SlideShare a Scribd company logo
Latest updates and results from the
Fluorescence detector Array of
Single-pixel Telescopes (FAST)
Fraser Bradfield, J. Albury, J. Bellido, L. Chytka, J. Farmer, T. Fujii, P. Hamal,
P. Horvath, M. Hrabovsky, V. Jilek, K. Cerny, J. Kmec, J. Kvita, M. Malacari, D. Mandat,
M. Mastrodicasa, J. Matthews, S. Michal, H. Nagasawa, H. Namba, M. Niechciol,
L. Nozka, M. Palatka, M. Pech, P. Privitera, S. Sakurai, F. Salamida, P. Schovanek,
R. Smida, D. Stanik, Z. Svozillikova, A. Taketa, K. Terauchi, S. Tomas, P. Travnicek and
M. Vacula (The FAST Collaboration)
UHECR 2024, Malargüe, Pierre Auger Observatory
The Fluorescence Detector Array of
Single-pixel Telescopes
12 telescopes/
station
Aiming for 100% trigger efficiency
above 1019.5 eV
Goal:
• Uncover origin of UHECRs
• Use same detector in both
hemispheres
• Detection area - 150,000 km2
Design:Low-cost, easily deployable,
autonomous fluorescence telescopes
1.6 m
Four 20 cm PMTs
30°x30°
Segmented
mirror
UV filter
2
Coleman, 2021
FAST reconstruction
1)Directly compare data traces to those
from simulations
2)The parameters (E, Xmax, 𝜃, 𝜙, 𝑥, 𝑦)of
the simulation which give the best
matching traces to data are chosen
Top-down reconstruction
How?Maximize likelihood function
Probability of observing signal 𝑥𝑖 in time
bin 𝑖 of PMT 𝑘 given shower parameters
Ԧ
𝑎= (E, Xmax, 𝜃, 𝜙, 𝑥, 𝑦)
Data
MC
3
First generation prototypes
“FAST@TA”
4
“FAST@Auger”
3 prototypes (installed 2016, 2017, 2018)
Observation time:
~540 hrs
TA CLF
2 prototypes (installed 2019, 2022)
Observation time:
~2970 hrs
Only one in
operation
Coincidence events
FAST@TA FAST@Auger
Analysis period 2 telescopes(2018/03 – 2018/10)
3 telescopes(2018/10 – 2023/02)
1 telescope(2022/07 – 2022/10)
Observation time 2 telescopes ~ 65 hrs
3 telescopes ~ 182 hrs
1 telescope ~ 122 hrs
Trigger condition External trigger from TA BRM FD External trigger from Auger LL Bay 4
Coincidence events 438 236
Signal detection algorithm:
5
For event observed by TA/Auger in FOV of FAST:
• Smooth original trace ‘𝑇’ with a finite impulse
response (FIR) filter → get waveform ‘𝐹’
• For the ith bin of 𝐹, 𝐹𝑖, calculate
PMT has signal if the max SNR over all bins > 2
F3100
bkgrd3100
Data/MC comparison FAST@Auger
Data
MC
Energy Energy
• Data = TA/Auger reconstructed
values (E > 1018 eV)
• MC Conditions
• Xmax dist.:EPOS (500-1200 gcm-2)
• Energy dist.: 𝐸-1 (1018-1020 eV)
• 𝜃 dist.: sin𝜃cos𝜃 (0-80 deg)
• FAST@TA
• Core pos:Circle at (0,0) r=35 km
• FAST@Augerで6万シャワ
• Core pos: Circle at (0,0) r=12 km
• Trigger cond.:2 PMTs with SNR>6
• MC histograms rescaled to match
area of data histograms
FAST@TA
6
Rp Rp
Data
MC
Azimuth
Zenith
Azimuth
Zenith
FAST@TA FAST@Auger
Data/MC comparison
7
Data
MC
Zenith
• Data = TA/Auger reconstructed
values (E > 1018 eV)
• MC Conditions
• Xmax dist.:EPOS (500-1200 gcm-2)
• Energy dist.: 𝐸-1 (1018-1020 eV)
• 𝜃 dist.: sin𝜃cos𝜃 (0-80 deg)
• FAST@TA
• Core pos:Circle at (0,0) r=35 km
• FAST@Augerで6万シャワ
• Core pos: Circle at (0,0) r=12 km
• Trigger cond.:2 PMTs with SNR>6
• MC histograms rescaled to match
area of data histograms
CoreX
CoreY
CoreX
CoreY
FAST@TA FAST@Auger
Data/MC comparison
8
Data
MC
• Data = TA/Auger reconstructed
values (E > 1018 eV)
• MC Conditions
• Xmax dist.:EPOS (500-1200 gcm-2)
• Energy dist.: 𝐸-1 (1018-1020 eV)
• 𝜃 dist.: sin𝜃cos𝜃 (0-80 deg)
• FAST@TA
• Core pos:Circle at (0,0) r=35 km
• FAST@Augerで6万シャワ
