SlideShare a Scribd company logo
Dynamic Analysis
By
Dhanaji S. Chavan ,
Assistant Professor, TKIET, Warananagar
Problem-1
4 m
-6.00E-01
-4.00E-01
-2.00E-01
0.00E+00
2.00E-01
4.00E-01
6.00E-01
0 1 2 3 4 5
acceleration
time
E= 2.1e8 kPa
C/s: 0.3mx0.3m
Input motion is given
500 kN
……………..
• Objectives: to determine………
– Displacement at fee end & fixed end
– Reactions at free end & fixed end
– Local & global forces in the column
– Plot displacement time history at free end for first
2 second
Coding starts……….
model basic -ndm 2 -ndf 3
node 1 0 0
node 2 0 4
fix 1 1 1 1
To define mass
• In dynamic analysis it is must to define nodal
or elemental mass
– Beacause Transient(earthquake) motion develops
inertial force which is
f=m .a
Inertial force
mass
Acceleration to
which mass is
subjected
……..
mass $nodeTag (ndf $MassValues)
Node number at
which mass to be
defined
command
Mass for specific degree
of motion
…………
mass 2 50 00 0
command
Node
number
Mass in x-
direction
Mass in y
direction
Mass in the
direction of rotation
……….
• while defining mass we have to be very careful.
• In present case earthquake motion is in x-
direction, so we have to define mass in that direction
• If we defined mass in any other direction that will be
ineffective in analysis
………….
geomTransf Linear 1
element elasticBeamColumn 1 1 2 .09 2.1e8 0.000675 1
recorder Node -file Rbase.out -time -node 1 -dof 1 2 reaction
recorder Node -file RFree.out -time -node 2 -dof 1 2 reaction
recorder Node -file Dbase.out -time -node 1 -dof 1 2 disp
recorder Node -file Dfree.out -time -node 2 -dof 1 2 disp
recorder Element -file ele_Lfor.out -time -ele 1 localForce
recorder Element -file ele_Gfor.out -time -ele 1 globalForce
…………
pattern Plain 1 Constant {
load 2 000 -500.0 0.0}
– Remember that self weight of the super structure
has to be applied separately as a force. It won’t be
calculated automatically form mass .
.............
system UmfPack
constraints Plain
test NormDispIncr 1.0e-5 10 0
algorithm Newton
numberer RCM
integrator LoadControl 1
analysis Static
analyze 10
Quick review of integrator LoadControl
integrator LoadControl $dLambda1 <$Jd
$minLambda $maxLambda>
$dLambda1:
- first load-increment factor (pseudo-time step)
- Usually same is followed further
<$Jd:
- must be integer
-factor relating load increment at subsequent time steps
minLambda, maxLambda:
-decides minimum &maximum time increment bound
- optional, default: $dLambda1 for both
Dhanaji Chavan 12
……….
loadConst -time 00.00
– This command is used to restart the time for the
transient analysis
command keyword
Start time
……….
wipeAnalysis
– This command clears previously-defined analysis
parameters. i.e. parameters defined for static
analysis
To define the input motion..
set accelSeries "Series -dt 0.01 -filePath INPUT_accl.dat -factor 1“
Set: command
accelSeries: variable name to which acceleration time
history is to be assigned
• Portion in the box is a time Time Series
Time Series
• Types of time series are :
i. Constant Time Series
ii. Linear Time Series
iii. Rectangular Time Series
iv. Sine Time Series
v. Path Time Series
• For the first four time series the load
variation follows fixed pattern.
………..
• When load pattern does not follow a fixed
pattern i.e. earthquake load, we have to go for
Path Time Series
Ways to define Path Time Series
where the values are specified in a list
included in the command & at constant time
interval
Series -dt $dt -filePath $fileName <-factor $cFactor>
– In our case we have used this series
keyword
File name which contains
the values e.g.
accl, vel,load etc
keyword
Constant time
interval e.g 0.01
keyword
Load factor coefficient.
Default value is 1
………….
The load factor to be applied to the loads in
the LoadPattern object is :
– load factor = $cFactor*(user-defined series)
Ways to define Path Time Series
For a load path where the values are specified at constant
time intervals:
Series -dt $dt -values {list_of_values} <-factor $cFactor>
keyword
Constant time
interval e.g 0.01
keyword
List of values e.g.
accl, vel, load etc
keyword
Load factor coefficient.
Default value is 1
…………
• For a load path where the values are specified at non-
constant time intervals:
Series -time {list_of_times} -values {list_of_values} <-factor $cFactor>
• where both time and values are specified in a list included in
the command:
Series -fileTime $fileName1 -filePath $fileName2 <-factor $cFactor>
To define load pattern
pattern UniformExcitation $patternTag $dir -accel
(TimeSeriesType arguments) <-vel0 $ver0>
• Pattern: command
• UniformExcitation: name/type of load pattern
• $patternTag: unit pattern tag/ number
• $dir: direction of excitation (1, 2, or 3) used in formulating the
inertial loads for the transient analysis
• -accel: keyword to define acceleration history
• -vel0: keyword to define initial velocity $ver0 whose default
value is zero
……………
In our case…….
pattern UniformExcitation 2 1 -accel $accelSeries
Unique pattern tag
Direction of
excitation
X-direction
A uniform acceleration history is imposed at
all nodes constrained in the x-direction i.e. in
our case node 1 only
Defining Dynamic analysis
commands………………
system ProfileSPD
test NormDispIncr 1.e-6 50 0
algorithm KrylovNewton
constraints Transformation
To define integrator
• We can not use the integrator defined for
static analysis
• We have to define the following integrator
integrator Newmark $gamma $beta
command
Name of the
integrator
Newmark
parameter
Newmark
parameter


