SlideShare a Scribd company logo
Increasing	
 Β Infrastructure	
 Β Ef/iciency	
 Β via	
 Β Optimized	
 Β 
NFV	
 Β Placement	
 Β in	
 Β OpenStack	
 Β Clouds	
 Β 
Yathiraj	
 Β Udupi,	
 Β Debo	
 Β Dutta	
  –	
 Β Cisco	
 Β 
Ram	
 Β (Ramki)	
 Β Krishnan	
 Β -­‐	
 Β Brocade	
 Β 
	
 Β 
OpenStack	
 Β Atlanta	
 Β Summit,	
 Β 	
 Β May	
 Β 2014	
 Β 
Who and why?
Debo/Yathi	
 Β -­‐	
 Β Cisco	
 Β Cloud	
 Β CTO	
 Β ofLice	
 Β 
Ramki	
 Β -­‐	
 Β Brocade	
 Β CTO	
 Β ofLice	
 Β 
Goal:	
 Β Drive	
 Β Innovative	
 Β Open	
 Β Source	
 Β solutions	
 Β 
for	
 Β NFV	
 Β with	
 Β OpenStack	
 Β 
Our Thesis
β€’β€― Toby	
 Β Ford@AT&T’s	
 Β NFV	
 Β talk	
 Β on	
 Β Tue,	
 Β May	
 Β 13th	
 Β 
β€’β€― Worlds	
 Β of	
 Β IT	
 Β and	
 Β Telco	
 Β are	
 Β coming	
 Β together	
 Β 	
 Β 
β€’β€― Telco	
 Β Cloud	
 Β -­‐	
 Β OpenStack	
 Β as	
 Β the	
 Β infrastructure	
 Β foundation	
 Β 
β€’β€― Goal:	
 Β Transform	
 Β OpenStack	
 Β to	
 Β a	
 Β Carrier-­‐grade	
 Β 
cloud	
 Β solution	
 Β 	
 Β 
β€’β€― We	
 Β deep	
 Β dive	
 Β into	
 Β some	
 Β high-­‐level	
 Β gaps	
 Β Toby	
 Β identiLied	
 Β 
β€’β€― We	
 Β demo	
 Β some	
 Β initial	
 Β progress	
 Β 
Agenda	
 Β 
β€’β€― NFV	
 Β Summary	
 Β 
β€’β€― Cloud	
 Β NFV	
 Β Use	
 Β Case	
 Β 
β€’β€― Drive	
 Β Innovation	
 Β -­‐	
 Β EfLicient	
 Β Resource	
 Β 
Placement	
 Β Strategies	
 Β 
β€’β€― Extensions	
 Β to	
 Β OpenStack	
 Β scheduler	
 Β 
β€’β€― Conclusion	
 Β 	
 Β 
Network Functions Virtualization (NFV)
NFV Vision
Source: ETSI NFV White Paper
β€’β€― Global	
 Β movement	
 Β by	
 Β network	
 Β 
operators	
 Β -­‐	
 Β AT&T,	
 Β Verizon,	
 Β BT,	
 Β 
CenturyLink,	
 Β Deutsche	
 Β Telekom,	
 Β 
Telefonica,	
 Β KDDI	
 Β etc.	
 Β 
β€’β€― General	
 Β purpose	
 Β 	
 Β hardware	
 Β -­‐	
 Β 
OPEX	
 Β and	
 Β CAPEX	
 Β savings	
 Β 
β€’β€― Increased	
 Β automation	
  –	
 Β OPEX	
 Β 
savings,	
 Β faster	
 Β time	
 Β to	
 Β market	
 Β 
β€’β€― New	
 Β business	
 Β models	
 Β and	
 Β value	
 Β 
added	
 Β services
NFV Use Case - NFVIaas
Motivation	
 Β 	
 Β 
β€’β€― Network	
 Β Functions	
 Β in	
 Β the	
 Β cloud	
 Β 
β€’β€― Combined	
 Β value	
  –	
 Β Infrastructure	
 Β as	
 Β a	
 Β service	
 Β 
(IaaS)	
  –	
 Β Compute/storage	
 Β infra,	
 Β Network	
 Β as	
 Β 
a	
 Β service	
 Β (NaaS)	
  –	
 Β WAN	
 Β network	
 Β infra	
 Β 
β€’β€― Leverage	
 Β NFV	
 Β Infra	
 Β of	
 Β another	
 Β SP	
  –	
 Β increase	
 Β 
resiliency,	
 Β reduce	
 Β latency	
 Β (CDN),	
 Β regulatory	
 Β 
requirements	
 Β 	
 Β 
	
