This document proposes a methodology to extract information from big data sources like course handouts and directories and represent it in a graphical, ontological tree format. Keywords are extracted from documents using natural language processing techniques and used to generate a hierarchical tree based on the DMOZ open directory project. The trees provide a comprehensive overview of document content and structure. The method is implemented using Python for natural language processing and Java for visualization. Evaluation on computer science course handouts shows the trees accurately represent topic coverage and depth. Future work aims to increase the number of keywords extracted.