order to fit the FAST prototype’s octagonal aperture. The indiv segments are fit together using brass “U” and “H” profiles, resulting in an aperture of 1 m2 in 6 Telescope support structure The telescope’s mechanical support structure was built from commercially available alum profiles. This allows for straightforward assembly/disassembly, and easy packing and transpo to their light weight, while also providing an extremely stable and rigid platform for the ✦4 PMTs (20 cm, 8 dynodes R5912-03MOD, base E7694-01) ✦1 m2 aperture of the UV band-pass filter (ZWB3), segmented mirror of 1.6 m diameter ✦Total 3 telescopes installed at TA site by October 2018 ✦Total 545 hours by June 2019
  • 10. FAST observation set-up 10 ✦ Remote controlling observation ✦ Synchronized operation with external triggers from Telescope Array fluorescence detector (TA FD) ✦ 80% FoV of TA FD TA FD FoV (12 telescopes, 33°×108°) FAST FoV (3 telescopes, 30°×90°) 5. Run a Minuit SIMPLEX fitter to determine the optimal aerosol horizontal attenuation length and scale height, letting the absolute calibration float (the shape of the trace should be more heavily dependent on the atmospheric composition than its normalisation) Time bins [100 ns] 0 100 200 300 400 500 600 700 800 900 1000 /100nsp.e.N 0 5 10 15 20 25 260 CLF shots from 2018/09/12 05:27:04.764472000 Summed trace PMT 4 PMT 5 PMT 6 PMT 7 260 CLF shots from 2018/09/12 05:27:04.764472000 Time bins [100 ns] 0 100 200 300 400 500 600 700 800 900 1000 /100nsp.e.N 0 5 10 15 20 25 Measured trace Best fit = 0.51 kmaerH = 16.28 kmaerL Norm. = 0.76 VAOD = 0.03 /ndf = 0.922χ NOTES: - Hmix is not currently being used - Hmol is set to 8 km - Lmol is set to 14.2 km at sea-level, suitable for a laser of 355 nm wavelength - Jitter in laser energy not yet taken into account - Telescope PSF not yet taken into account - PMT collection efficiency non- uniformity not yet taken into account Example of a decent fit. Typically the fit isn’t so PRELIMINARY Vertical laser signal (280 shot average) Vertical laser at a distance of 21 km Azimuth [deg] Elevation[deg] Azimuth [deg] Elevation[deg] FAST 1 FAST 2 FA ST 3 CLF direction TA FD TA FD
  • 11. -2018/05/15 Time bin [100 ns] 200 250 300 350 400 /100nspeN 30− 20− 10− 0 10 20 30 40 50 Data Simulation Time bin [100 ns] 200 250 300 350 400 /100nspeN 30− 20− 10− 0 10 20 30 40 50 Data Simulation Time bin [100 ns] 200 250 300 350 400 /100nspeN 0 50 100 150 200 250 Data Simulation Time bin [100 ns] 200 250 300 350 400 /100nspeN 0 50 100 150 200 Data Simulation Time bin [100 ns] 150 200 250 300 350 400 450 500 /100nspeN 30− 20− 10− 0 10 20 30 40 50 Data Simulation Time bin [100 ns] 200 250 300 350 400 /100nspeN 0 50 100 150 200 Data Simulation Time bin [100 ns] 200 250 300 350 400 /100nspeN 30− 20− 10− 0 10 20 30 40 50 Data Simulation Time bin [100 ns] 200 250 300 350 400 /100nspeN 30− 20− 10− 0 10 20 30 40 50 Data Simulation 4 / 9 UHECR signal and reconstruction 11 FAST waveform + expected signal from top-down reconstruction (Data, simulation by the best-fit parameters) FAST top-down reconstruction (Preliminary) Zenith Azimuth Core(X) Core(Y) Xmax Energy 59.8 deg -96.7 deg 7.9 km -9.0 km 842 g/cm2 17.3 EeV TA FD (Preliminary) Energy: 19.0 EeV Rp: 6.1 km