 Β 
Where	
 Β are	
 Β we	
 Β are	
 Β today	
 Β ?	
 Β 
β€’β€― Compute/storage	
 Β is	
 Β treated	
 Β independent	
 Β of	
 Β 
network,	
 Β no	
 Β energy	
 Β efLiciency	
 Β 
considerations	
 Β 
β€’β€― Service	
 Β value	
 Β is	
 Β not	
 Β maximized	
 Β 
NFV Use Case – NFVIaaS
Source: ETSI NFV Use Cases
NaaS
Virtualized	
 Β 
Network	
 Β 
Bandwidth	
 Β Bandwidth	
 Β 
Virtual	
 Β 
Machine	
 Β 
Virtual	
 Β 
Machine	
 Β 
Virtual	
 Β 
Machine	
 Β 
Virtual	
 Β 
Machine	
 Β 
WAN Bandwidth on Demand
Data	
 Β Center	
 Β 1	
 Β  Data	
 Β Center	
 Β 2	
 Β 
BeneLits	
 Β 
β€’β€― Use	
 Β WAN	
 Β bandwidth	
 Β as	
 Β needed,	
 Β avoid	
 Β Lixed	
 Β cost	
 Β due	
 Β to	
 Β reservation	
 Β 
(typically	
 Β 1.5	
 Β times	
 Β peak)	
  –	
 Β typically	
 Β leverage	
 Β MPLS	
 Β technologies	
 Β 
β€’β€― Popular	
 Β use	
 Β cases	
 Β -­‐	
 Β Disaster	
 Β Recovery	
 Β ,	
 Β On-­‐demand	
 Β backup	
 Β across	
 Β WAN	
 Β 
StorageStorage
NFVIaas (IaaS+NaaS)
Virtualized	
 Β 
Network	
 Β 
Bandwidth	
 Β Bandwidth	
 Β 
Virtual	
 Β 
Machine	
 Β 
Virtual	
 Β 
Machine	
 Β 
Virtual	
 Β 
Machine	
 Β 
Virtual	
 Β 
Machine	
 Β 
Data	
 Β Center	
 Β 1	
 Β  Data	
 Β Center	
 Β 2	
 Β 
Where	
 Β do	
 Β we	
 Β want	
 Β to	
 Β get	
 Β to	
 Β ?	
 Β 
β€’β€― Beyond	
 Β WAN	
 Β Bandwidth	
 Β savings	
 Β 
β€’β€― Optimal	
 Β resource	
 Β placement	
 Β across	
 Β DCs	
 Β -­‐	
 Β Increase	
 Β Energy	
 Β efLiciency	
 Β while	
 Β maintaining	
 Β 
multi-­‐tenant	
 Β fairness	
 Β and	
 Β improving	
 Β performance	
  –	
 Β CAPEX/OPEX	
 Β savings,	
 Β Improve	
 Β QoE,	
 Β 
Address	
 Β regulatory	
 Β requirements	
 Β 
β€’β€― Popular	
 Β use	
 Β cases	
 Β -­‐	
 Β Disaster	
 Β Recovery,	
 Β On-­‐demand	
 Β backup	
 Β across	
 Β WAN,	
 Β Virtualized	
 Β CDN	
 Β 
Compute/Storage/WAN Bandwidth on Demand + Energy Efficiency
Storage Storage
NFVIaas (IaaS+NaaS)
β€’β€― Power	
 Β usage	
 Β in	
 Β DCs	
 Β -­‐-­‐	
 Β servers	
 Β Γ οƒ 	
 Β heavy	
 Β hitter	
 Β 
β€’β€― Server	
 Β power	
 Β proLiles	
 Β typically	
 Β non-­‐linear;	
 Β ~45%	
 Β of	
 Β peak	
 Β power	
 Β with	
 Β ~20%	
 Β of	
 Β 
offered	
 Β load;	
 Β ~30%	
 Β power	
 Β in	
 Β idle	
 Β state	
 Β 
β€’β€― InefLicient	
 Β to	
 Β keep	
 Β servers	
 Β powered	
 Β on	
 Β under	
 Β low	
 Β load	
 Β conditions	
 Β 
Energy Efficiency Issues
SPEC	
 Β Benchmark	
 Β results:	
 Β HP	
 Β ProLiant	
 Β DL380p	
 Β rack	
 Β server	
 Β 
Source:	
 Β http://i.dell.com/sites/doccontent/shared-­‐content/data-­‐sheets/en/Documents/Comparing-­‐Dell-­‐R720-­‐and-­‐HP-­‐Proliant-­‐DL380p-­‐Gen8-­‐Servers.pdf	
 Β 
NFV – Huge opportunity for Openstack
Energy	
 Β aware	
 Β joint	
 Β scheduling	
 Β of	
 Β 
compute/storage/networking	
 Β 
resources	
  –	
 Β example	
 Β below	
 Β 
β€’β€― NFV	
 Β Customer	
 Β submits	
 Β job	
 Β request,	
 Β e.g.	
 Β 
backup,	
 Β with	
 Β elasticity	
 Β windows	
 Β 
β€’β€― NFV	
 Β Provider	
 Β returns	
 Β back	
 Β information	
 Β 
about	
 Β time	
 Β window	
 Β to	
 Β schedule	
 Β backup	
 Β 
β€’β€― Trigger	
 Β other	
 Β events	
 Β e.g.	
 Β Consolidate	
 Β 
workloads;	
 Β Finish	
 Β one	
 Β job	
 Β and	
 Β start	
 Β and	
 Β the	
 Β 
next;	
 Β Power	
 Β down	
 Β resources	
 Β (especially	
 Β 
servers)	
 Β after	
 Β job	
 Β completion	
 Β 	
 Β 
	