…………
Integrator Newmark 0.5 0.25
numberer RCM
analysis Transient
analyze 4000 0.01
Thank u……………………………………
Assignment -1.
1. Perform both static & dynamic analysis for given
problem discretizing into one element only
2. Don’t define nodal mass & see what happens
3. Define the mass in y direction & see the results
4. Apply both vertical & lateral static loads at free end
& perform the analysis
5. Don’t use the loadConst -time 00.00 & see what
happens
Assignment -2
• Discretize above model in 4 elements &
perform the complete analysis
Problem- 2
1(0,0) 2(1,0)
3(1,1)4(0,1)
E= 2.1e8 kPa, mass
density = 1.6 ton/m3
input motion:
sinusoidal acceleration
at base
3.0
………
Wipe
model basic -ndm 2 -ndf 2
nDMaterial ElasticIsotropic 1 2.1e8 0.3
node 1 0.000 0.000
node 2 1.000 0.000
node 3 1.000 1.000
node 4 0.000 1.000
…………
element quad 1 1 2 3 4 1.0 "PlaneStrain" 1 0.0 0.0 0 -16
Surface pressure
Mass density
Body force in x
direction
Body force in y
direction
………
fix 1 1 1
fix 2 1 1
system ProfileSPD
test NormDispIncr 1.e-12 25 0
constraints Transformation
integrator LoadControl 1 1 1 1
algorithm Newton
numberer RCM
analysis Static
………………..
analyze 1
loadConst -time 0.000
wipeAnalysis
Application of earthquake motion
pattern UniformExcitation 1 1 -accel "Sine 0 1000
1 -factor 10"
Sinusoidal
variation
Start time
End timePeriod of
sine wave
Load factor
coefficient
……………….
constraints Transformation;
test NormDispIncr 1.e-12 25 0
algorithm Newton
numberer RCM
system ProfileSPD
integrator Newmark 0.5 0.25
analysis Transient
recorder Node -file disp.out -time -node 1 2 3 4 -dof 1 2 -dT 0.01 disp
recorder Node -file acce.out -time -node 1 2 3 4 -dof 1 2 -dT 0.01 accel
recorder Element -ele 1 -time -file stress1.out -dT 0.01 material 1 stress
recorder Element -ele 1 -time -file strain1.out -dT 0.01 material 1 strain
recorder Element -ele 1 -time -file stress3.out -dT 0.01 material 3 stress
recorder Element -ele 1 -time -file strain3.out -dT 0.01 material 3 strain
analyze 2000 0.01
……………
recorder Node -file disp.out -time -node 1 2 3 4 -dof 1 2 -dT 0.01 disp
recorder Node -file acce.out -time -node 1 2 3 4 -dof 1 2 -dT 0.01 accel
recorder Element -ele 1 -time -file stress1.out -dT 0.01 material 1 stress
recorder Element -ele 1 -time -file strain1.out -dT 0.01 material 1 strain
recorder Element -ele 1 -time -file stress3.out -dT 0.01 material 3 stress
recorder Element -ele 1 -time -file strain3.out -dT 0.01 material 3 strain
analyze 2000 0.01
Assignment-3
1. Perform both static & dynamic analysis for
given problem &………
 Plot displacement time history plot for node 3 &
4
 Plot acceleration time history plot for node 3 & 4
Assignment-4
• Discretize domain in 4 elements & perform
the complete analysis
Assignment- 5
• Apply equal dof for node 3 & 4 , perform
dynamic analysis and
 Plot displacement time history plot for node 3 &
4
 Plot acceleration time history plot for node 3 & 4
………
equalDOF 3 4 1 2
Thank u............