  • 12. Coincidence shower search between TA FD and FAST 12 16 16.5 17 17.5 18 18.5 19 19.5 20 log(E(eV)) 1 10 2 10 Impactparameter[km] TA FD events Single-hit PMT (FAST) Multi-hit PMTs Preliminary ✦ Data period: 2018/Oct/06 - 2019/Jan/14, 52 hours with 3 FAST prototypes ✦ Event number: 236 (TA FD) -> 37 (significant signals with FAST, S/N > 6σ, Δt > 500 ns) ✦ The shower parameters are reconstructed by TA FD monocular analysis. 16 16.5 17 17.5 18 18.5 19 19.5 20 log(E(eV)) 2 10 3 10 4 10 5 10 s]µTime-averagebrightness[pe/ TA FD events Single-hit PMT (FAST) Multi-hit PMTs Preliminary ① ② 16 16.5 17 17.5 18 18.5 19 19.5 20 log(E(eV) 1 10 2 10 Entries TA FD events Single-hit PMT (FAST) Multi-hit PMTs Preliminary ✦ Maximum detectable impact parameter: ~20 km at 1019.5 eV with brighter signal showers ✦ 2 events above 10 EeV in 52 hours → ~25 events/year (15% duty cycle)
  • 13. ① Highest energy event 13 Event 2: SD: 15.8 EeV, Zen: 36.15◦ , Azi: 18.0◦ , Core(5.002, -4.461), Date: 20190110, Time: 063617.657363 FD: 19.95 EeV, Zen: 33.2◦ , Azi: 35.8◦ , Core(6.12, -5.26), Date: 20190110, Time: 063617.657398690 Event 4: SD: 1.32 EeV, Zen: 39.07◦ , Azi: -4.84◦ , Core(9.045, -2.982), Date: 20190110, Time: 070221.485684 FD: 1.86 EeV, Zen: 33.9◦ , Azi: 10.0◦ , Core(9.8, -3.91), Date: 20190110, Time: 070221.485723180 FAST top-down reconstruction (Preliminary) Zenith Azimuth Core(X) Core(Y) Xmax Energy 33.9 deg 19.3 deg 4.6 km -4.7 km 808 g/cm2 18.8 EeV FAST dataTA data Time bin [100 ns] 0 200 400 600 800 1000 /100nspeN 30− 20− 10− 0 10 20 30 40 50 Data Simulation Time bin [100 ns] 0 200 400 600 800 1000 /100nspeN 30− 20− 10− 0 10 20 30 40 50 Data Simulation Time bin [100 ns] 0 200 400 600 800 1000 /100nspeN 30− 20− 10− 0 10 20 30 40 50 Data Simulation Time bin [100 ns] 0 200 400 600 800 1000 /100nspeN 30− 20− 10− 0 10 20 30 40 50 Data Simulation Time bin [100 ns] 0 200 400 600 800 1000 /100nspeN 30− 20− 10− 0 10 20 30 40 50 Data Simulation Time bin [100 ns] 0 200 400 600 800 1000 /100nspeN 30− 20− 10− 0 10 20 30 40 50 Data Simulation TA SD (Preliminary) Zenith Azimuth Core(X) Core(Y) Energy 36.2 deg 18.0 deg 5.0 km -4.5 km 15.8 EeV TA FD (Preliminary) 33.2 deg 35.8 deg 6.1 km -5.3 km 20.0 EeV