 Β 
Our	
 Β Solution:	
 Β Smart	
 Β Scheduler	
 Β in	
 Β 
Openstack	
 Β 
How do we get there ?
Solver	
 Β 	
 Β 
Scheduler	
 Β 
Adapted	
 Β from	
 Β ETSI	
 Β NFV	
 Β Architectural	
 Β Framework	
 Β 
Users:
Minimize costs… (Energy &
Network Efficiency)
Maximize Performance...
Infrastructure:
State (BigData?)
(Storage/Network/Compute
state, Energy Profiles, Policy/
constraints etc.)
Smart Scheduling in
Smart Scheduling in OpenStack for Optimized
NFV Resource Placements
Our Solution Smart
Scheduler in Openstack
β€’β€― Use analytics to determine current state
of the Openstack deployment.
β€’β€― Use resource management techniques
to pick resources based on business
constraints
Candidate Solution: Unified Constraints-based
Scheduling
A Smart Resource Placement Engine
β€’β€― Unified constraints involving network,
storage, compute, energy, etc.
β€’β€― Global state + analytics
β€’β€― Blazing fast implementations via Apache
licensed third-party Solver libraries
Sources:
β€’β€― https://docs.google.com/document/d/1IiPI0sfaWb1bdYiMWzAAx0HYR6UqzOan_Utgml5W1HI/edit
β€’β€― https://github.com/CiscoSystems/nova-solver-scheduler
Solver Scheduler: Smart Scheduling in OS
Intelligent Placement
Engine
Plug in Plug in
Scheduling
Decision
Cost
Functions
Constraint
Functions
Users:
Minimize costs… (Energy & Network
Efficiency)
Maximize Performance...
Infrastructure:
Server State...
Energy Profiles…
Network Link Capacities…
System Capacity...Sources:
β€’β€― https://docs.google.com/document/d/1IiPI0sfaWb1bdYiMWzAAx0HYR6UqzOan_Utgml5W1HI/edit
β€’β€― https://github.com/CiscoSystems/nova-solver-scheduler
An Example LP Problem
Formulation
Supply	
 Β 
Demand	
 Β 
Cost	
 Β Metric	
 Β 
to	
 Β 	
 Β 
Minimize	
 Β 
Constraints	
 Β to	
 Β 
satisfy	
 Β 
Cost	
 Β 
Variables	
 Β 
to	
 Β solve	
 Β 
Scheduling can be Complex
DEMO: Smart Scheduling for NFV Service VMs with
Compute/Storage Affinity Constraints
Applicable Scenarios:
1.β€― CDN NFV Service VMs that need data on
certain storage volumes, on physical
servers that are on or closest to the data.
2.β€― Backup NFV Service VMs placement.
Multinode devstack setup:
-β€― Host-1: (Controller, Compute node)
-β€― Host-2: (Compute node with demo_vol_1
Volume)
-β€― Host-3: (Compute node with demo_vol_2
Volume)
Boot 2 VMs specifying the requested volumes to
be close in proximity
Results: Optimal placement by picking the
two physical volume hosts: Host-2 and
Host-3.
Host-­‐3:	
 Β 	
 Β 
Host-­‐2:	
 Β 	
 Β  Host-­‐1:	
 Β demo_vol_1	
 Β 
demo_vol_2	
 Β 
Demo: Smart Scheduling with Compute-Storage Affinity
Conclusion	
 Β 
β€’β€― NFV	
 Β Value	
 Β Proposition	
 Β 
β€’β€― NVF	
 Β is	
 Β a	
 Β killer	
 Β use-­‐case	
 Β for	
 Β Openstack	
 Β 	
 Β 
β€’β€― Call	
 Β for	
 Β community	
 Β action	
 Β 
β€’β€― Scheduler	
 Β Gap	
 Β and	
 Β a	
 Β candidate	
 Β solution	
 Β [e.g.	
 Β SolverScheduler,	
 Β blueprint	
 Β exists,	
 Β 
code	
 Β pushed	
 Β for	
 Β review	
 Β in	
 Β Icehouse]	
 Β 
β€’β€― Cross-­‐Scheduler	
 Β API	
 Β w.	
 Β constraints	
 Β [e.g.	
 Β augment	
 Β server-­‐groups	
 Β API	
 Β released	
 Β in	
 Β 
Icehouse]	
 Β 
β€’β€― Neutron	
 Β hooks	
 Β for	
 Β Virtual	
 Β Network	
 Β Services	
 Β (and	
 Β API)	
 Β 
	