• Core pos: Circle at (0,0) r=12 km
• Trigger cond.:2 PMTs with SNR>6
• MC histograms rescaled to match
area of data histograms
Reconstruction results
9
Reconstruction setup
• Recon. (E, Xmax, 𝜃, 𝜙, 𝑥, 𝑦)
+fit time offset
• Use the TA/Auger
reconstructed values as
first guess
• Cuts:
• Successful minimization of
likelihood
• Best fit time offset between
(100,500)
FAST@TA FAST@Auger
y=x (red line)
Reconstruction results
10
FAST@TA FAST@Auger
Proper labels
Reconstruction setup
• Recon. (E, Xmax, 𝜃, 𝜙, 𝑥, 𝑦)
+fit time offset
• Use the TA/Auger
reconstructed values as
first guess
• Cuts:
• Successful minimization of
likelihood
• Best fit time offset between
(100,500)
y=x (red line)
Possible reasons for difference
Filter efficiency degradation
Atmospheric changes
Baseline fluctuations
PMT response (deterioration/structure)
• On average, signal in data is lower than
expected from Auger/TA first guess
FAST@Auger
Source of Xmax bias
11
FAST@TA
FAST@TA PMT uniformity
measurements
To check telescope performance, measured response of
FAST@TA PMTs on site Mar. 2024 using PMT scanner
12
~60% (std-dev) non-uniformity was observed.
This is not accounted for in simulations...
Color difference between camera panels
FAST 1 FAST 2 FAST 3
Reflectors
Energy spectrum
First energy spectrum
from FAST
• Calculated from the
reconstructed energy values
and exposure determined
with simulations used for
data/MC comparison
• The FAST@TA and
FAST@Auger results agree
within statistical uncertainty
13 E.g. FAST@Auger
exposure (~122 hrs)
Elongation rate – Comparison with EPOS
Construct Xmax rails for FAST
Simulation conditions:
• Xmax dist.:EPOS (500-1200 gcm-2)
• Energy dist.: 𝐸-1 (1018-1020 eV)
• 𝜃 dist.: sin𝜃cos𝜃 (0-80 deg)
Fitting proton & iron showers separately
between 17 < log(E/eV) < 20
14
Proton
Iron
Reconstruct only Xmax & E (geometry fixed)
• Initial Xmax and E varied by 30g/cm2 and 10%
• Cuts:
• One PMT with SNR>6
• Successful minimization
• Relative uncertainty in E & Xmax both < 0.5
Core pos.
14
Elongation rate
• Proton and iron rails
estimated from FAST MC
• Around 1017.5-1018.5 eV the
composition estimated by
FAST tends toward iron
• FAST@TA and FAST@Auger
results agree within
statistical uncertainty
15
Designed to operate “in-the-field” without
connection to Auger/TA
- “FAST-Field telescope”
- Comms. with telescopes at LL via 5 GHz Wifi
Improvements:
- Mirrors (simplified production, 9→4 segments)
- Enclosure (smaller, self sufficient power system)
- Camera (new electronics and PMTs)
Testing at Ondrejov
- FOV measured ✓
- Solar power test ✓
- Pedestal ✓
- Amplifier ✓
Second generation prototypes
16
FAST mini-array
17
Stereo observation with FAST:
- Install 4 second gen. telescopes
at Auger to form triangle with
current prototypes
Spacing estimation:
- Estimated # of events FAST mini-
array will detect in one year as
function of station spacing
- Start with ~11km spacing
(validate stereo observation with
high quality events) then move to
~16km to increase statistics
Current 2
tels.
Second gen
prototypes
FAST mini-array
18
Stereo observation with FAST:
- Install 4 second gen. telescopes
at Auger to form triangle with
current prototypes
Spacing estimation:
- Estimated # of events FAST mini-
array will detect in one year as
function of station spacing
- Start with ~11km spacing
(validate stereo observation with
high quality events) then move to
~16km to increase statistics
Current 2
tels.