  • 14. Event 14: SD: 12.3 EeV, Zen: 4.53◦ , Azi: 88.34◦ , Core(8.801, -9.219), Date: 20190111, Time: 081213.261353 FD: 11.22 EeV, Zen: 5.2◦ , Azi: 106.0◦ , Core(8.73, -9.26), Date: 20190111, Time: 081213.261375409 Event 15: SD: 1.88 EeV, Zen: 36.65◦ , Azi: -35.8◦ , Core(6.097, -3.238), Date: 20190111, Time: 084640.976253 FD: 1.70 EeV, Zen: 31.0◦ , Azi: -27.9◦ , Core(7.76, -4.61), Date: 20190111, Time: 084640.976304421 ② Second highest energy event 14 Best fit comparison (Preliminary - SIMPLEX only) Time bin [100 ns] 0 200 400 600 800 1000 /100nspeN 30− 20− 10− 0 10 20 30 40 50 Data Simulation Time bin [100 ns] 0 200 400 600 800 1000 /100nspeN 30− 20− 10− 0 10 20 30 40 50 Data Simulation 0 200 400 60 /100nspeN 30− 20− 10− 0 10 20 30 40 50 0 200 400 60 /100nspeN 30− 20− 10− 0 10 20 30 40 50 3 / 15 Best fit comparison (Preliminary - SIMPLEX only) Time bin [100 ns] 0 200 400 600 800 1000 /100nspeN 30− 20− 10− 0 10 20 30 40 50 Data Simulation Time bin [100 ns] 0 200 400 600 800 1000 /100nspeN 30− 20− 10− 0 10 20 30 40 50 Data Simulation Time bin [100 ns] 0 200 400 600 800 1000 /100nspeN 30− 20− 10− 0 10 20 30 40 50 Data Simulation Time bin [100 ns] 0 200 400 600 800 1000 /100nspeN 30− 20− 10− 0 10 20 30 40 50 Data Simulation 3 / 15 FAST top-down reconstruction (Preliminary) Zenith Azimuth Core(X) Core(Y) Xmax Energy 3.3 deg 110.5 deg 8.7 km -9.2 km 830 g/cm2 10.3 EeV TA data TA SD (Preliminary) Zenith Azimuth Core(X) Core(Y) Energy 4.5 deg 88.3 deg 8.8 km -9.2 km 12.3 EeV TA FD (Preliminary) 5.2 deg 106.0 deg 8.7 km -9.3 km 11.2 EeV FAST data
  • 15. Pierre Auger: 3000 km2 Telescope Array:700 km2 (not drawn to scale) 3 Installation of 1st FAST prototype in Auger 15 FD (Los Leones) LIDAR dome FAST Pierre Auger Observatory Malargue, Argentina Start observation from April 11th, 2019 Time [100 ns] 360 380 400 420 440 460 480 500 /100nsp.e.N 50− 0 50 100 150 200 250 300 PMT 0 PMT 1 PMT 2 PMT 3 Time (100 ns) 0 1002003004005006007008009001000 /(100ns)p.e.N 20− 10− 0 10 20 30 40 PMT 0 Time (100 ns) 0 1002003004005006007008009001000 /(100ns)p.e.N 20− 10− 0 10 20 30 40 PMT 2 Time (100 ns) 0 1002003004005006007008009001000 /(100ns)p.e.N 0 50 100 150 200 250 300 350 PMT 1 Time (100 ns) 0 1002003004005006007008009001000 /(100ns)p.e.N 0 200 400 600 800 1000 1200 PMT 3 Cherenkov signal Horizontal laser signal Time [100 ns] 360 380 400 420 440 460 480 500 /100nsp.e.N 0 50 100 150 200 250 300 PMT 0 PMT 1 PMT 2 PMT 3
  • 16. Summary and future plans 16 Fluorescence detector Array of Single-pixel Telescopes (FAST) 10×statistics compared to Auger and TA×4 with Xmax Directional anisotropy on arrival direction, energy spectrum and mass composition Installed total 3 telescopes at Telescope Array site and 1st telescope in the Pierre Auger Observatory Stable observation with remote controlling UHECR detections, and their reconstruction method implemented. We will continue to operate the telescopes and search for UHECR in coincidence with current observatories. A resolution study with the full FAST array Developing new electronics, and preparing for stand-alone operation New collaborators are welcome!http://www.fast-project.org Argentina Utah, USA