 Β 

More Related Content

PPTX
PPTX
Practice of large Hadoop cluster in China Mobile
PPTX
Hive LLAP: A High Performance, Cost-effective Alternative to Traditional MPP ...
PPTX
Time-oriented event search. A new level of scale
PDF
The Future of Computing is Distributed
PDF
Hadoop 3 @ Hadoop Summit San Jose 2017
PPTX
Accelerating Apache Hadoop through High-Performance Networking and I/O Techno...
PPTX
To The Cloud and Back: A Look At Hybrid Analytics
Practice of large Hadoop cluster in China Mobile
Hive LLAP: A High Performance, Cost-effective Alternative to Traditional MPP ...
Time-oriented event search. A new level of scale
The Future of Computing is Distributed
Hadoop 3 @ Hadoop Summit San Jose 2017
Accelerating Apache Hadoop through High-Performance Networking and I/O Techno...
To The Cloud and Back: A Look At Hybrid Analytics

What's hot (20)

PDF
Elastify Cloud-Native Spark Application with Persistent Memory
PDF
High Performance Data Lake with Apache Hudi and Alluxio at T3Go
PDF
Apache Spark 2.4 Bridges the Gap Between Big Data and Deep Learning
PPTX
Stinger Initiative - Deep Dive
PDF
Bringing Real-Time to the Enterprise with Hortonworks DataFlow
PPTX
Graphene – Microsoft SCOPE on Tez
PPTX
What's new in Hadoop Common and HDFS
PPTX
Scaling HDFS at Xiaomi
PPTX
Faster, Faster, Faster: The True Story of a Mobile Analytics Data Mart on Hive
PPTX
HDFS: Optimization, Stabilization and Supportability
PPTX
Near Real-Time Network Anomaly Detection and Traffic Analysis using Spark bas...
PDF
How the Development Bank of Singapore solves on-prem compute capacity challen...
PDF
Accelerating Data Computation on Ceph Objects
PPTX
Hadoop Everywhere
PDF
InfluxEnterprise Architectural Patterns by Dean Sheehan, Senior Director, Pre...
PDF
Accelerate Analytics and ML in the Hybrid Cloud Era
PPTX
Moving towards enterprise ready Hadoop clusters on the cloud
PDF
Modernizing Global Shared Data Analytics Platform and our Alluxio Journey
PPTX
HBaseCon 2013: Being Smarter Than the Smart Meter
PPTX
Elastify Cloud-Native Spark Application with Persistent Memory
High Performance Data Lake with Apache Hudi and Alluxio at T3Go
Apache Spark 2.4 Bridges the Gap Between Big Data and Deep Learning
Stinger Initiative - Deep Dive
Bringing Real-Time to the Enterprise with Hortonworks DataFlow
Graphene – Microsoft SCOPE on Tez
What's new in Hadoop Common and HDFS
Scaling HDFS at Xiaomi
Faster, Faster, Faster: The True Story of a Mobile Analytics Data Mart on Hive