Second gen
prototypes
2025:
Move in
2026!
FAST mini-array – site inspection
19
Soil
composition:
Solid, earthy soil
(no stones)
Can use ground
screws for
installation
Soil inspection ✓
LL
Soil inspection ✓
AYELEN
PUQUEN
LL
2025 2026
Summary & future
20
• FAST - low cost, easily deployable, autonomous
fluorescence telescopes for detecting UHECRs
• Over 650 coincidences between FAST and Auger/TA
• Simulations seem to reproduce data
• Estimated the elongation rate and energy spectrum
using ~600 events
• FAST mini-array will test second gen prototypes
with stereo observation
• Site inspection complete. Initial station spacing ~11km
• Include PMT non-uniformity measurements etc. in
simulation (check FAST@Auger PMTs)
• Finish testing in Ondrejov, ship telescopes to Auger,
install, test → stereo observation early 2025
21
Backup
Example events - TA event 1
23
cv
24
Example events - TA event 2
Example events - Auger event 1
25
[Auger event display here]
Exposure calculation
26
FAST@TA FAST@Auger
Calculated using MC data set used in previous
data/MC comparison
247 hrs 122 hrs
27 Reconstruction results - extra
Best fit
time bin
FAST@TA FAST@Auger
28
Zenith
Reconstruction results - extra
FAST@TA FAST@Auger
29
Azimuth
Reconstruction results - extra
FAST@TA FAST@Auger
30
Core X
Reconstruction results - extra
FAST@TA FAST@Auger
Reconstruction results - extra
31
FAST@TA FAST@Auger
Core Y
Xmax bias – signal difference
32
FAST@TA FAST@Auger
Xmax bias – signal difference
33
Difference Ratio
FAST@TA
Xmax bias – signal difference
34
Difference Ratio
FAST@Auger
Gaisser Hillas reconstruction
35
Need geometry!
Most likely only
obtainable with
stereo observation
• XY scanner
• 1 mm by stepping motor
• Control by serial communication
• LED flasher
• Wavelength (400 nm)
• Spot size: 1 cm circle
• Pulse width: 10us
• Trigger: 100 Hz
• Intensity: set to 8000 (*)
• Oscilloscope
• PicoScope 3400D-MSO
• External trigger from flasher
• PC
36 PMT scan - measurement setup
PMT scan – PMT alignment angle
37
FAST Field telescope PSF
38
9 segment – old design 4 segment – new design
*(not to scale)
39 Signal detection –
coincidence Energy vs. Rp
Signal detection – baseline
estimation
40
Machine learning for FAST mini-array
41
Core pos.
Inputs: Pulse timing/height/integral
from each PMT
Training: 300,000 showers
Xmax 500 - 1200 g cm-2
E 1 - 100 EeV
θ 0 - 80°
ϕ 0 - 360°
Testing: 10,000 showers
Layer structure: 72/72/36/18/6
Core pos: Circle at (0,0), r = 5773 m
Rec. cuts: Rec. energy > 1018 eV
All three stations triggered
FAST preliminary
FAST preliminary
• Simple NN shows
reasonable performance as
first guess
Simulation flow
Use old version of Auger Offline software as simulation
backbone. Have written specific modules for FAST.
Typical simulation…
• FASTProfileSimulatorCG
• FASTEventGeneratorCG
• ShowerLightSimulatorKG
• FASTSimulator
• FASTEventFileExporter
42
Xmax parameterisation
• From Blaess, 2018
• Parameterizations of EPOS, QGSJetII.04 and Sybil Xmax
distributions for 4 primary mass groups (p, He, CNO, Fe)
• When Xmax is generated, choose mass group based on
fractions provided (typically [0.25, 0.25, 0.25, 0.25]), then
based on mass group chosen and energy randomly sample
Xmax from appropriate distribution.
43

More Related Content

PDF
FAST実験6:新型大気蛍光望遠鏡による観測報告とピエールオージェ観測所への設置計画
PDF
Detecting Ultra-High Energy Cosmic Rays with Prototypes of FAST in Both Hemis...
PDF
First results from the full-scale prototype for the Fluorescence detector Arr...
PPT
Behalf Of Pamela Collaboration
PDF
A Conceptual Design for a Large Ground Array of Fluorescence Detectors
PDF
Observing ultra-high energy cosmic rays with prototypes of the Fluorescence d...