More Related Content

PDF
Introduction to OpenSees by Frank McKenna
PDF
5th Semester Civil Engineering Question Papers June/july 2018
PPT
explicit dynamics
PDF
Introduction of OpenSees
PDF
Ch.3-Examples 3.pdf
PDF
CSI Technical Note - Stress Strain Models.pdf
PDF
Seismic Design Basics - Superstructure
Introduction to OpenSees by Frank McKenna
5th Semester Civil Engineering Question Papers June/july 2018
explicit dynamics
Introduction of OpenSees
Ch.3-Examples 3.pdf
CSI Technical Note - Stress Strain Models.pdf
Seismic Design Basics - Superstructure

What's hot (20)

PDF
Bearing capacity ch#05(geotech)
PPT
Buckling Analysis in ANSYS
PDF
WIND LOADING ON LIGHTING STEEL COLUMN - EN 40-3-1:2013
PDF
Prestress loss due to friction & anchorage take up
PPTX
Pile integrity test
PDF
Simplified macro-modelling approach for infill masonry wall in-plane and out-...
PDF
Geotechnical Examples using OpenSees
PPTX
crack control and crack width estimation
PDF
Calcul des colonnes en acier de classe 4 soumises au feu - Rapport PFE
PPT
Intro to fea software
PPTX
CE72.52 - Lecture 3a - Section Behavior - Flexure
PDF
ANALYSIS & DESIGN ASPECTS OF PRE-STRESSED MEMBERS USING F.R.P. TENDONS
PDF
Development and application of explicit methods in OpenSees for collapse simu...
PDF
ACI 318-19 Ingles.pdf
PDF
Lecture_3-Aggregate_Civil Engineering.pdf
PPT
Design of columns as per IS 456-2000
PDF
Soluc porticos
PDF
A new Graphical User Interface for OpenSees
PPTX
05 compression members (1)
PDF
137518876 bearing-capacity-from-spt
Bearing capacity ch#05(geotech)
Buckling Analysis in ANSYS
WIND LOADING ON LIGHTING STEEL COLUMN - EN 40-3-1:2013
Prestress loss due to friction & anchorage take up
Pile integrity test
Simplified macro-modelling approach for infill masonry wall in-plane and out-...
Geotechnical Examples using OpenSees
crack control and crack width estimation
Calcul des colonnes en acier de classe 4 soumises au feu - Rapport PFE
Intro to fea software
CE72.52 - Lecture 3a - Section Behavior - Flexure
ANALYSIS & DESIGN ASPECTS OF PRE-STRESSED MEMBERS USING F.R.P. TENDONS
Development and application of explicit methods in OpenSees for collapse simu...
ACI 318-19 Ingles.pdf
Lecture_3-Aggregate_Civil Engineering.pdf
Design of columns as per IS 456-2000
Soluc porticos
A new Graphical User Interface for OpenSees
05 compression members (1)
137518876 bearing-capacity-from-spt
Ad