PDF
The FAST Project - Next Generation UHECR Observatory -
PDF
Next-Generation Observatory: Fluorescence detector Array of Single Pixel Tele...
FAST実験6:新型大気蛍光望遠鏡による観測報告とピエールオージェ観測所への設置計画
Detecting Ultra-High Energy Cosmic Rays with Prototypes of FAST in Both Hemis...
First results from the full-scale prototype for the Fluorescence detector Arr...
Behalf Of Pamela Collaboration
A Conceptual Design for a Large Ground Array of Fluorescence Detectors
Observing ultra-high energy cosmic rays with prototypes of the Fluorescence d...
The FAST Project - Next Generation UHECR Observatory -
Next-Generation Observatory: Fluorescence detector Array of Single Pixel Tele...

Similar to Latest updates and results from the Fluorescence detector Array of Single-pixel Telescopes (FAST) (20)

PDF
A next-generation ground array for the detection of ultrahigh-energy cosmic r...
PDF
Development of a prototype for Fluorescence detector Array of Single-pixel Te...
PDF
Future Prospects on UHECR and UHE Photon
PDF
次世代極高エネルギー宇宙線のための新型大気蛍光望遠鏡の開発
PDF
First results from a prototype for the Fluorescence detector Array of Single-...
PDF
FAST実験7:新型大気蛍光望遠鏡による極高エネルギー宇宙線観測報告
PDF
05_pitra.pdf
PDF
Ultra-high-energy cosmic ray detection using next-generation prototypes of th...
PDF
FAST実験3:新型大気蛍光望遠鏡の試験観測報告
PDF
A coupled Electromagnetic-Mechanical analysis of next generation Radio Telesc...
PPT
Prestage_GBTOverviewPerformance power point presentation
PPTX
SIXTEEN CHANNEL, NON-SCANNING AIRBORNE LIDAR SURFACE TOPOGRAPHY (LIST) SIMULATOR
PPTX
VIJAY_Internship_ppt
PPT
IGARSS11_FFBP_CSAR_v3.ppt
PPT
IGARSS11_FFBP_CSAR_v3.ppt
PPT
2_prats_IGARSS2011_distributed_imaging_v4.ppt
PPTX
Cosmology with the 21cm line
PPT
MO4.L09 - POTENTIAL AND LIMITATIONS OF FORWARD-LOOKING BISTATIC SAR
PDF
Radar 2009 a 4 radar equation
PDF
Radar 2009 a 4 radar equation
A next-generation ground array for the detection of ultrahigh-energy cosmic r...
Development of a prototype for Fluorescence detector Array of Single-pixel Te...
Future Prospects on UHECR and UHE Photon
次世代極高エネルギー宇宙線のための新型大気蛍光望遠鏡の開発
First results from a prototype for the Fluorescence detector Array of Single-...
FAST実験7:新型大気蛍光望遠鏡による極高エネルギー宇宙線観測報告
05_pitra.pdf
Ultra-high-energy cosmic ray detection using next-generation prototypes of th...
FAST実験3:新型大気蛍光望遠鏡の試験観測報告
A coupled Electromagnetic-Mechanical analysis of next generation Radio Telesc...
Prestage_GBTOverviewPerformance power point presentation
SIXTEEN CHANNEL, NON-SCANNING AIRBORNE LIDAR SURFACE TOPOGRAPHY (LIST) SIMULATOR
VIJAY_Internship_ppt
IGARSS11_FFBP_CSAR_v3.ppt
IGARSS11_FFBP_CSAR_v3.ppt
2_prats_IGARSS2011_distributed_imaging_v4.ppt
Cosmology with the 21cm line
MO4.L09 - POTENTIAL AND LIMITATIONS OF FORWARD-LOOKING BISTATIC SAR
Radar 2009 a 4 radar equation
Radar 2009 a 4 radar equation
Ad

More from Toshihiro FUJII (16)

PDF
極高エネルギー宇宙線観測用の新型大気蛍光望遠鏡での再構成プログラム開発と最新成果
PDF
GCOS1: Global Cosmic Ray Observatory (GCOS) の構想と全体報告
PDF
TA2/GCOS (Global Cosmic Ray Observatory)
PDF
FAST Experiment 16 : Machine learning with the Fluorescence detector Array of...
PDF
FAST実験17: FASTミニアレイ建設に向けた進捗報告(日本物理学会2024年春季大会)
PDF
FAST実験14:新型大気蛍光望遠鏡による南北半球での極高エネルギー宇宙線観測と自立稼働へ向けた開発研究
PDF
20220906_FAST_JPS_nagasawa.pdf
PDF
Latest results of ultra-high-energy cosmic ray measurements with prototypes o...
PDF
Fluorescence technique - FAST
PDF
Atmospheric monitoring with the Fluorescence detector Array of Single-pixel T...
PDF
Future ground arrays for ultrahigh-energy cosmic rays: recent updates and per...
PDF
大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究
PDF
FAST実験5:新型大気蛍光望遠鏡の遠隔運用と宇宙線観測報告
PDF
FAST実験4:大気蛍光望遠鏡による極高エネルギー宇宙線観測報告
PDF
FAST実験2:新型大気蛍光望遠鏡の性能評価
PDF
Fluorescence detector Array of Single-pixel Telescopes (FAST) project
極高エネルギー宇宙線観測用の新型大気蛍光望遠鏡での再構成プログラム開発と最新成果
GCOS1: Global Cosmic Ray Observatory (GCOS) の構想と全体報告
TA2/GCOS (Global Cosmic Ray Observatory)
FAST Experiment 16 : Machine learning with the Fluorescence detector Array of...
FAST実験17: FASTミニアレイ建設に向けた進捗報告(日本物理学会2024年春季大会)
FAST実験14:新型大気蛍光望遠鏡による南北半球での極高エネルギー宇宙線観測と自立稼働へ向けた開発研究
20220906_FAST_JPS_nagasawa.pdf
Latest results of ultra-high-energy cosmic ray measurements with prototypes o...
Fluorescence technique - FAST
Atmospheric monitoring with the Fluorescence detector Array of Single-pixel T...
Future ground arrays for ultrahigh-energy cosmic rays: recent updates and per...
大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究
FAST実験5:新型大気蛍光望遠鏡の遠隔運用と宇宙線観測報告
FAST実験4:大気蛍光望遠鏡による極高エネルギー宇宙線観測報告
FAST実験2:新型大気蛍光望遠鏡の性能評価
Fluorescence detector Array of Single-pixel Telescopes (FAST) project
Ad

Recently uploaded (20)

PDF
Sciences of Europe No 170 (2025)
PPTX
microscope-Lecturecjchchchchcuvuvhc.pptx
PDF
bbec55_b34400a7914c42429908233dbd381773.pdf
PPT
The World of Physical Science, • Labs: Safety Simulation, Measurement Practice
PPTX
Derivatives of integument scales, beaks, horns,.pptx
PPTX
TOTAL hIP ARTHROPLASTY Presentation.pptx
DOCX
Viruses (History, structure and composition, classification, Bacteriophage Re...
PPTX
7. General Toxicologyfor clinical phrmacy.pptx
PDF
Mastering Bioreactors and Media Sterilization: A Complete Guide to Sterile Fe...
PPTX
GEN. BIO 1 - CELL TYPES & CELL MODIFICATIONS
PDF
CAPERS-LRD-z9:AGas-enshroudedLittleRedDotHostingaBroad-lineActive GalacticNuc...
PPTX
Taita Taveta Laboratory Technician Workshop Presentation.pptx
PPTX
2. Earth - The Living Planet earth and life
PDF
IFIT3 RNA-binding activity primores influenza A viruz infection and translati...
PPTX
Introduction to Fisheries Biotechnology_Lesson 1.pptx
PPTX
Comparative Structure of Integument in Vertebrates.pptx
PPTX
2. Earth - The Living Planet Module 2ELS
PPT
POSITIONING IN OPERATION THEATRE ROOM.ppt
PPTX
ECG_Course_Presentation د.محمد صقران ppt
PPTX
Cell Membrane: Structure, Composition & Functions
Sciences of Europe No 170 (2025)
microscope-Lecturecjchchchchcuvuvhc.pptx
bbec55_b34400a7914c42429908233dbd381773.pdf
The World of Physical Science, • Labs: Safety Simulation, Measurement Practice
Derivatives of integument scales, beaks, horns,.pptx
TOTAL hIP ARTHROPLASTY Presentation.pptx
Viruses (History, structure and composition, classification, Bacteriophage Re...
7. General Toxicologyfor clinical phrmacy.pptx
Mastering Bioreactors and Media Sterilization: A Complete Guide to Sterile Fe...