Viewers also liked (20)

PDF
Dynamic Analysis with Examples – Seismic Analysis
PDF
OpenSees: modeling and performing static analysis
PPT
The Pushover Analysis from basics - Rahul Leslie
PDF
Steel4 - A Versatile Uniaxial Material Model for Cyclic Nonlinear Analysis of...
PDF
OpenSees as an Engine for Web-based Applications
PDF
Deterioration Modelling of Structural Members Subjected to Cyclic Loading Usi...
PPT
Seismic Analysis of Structures - I
PDF
Geotechnical Elements and Models in OpenSees
PDF
Numerical Simulations of Liquefaction Phenomena after Emilia Romagna (20 May ...
PDF
An Integrated Computational Environment for Simulating Structures in Real Fires
PDF
Multi Modal Response Spectrum Analysis Implemented in OpenSees
PDF
A Simplified Damage-following Model for Reinforced Concrete Columns
PDF
infilled frame
PDF
Numerical Simulation of the Seismic Behaviour of RC Bridge Populations for De...
PDF
Application of OpenSees in Reliability-based Design Optimization of Structures
PDF
Non linear static pushover analysis
PPT
Seismic Analysis of Structures - III
PDF
Numerical Modelling of Masonry Infill Walls Participation in the Seismic Beha...
PPT
Seismic Analysis of Structures - II
PDF
3.4 pushover analysis
Dynamic Analysis with Examples – Seismic Analysis
OpenSees: modeling and performing static analysis
The Pushover Analysis from basics - Rahul Leslie
Steel4 - A Versatile Uniaxial Material Model for Cyclic Nonlinear Analysis of...
OpenSees as an Engine for Web-based Applications
Deterioration Modelling of Structural Members Subjected to Cyclic Loading Usi...
Seismic Analysis of Structures - I
Geotechnical Elements and Models in OpenSees
Numerical Simulations of Liquefaction Phenomena after Emilia Romagna (20 May ...
An Integrated Computational Environment for Simulating Structures in Real Fires
Multi Modal Response Spectrum Analysis Implemented in OpenSees
A Simplified Damage-following Model for Reinforced Concrete Columns
infilled frame
Numerical Simulation of the Seismic Behaviour of RC Bridge Populations for De...
Application of OpenSees in Reliability-based Design Optimization of Structures
Non linear static pushover analysis
Seismic Analysis of Structures - III
Numerical Modelling of Masonry Infill Walls Participation in the Seismic Beha...
Seismic Analysis of Structures - II
3.4 pushover analysis
Ad

Similar to OpenSees dynamic_analysis (20)