GEN. BIO 1 - CELL TYPES & CELL MODIFICATIONS
CAPERS-LRD-z9:AGas-enshroudedLittleRedDotHostingaBroad-lineActive GalacticNuc...
Taita Taveta Laboratory Technician Workshop Presentation.pptx
2. Earth - The Living Planet earth and life
IFIT3 RNA-binding activity primores influenza A viruz infection and translati...
Introduction to Fisheries Biotechnology_Lesson 1.pptx
Comparative Structure of Integument in Vertebrates.pptx
2. Earth - The Living Planet Module 2ELS
POSITIONING IN OPERATION THEATRE ROOM.ppt
ECG_Course_Presentation د.محمد صقران ppt
Cell Membrane: Structure, Composition & Functions

Latest updates and results from the Fluorescence detector Array of Single-pixel Telescopes (FAST)

  • 1. Latest updates and results from the Fluorescence detector Array of Single-pixel Telescopes (FAST) Fraser Bradfield, J. Albury, J. Bellido, L. Chytka, J. Farmer, T. Fujii, P. Hamal, P. Horvath, M. Hrabovsky, V. Jilek, K. Cerny, J. Kmec, J. Kvita, M. Malacari, D. Mandat, M. Mastrodicasa, J. Matthews, S. Michal, H. Nagasawa, H. Namba, M. Niechciol, L. Nozka, M. Palatka, M. Pech, P. Privitera, S. Sakurai, F. Salamida, P. Schovanek, R. Smida, D. Stanik, Z. Svozillikova, A. Taketa, K. Terauchi, S. Tomas, P. Travnicek and M. Vacula (The FAST Collaboration) UHECR 2024, Malargüe, Pierre Auger Observatory
  • 2. The Fluorescence Detector Array of Single-pixel Telescopes 12 telescopes/ station Aiming for 100% trigger efficiency above 1019.5 eV Goal: • Uncover origin of UHECRs • Use same detector in both hemispheres • Detection area - 150,000 km2 Design:Low-cost, easily deployable, autonomous fluorescence telescopes 1.6 m Four 20 cm PMTs 30°x30° Segmented mirror UV filter 2 Coleman, 2021
  • 3. FAST reconstruction 1)Directly compare data traces to those from simulations 2)The parameters (E, Xmax, 𝜃, 𝜙, 𝑥, 𝑦)of the simulation which give the best matching traces to data are chosen Top-down reconstruction How?Maximize likelihood function Probability of observing signal 𝑥𝑖 in time bin 𝑖 of PMT 𝑘 given shower parameters Ԧ 𝑎= (E, Xmax, 𝜃, 𝜙, 𝑥, 𝑦) Data MC 3
  • 4. First generation prototypes “FAST@TA” 4 “FAST@Auger” 3 prototypes (installed 2016, 2017, 2018) Observation time: ~540 hrs TA CLF 2 prototypes (installed 2019, 2022) Observation time: ~2970 hrs Only one in operation
  • 5. Coincidence events FAST@TA FAST@Auger Analysis period 2 telescopes(2018/03 – 2018/10) 3 telescopes(2018/10 – 2023/02) 1 telescope(2022/07 – 2022/10) Observation time 2 telescopes ~ 65 hrs 3 telescopes ~ 182 hrs 1 telescope ~ 122 hrs Trigger condition External trigger from TA BRM FD External trigger from Auger LL Bay 4 Coincidence events 438 236 Signal detection algorithm: 5 For event observed by TA/Auger in FOV of FAST: • Smooth original trace ‘𝑇’ with a finite impulse response (FIR) filter → get waveform ‘𝐹’ • For the ith bin of 𝐹, 𝐹𝑖, calculate PMT has signal if the max SNR over all bins > 2 F3100 bkgrd3100
  • 6. Data/MC comparison FAST@Auger Data MC Energy Energy • Data = TA/Auger reconstructed values (E > 1018 eV) • MC Conditions • Xmax dist.:EPOS (500-1200 gcm-2) • Energy dist.: 𝐸-1 (1018-1020 eV) • 𝜃 dist.: sin𝜃cos𝜃 (0-80 deg) • FAST@TA • Core pos:Circle at (0,0) r=35 km • FAST@Augerで6万シャワ • Core pos: Circle at (0,0) r=12 km • Trigger cond.:2 PMTs with SNR>6 • MC histograms rescaled to match area of data histograms FAST@TA 6 Rp Rp Data MC
  • 7. Azimuth Zenith Azimuth Zenith FAST@TA FAST@Auger Data/MC comparison 7 Data MC Zenith • Data = TA/Auger reconstructed values (E > 1018 eV) • MC Conditions • Xmax dist.:EPOS (500-1200 gcm-2) • Energy dist.: 𝐸-1 (1018-1020 eV) • 𝜃 dist.: sin𝜃cos𝜃 (0-80 deg) • FAST@TA • Core pos:Circle at (0,0) r=35 km • FAST@Augerで6万シャワ • Core pos: Circle at (0,0) r=12 km • Trigger cond.:2 PMTs with SNR>6 • MC histograms rescaled to match area of data histograms