PDF
Modal Analysis of a Beam using Ansys Tool
PDF
Simple, fast, and scalable torch7 tutorial
PPT
Design and analysis of algorithm in Computer Science
PDF
Case Study(Analysis of Algorithm.pdf
PPT
industrial and production Line Balancing.ppt
PDF
Slot shifting1
PDF
How To Diffuse
PPTX
Neural Networks
PPTX
Introduction to data structures and complexity.pptx
PPTX
Data Structure Algorithm -Algorithm Complexity
PDF
Chapter One.pdf
PDF
Work-stealing Tree Data Structure
PDF
RNN sharing at Trend Micro
PPTX
designs and analysis of algorithmss.pptx
PPTX
Caffe framework tutorial2
PPTX
Time and Space Complexity Analysis.pptx
PDF
Ns2: OTCL - PArt II
PPT
Extending ns
PPTX
Flying Futures at the same sky can make the sun rise at midnight
PPTX
ADA_Module 2_MN.pptx Analysis and Design of Algorithms
Modal Analysis of a Beam using Ansys Tool
Simple, fast, and scalable torch7 tutorial
Design and analysis of algorithm in Computer Science
Case Study(Analysis of Algorithm.pdf
industrial and production Line Balancing.ppt
Slot shifting1
How To Diffuse
Neural Networks
Introduction to data structures and complexity.pptx
Data Structure Algorithm -Algorithm Complexity
Chapter One.pdf
Work-stealing Tree Data Structure
RNN sharing at Trend Micro
designs and analysis of algorithmss.pptx
Caffe framework tutorial2
Time and Space Complexity Analysis.pptx
Ns2: OTCL - PArt II
Extending ns
Flying Futures at the same sky can make the sun rise at midnight
ADA_Module 2_MN.pptx Analysis and Design of Algorithms

Recently uploaded (20)

PPTX
Recipes for Real Time Voice AI WebRTC, SLMs and Open Source Software.pptx
PPTX
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
PDF
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
PPTX
web development for engineering and engineering
PPTX
bas. eng. economics group 4 presentation 1.pptx
DOCX
573137875-Attendance-Management-System-original
PDF
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
PDF
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
PPTX
Internet of Things (IOT) - A guide to understanding
PPTX
Lesson 3_Tessellation.pptx finite Mathematics
PPTX
UNIT 4 Total Quality Management .pptx
PDF
Embodied AI: Ushering in the Next Era of Intelligent Systems
PDF
composite construction of structures.pdf
PDF
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
PPTX
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
DOCX
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
PDF
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
PPTX
OOP with Java - Java Introduction (Basics)
PPTX
Geodesy 1.pptx...............................................
PDF
Operating System & Kernel Study Guide-1 - converted.pdf
Recipes for Real Time Voice AI WebRTC, SLMs and Open Source Software.pptx
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
web development for engineering and engineering
bas. eng. economics group 4 presentation 1.pptx
573137875-Attendance-Management-System-original
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
Internet of Things (IOT) - A guide to understanding
Lesson 3_Tessellation.pptx finite Mathematics
UNIT 4 Total Quality Management .pptx
Embodied AI: Ushering in the Next Era of Intelligent Systems
composite construction of structures.pdf
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
OOP with Java - Java Introduction (Basics)
Geodesy 1.pptx...............................................
Operating System & Kernel Study Guide-1 - converted.pdf

OpenSees dynamic_analysis

  • 1. Dynamic Analysis By Dhanaji S. Chavan , Assistant Professor, TKIET, Warananagar
  • 2. Problem-1 4 m -6.00E-01 -4.00E-01 -2.00E-01 0.00E+00 2.00E-01 4.00E-01 6.00E-01 0 1 2 3 4 5 acceleration time E= 2.1e8 kPa C/s: 0.3mx0.3m Input motion is given 500 kN
  • 3. …………….. • Objectives: to determine……… – Displacement at fee end & fixed end – Reactions at free end & fixed end – Local & global forces in the column – Plot displacement time history at free end for first 2 second
  • 4. Coding starts………. model basic -ndm 2 -ndf 3 node 1 0 0 node 2 0 4 fix 1 1 1 1
  • 5. To define mass • In dynamic analysis it is must to define nodal or elemental mass – Beacause Transient(earthquake) motion develops inertial force which is f=m .a Inertial force mass Acceleration to which mass is subjected
  • 6. …….. mass $nodeTag (ndf $MassValues) Node number at which mass to be defined command Mass for specific degree of motion
  • 7. ………… mass 2 50 00 0 command Node number Mass in x- direction Mass in y direction Mass in the direction of rotation
  • 8. ………. • while defining mass we have to be very careful. • In present case earthquake motion is in x- direction, so we have to define mass in that direction • If we defined mass in any other direction that will be ineffective in analysis
  • 9. …………. geomTransf Linear 1 element elasticBeamColumn 1 1 2 .09 2.1e8 0.000675 1 recorder Node -file Rbase.out -time -node 1 -dof 1 2 reaction recorder Node -file RFree.out -time -node 2 -dof 1 2 reaction recorder Node -file Dbase.out -time -node 1 -dof 1 2 disp recorder Node -file Dfree.out -time -node 2 -dof 1 2 disp recorder Element -file ele_Lfor.out -time -ele 1 localForce recorder Element -file ele_Gfor.out -time -ele 1 globalForce
  • 10. ………… pattern Plain 1 Constant { load 2 000 -500.0 0.0} – Remember that self weight of the super structure has to be applied separately as a force. It won’t be calculated automatically form mass .
  • 11. ............. system UmfPack constraints Plain test NormDispIncr 1.0e-5 10 0 algorithm Newton numberer RCM integrator LoadControl 1 analysis Static analyze 10
  • 12. Quick review of integrator LoadControl integrator LoadControl $dLambda1 <$Jd $minLambda $maxLambda> $dLambda1: - first load-increment factor (pseudo-time step) - Usually same is followed further <$Jd: - must be integer -factor relating load increment at subsequent time steps minLambda, maxLambda: -decides minimum &maximum time increment bound - optional, default: $dLambda1 for both Dhanaji Chavan 12
  • 13. ………. loadConst -time 00.00 – This command is used to restart the time for the transient analysis command keyword Start time
  • 14. ………. wipeAnalysis – This command clears previously-defined analysis parameters. i.e. parameters defined for static analysis
  • 15. To define the input motion.. set accelSeries "Series -dt 0.01 -filePath INPUT_accl.dat -factor 1“ Set: command accelSeries: variable name to which acceleration time history is to be assigned • Portion in the box is a time Time Series
  • 16. Time Series • Types of time series are : i. Constant Time Series ii. Linear Time Series iii. Rectangular Time Series iv. Sine Time Series v. Path Time Series • For the first four time series the load variation follows fixed pattern.
  • 17. ……….. • When load pattern does not follow a fixed pattern i.e. earthquake load, we have to go for Path Time Series
  • 18. Ways to define Path Time Series where the values are specified in a list included in the command & at constant time interval Series -dt $dt -filePath $fileName <-factor $cFactor> – In our case we have used this series keyword File name which contains the values e.g. accl, vel,load etc keyword Constant time interval e.g 0.01 keyword Load factor coefficient. Default value is 1
  • 19. …………. The load factor to be applied to the loads in the LoadPattern object is : – load factor = $cFactor*(user-defined series)
  • 20. Ways to define Path Time Series For a load path where the values are specified at constant time intervals: Series -dt $dt -values {list_of_values} <-factor $cFactor> keyword Constant time interval e.g 0.01 keyword List of values e.g. accl, vel, load etc keyword Load factor coefficient. Default value is 1