  • 8. CoreX CoreY CoreX CoreY FAST@TA FAST@Auger Data/MC comparison 8 Data MC • Data = TA/Auger reconstructed values (E > 1018 eV) • MC Conditions • Xmax dist.:EPOS (500-1200 gcm-2) • Energy dist.: 𝐸-1 (1018-1020 eV) • 𝜃 dist.: sin𝜃cos𝜃 (0-80 deg) • FAST@TA • Core pos:Circle at (0,0) r=35 km • FAST@Augerで6万シャワ • Core pos: Circle at (0,0) r=12 km • Trigger cond.:2 PMTs with SNR>6 • MC histograms rescaled to match area of data histograms
  • 9. Reconstruction results 9 Reconstruction setup • Recon. (E, Xmax, 𝜃, 𝜙, 𝑥, 𝑦) +fit time offset • Use the TA/Auger reconstructed values as first guess • Cuts: • Successful minimization of likelihood • Best fit time offset between (100,500) FAST@TA FAST@Auger y=x (red line)
  • 10. Reconstruction results 10 FAST@TA FAST@Auger Proper labels Reconstruction setup • Recon. (E, Xmax, 𝜃, 𝜙, 𝑥, 𝑦) +fit time offset • Use the TA/Auger reconstructed values as first guess • Cuts: • Successful minimization of likelihood • Best fit time offset between (100,500) y=x (red line)
  • 11. Possible reasons for difference Filter efficiency degradation Atmospheric changes Baseline fluctuations PMT response (deterioration/structure) • On average, signal in data is lower than expected from Auger/TA first guess FAST@Auger Source of Xmax bias 11 FAST@TA
  • 12. FAST@TA PMT uniformity measurements To check telescope performance, measured response of FAST@TA PMTs on site Mar. 2024 using PMT scanner 12 ~60% (std-dev) non-uniformity was observed. This is not accounted for in simulations... Color difference between camera panels FAST 1 FAST 2 FAST 3 Reflectors
  • 13. Energy spectrum First energy spectrum from FAST • Calculated from the reconstructed energy values and exposure determined with simulations used for data/MC comparison • The FAST@TA and FAST@Auger results agree within statistical uncertainty 13 E.g. FAST@Auger exposure (~122 hrs)
  • 14. Elongation rate – Comparison with EPOS Construct Xmax rails for FAST Simulation conditions: • Xmax dist.:EPOS (500-1200 gcm-2) • Energy dist.: 𝐸-1 (1018-1020 eV) • 𝜃 dist.: sin𝜃cos𝜃 (0-80 deg) Fitting proton & iron showers separately between 17 < log(E/eV) < 20 14 Proton Iron Reconstruct only Xmax & E (geometry fixed) • Initial Xmax and E varied by 30g/cm2 and 10% • Cuts: • One PMT with SNR>6 • Successful minimization • Relative uncertainty in E & Xmax both < 0.5 Core pos. 14
  • 15. Elongation rate • Proton and iron rails estimated from FAST MC • Around 1017.5-1018.5 eV the composition estimated by FAST tends toward iron • FAST@TA and FAST@Auger results agree within statistical uncertainty 15
  • 16. Designed to operate “in-the-field” without connection to Auger/TA - “FAST-Field telescope” - Comms. with telescopes at LL via 5 GHz Wifi Improvements: - Mirrors (simplified production, 9→4 segments) - Enclosure (smaller, self sufficient power system) - Camera (new electronics and PMTs) Testing at Ondrejov - FOV measured ✓ - Solar power test ✓ - Pedestal ✓ - Amplifier ✓ Second generation prototypes 16
  • 17. FAST mini-array 17 Stereo observation with FAST: - Install 4 second gen. telescopes at Auger to form triangle with current prototypes Spacing estimation: - Estimated # of events FAST mini- array will detect in one year as function of station spacing - Start with ~11km spacing (validate stereo observation with high quality events) then move to ~16km to increase statistics Current 2 tels. Second gen prototypes
  • 18. FAST mini-array 18 Stereo observation with FAST: - Install 4 second gen. telescopes at Auger to form triangle with current prototypes Spacing estimation: - Estimated # of events FAST mini- array will detect in one year as function of station spacing - Start with ~11km spacing (validate stereo observation with high quality events) then move to ~16km to increase statistics Current 2 tels. Second gen prototypes 2025: Move in 2026!
  • 19. FAST mini-array – site inspection 19 Soil composition: Solid, earthy soil (no stones) Can use ground screws for installation Soil inspection ✓ LL Soil inspection ✓ AYELEN PUQUEN LL 2025 2026
  • 20. Summary & future 20 • FAST - low cost, easily deployable, autonomous fluorescence telescopes for detecting UHECRs • Over 650 coincidences between FAST and Auger/TA • Simulations seem to reproduce data • Estimated the elongation rate and energy spectrum using ~600 events • FAST mini-array will test second gen prototypes with stereo observation • Site inspection complete. Initial station spacing ~11km • Include PMT non-uniformity measurements etc. in simulation (check FAST@Auger PMTs) • Finish testing in Ondrejov, ship telescopes to Auger, install, test → stereo observation early 2025
  • 21. 21
  • 23. Example events - TA event 1 23 cv
  • 24. 24 Example events - TA event 2
  • 25. Example events - Auger event 1 25 [Auger event display here]
  • 26. Exposure calculation 26 FAST@TA FAST@Auger Calculated using MC data set used in previous data/MC comparison 247 hrs 122 hrs
  • 27. 27 Reconstruction results - extra Best fit time bin FAST@TA FAST@Auger
  • 28. 28 Zenith Reconstruction results - extra FAST@TA FAST@Auger
  • 29. 29 Azimuth Reconstruction results - extra FAST@TA FAST@Auger
  • 30. 30 Core X Reconstruction results - extra FAST@TA FAST@Auger
  • 31. Reconstruction results - extra 31 FAST@TA FAST@Auger Core Y
  • 32. Xmax bias – signal difference 32 FAST@TA FAST@Auger
  • 33. Xmax bias – signal difference 33 Difference Ratio FAST@TA
  • 34. Xmax bias – signal difference 34 Difference Ratio FAST@Auger
  • 35. Gaisser Hillas reconstruction 35 Need geometry! Most likely only obtainable with stereo observation
  • 36. • XY scanner • 1 mm by stepping motor • Control by serial communication • LED flasher • Wavelength (400 nm) • Spot size: 1 cm circle • Pulse width: 10us • Trigger: 100 Hz • Intensity: set to 8000 (*) • Oscilloscope • PicoScope 3400D-MSO • External trigger from flasher • PC 36 PMT scan - measurement setup
  • 37. PMT scan – PMT alignment angle 37
  • 38. FAST Field telescope PSF 38 9 segment – old design 4 segment – new design *(not to scale)
  • 39. 39 Signal detection – coincidence Energy vs. Rp
  • 40. Signal detection – baseline estimation 40
  • 41. Machine learning for FAST mini-array 41 Core pos. Inputs: Pulse timing/height/integral from each PMT Training: 300,000 showers Xmax 500 - 1200 g cm-2 E 1 - 100 EeV θ 0 - 80° ϕ 0 - 360° Testing: 10,000 showers Layer structure: 72/72/36/18/6 Core pos: Circle at (0,0), r = 5773 m Rec. cuts: Rec. energy > 1018 eV All three stations triggered FAST preliminary FAST preliminary • Simple NN shows reasonable performance as first guess
  • 42. Simulation flow Use old version of Auger Offline software as simulation backbone. Have written specific modules for FAST. Typical simulation… • FASTProfileSimulatorCG • FASTEventGeneratorCG • ShowerLightSimulatorKG • FASTSimulator • FASTEventFileExporter 42
  • 43. Xmax parameterisation • From Blaess, 2018 • Parameterizations of EPOS, QGSJetII.04 and Sybil Xmax distributions for 4 primary mass groups (p, He, CNO, Fe) • When Xmax is generated, choose mass group based on fractions provided (typically [0.25, 0.25, 0.25, 0.25]), then based on mass group chosen and energy randomly sample Xmax from appropriate distribution. 43