  • 21. ………… • For a load path where the values are specified at non- constant time intervals: Series -time {list_of_times} -values {list_of_values} <-factor $cFactor> • where both time and values are specified in a list included in the command: Series -fileTime $fileName1 -filePath $fileName2 <-factor $cFactor>
  • 22. To define load pattern pattern UniformExcitation $patternTag $dir -accel (TimeSeriesType arguments) <-vel0 $ver0> • Pattern: command • UniformExcitation: name/type of load pattern • $patternTag: unit pattern tag/ number • $dir: direction of excitation (1, 2, or 3) used in formulating the inertial loads for the transient analysis • -accel: keyword to define acceleration history • -vel0: keyword to define initial velocity $ver0 whose default value is zero
  • 23. …………… In our case……. pattern UniformExcitation 2 1 -accel $accelSeries Unique pattern tag Direction of excitation X-direction A uniform acceleration history is imposed at all nodes constrained in the x-direction i.e. in our case node 1 only
  • 24. Defining Dynamic analysis commands……………… system ProfileSPD test NormDispIncr 1.e-6 50 0 algorithm KrylovNewton constraints Transformation
  • 25. To define integrator • We can not use the integrator defined for static analysis • We have to define the following integrator integrator Newmark $gamma $beta command Name of the integrator Newmark parameter Newmark parameter  
  • 26. ………… Integrator Newmark 0.5 0.25 numberer RCM analysis Transient analyze 4000 0.01 Thank u……………………………………
  • 27. Assignment -1. 1. Perform both static & dynamic analysis for given problem discretizing into one element only 2. Don’t define nodal mass & see what happens 3. Define the mass in y direction & see the results 4. Apply both vertical & lateral static loads at free end & perform the analysis 5. Don’t use the loadConst -time 00.00 & see what happens
  • 28. Assignment -2 • Discretize above model in 4 elements & perform the complete analysis
  • 29. Problem- 2 1(0,0) 2(1,0) 3(1,1)4(0,1) E= 2.1e8 kPa, mass density = 1.6 ton/m3 input motion: sinusoidal acceleration at base 3.0
  • 30. ……… Wipe model basic -ndm 2 -ndf 2 nDMaterial ElasticIsotropic 1 2.1e8 0.3 node 1 0.000 0.000 node 2 1.000 0.000 node 3 1.000 1.000 node 4 0.000 1.000
  • 31. ………… element quad 1 1 2 3 4 1.0 "PlaneStrain" 1 0.0 0.0 0 -16 Surface pressure Mass density Body force in x direction Body force in y direction
  • 32. ……… fix 1 1 1 fix 2 1 1 system ProfileSPD test NormDispIncr 1.e-12 25 0 constraints Transformation integrator LoadControl 1 1 1 1 algorithm Newton numberer RCM analysis Static
  • 34. Application of earthquake motion pattern UniformExcitation 1 1 -accel "Sine 0 1000 1 -factor 10" Sinusoidal variation Start time End timePeriod of sine wave Load factor coefficient
  • 35. ………………. constraints Transformation; test NormDispIncr 1.e-12 25 0 algorithm Newton numberer RCM system ProfileSPD integrator Newmark 0.5 0.25 analysis Transient recorder Node -file disp.out -time -node 1 2 3 4 -dof 1 2 -dT 0.01 disp recorder Node -file acce.out -time -node 1 2 3 4 -dof 1 2 -dT 0.01 accel recorder Element -ele 1 -time -file stress1.out -dT 0.01 material 1 stress recorder Element -ele 1 -time -file strain1.out -dT 0.01 material 1 strain recorder Element -ele 1 -time -file stress3.out -dT 0.01 material 3 stress recorder Element -ele 1 -time -file strain3.out -dT 0.01 material 3 strain analyze 2000 0.01
  • 36. …………… recorder Node -file disp.out -time -node 1 2 3 4 -dof 1 2 -dT 0.01 disp recorder Node -file acce.out -time -node 1 2 3 4 -dof 1 2 -dT 0.01 accel recorder Element -ele 1 -time -file stress1.out -dT 0.01 material 1 stress recorder Element -ele 1 -time -file strain1.out -dT 0.01 material 1 strain recorder Element -ele 1 -time -file stress3.out -dT 0.01 material 3 stress recorder Element -ele 1 -time -file strain3.out -dT 0.01 material 3 strain analyze 2000 0.01
  • 37. Assignment-3 1. Perform both static & dynamic analysis for given problem &………  Plot displacement time history plot for node 3 & 4  Plot acceleration time history plot for node 3 & 4
  • 38. Assignment-4 • Discretize domain in 4 elements & perform the complete analysis
  • 39. Assignment- 5 • Apply equal dof for node 3 & 4 , perform dynamic analysis and  Plot displacement time history plot for node 3 & 4  Plot acceleration time history plot for node 3 & 4
  • 40. ……… equalDOF 3 4 1 2 Thank u............