HDFS: Optimization, Stabilization and Supportability
Near Real-Time Network Anomaly Detection and Traffic Analysis using Spark bas...
How the Development Bank of Singapore solves on-prem compute capacity challen...
Accelerating Data Computation on Ceph Objects
Hadoop Everywhere
InfluxEnterprise Architectural Patterns by Dean Sheehan, Senior Director, Pre...
Accelerate Analytics and ML in the Hybrid Cloud Era
Moving towards enterprise ready Hadoop clusters on the cloud
Modernizing Global Shared Data Analytics Platform and our Alluxio Journey
HBaseCon 2013: Being Smarter Than the Smart Meter
Ad

Similar to Optimized placement in Openstack for NFV (20)

PPTX
Optimized NFV placement in Openstack Clouds
PDF
MIG 5th Data Centre Summit 2016 PTS Presentation v1
PDF
Run OPNFV Danube on ODCC Scorpio Multi-node Server - Open Software on Open Ha...
Β 
PPTX
New Ceph capabilities and Reference Architectures
PPTX
Software Defined Storage, Big Data and Ceph - What Is all the Fuss About?
PDF
OpenStack Infrastructure at any Scale - Simple is BEST!? - - OpenStackζœ€ζ–°ζƒ…ε ±γ‚»γƒŸ...
PPTX
Ceph Day New York 2014: Best Practices for Ceph-Powered Implementations of St...
PDF
OpenStack at the speed of business with SolidFire & Red Hat
Β 
PDF
Stream Data Processing at Big Data Landscape by Oleksandr Fedirko
PDF
Revolutionary Storage for Modern Databases, Applications and Infrastrcture
PDF
Boyan Krosnov - Building a software-defined cloud - our experience
PPTX
Data Centre of the Future and challenges
PDF
Optimising Service Deployment and Infrastructure Resource Configuration
PPTX
SplunkLive! Nutanix Session - Turnkey and scalable infrastructure for Splunk ...
Β 
PDF
Capital One Delivers Risk Insights in Real Time with Stream Processing
PDF
OSMC 2019 | Monitoring Alerts and Metrics on Large Power Systems Clusters by ...
PPTX
Application and Network Orchestration using Heat & Tosca
PPTX
SDN and NFV: Friends or Enemies
PDF
Data Center for Cloud Computing - DC3X
PDF
VMworld 2013: How SRP Delivers More Than Power to Their Customers
Optimized NFV placement in Openstack Clouds
MIG 5th Data Centre Summit 2016 PTS Presentation v1
Run OPNFV Danube on ODCC Scorpio Multi-node Server - Open Software on Open Ha...
Β 
New Ceph capabilities and Reference Architectures
Software Defined Storage, Big Data and Ceph - What Is all the Fuss About?
OpenStack Infrastructure at any Scale - Simple is BEST!? - - OpenStackζœ€ζ–°ζƒ…ε ±γ‚»γƒŸ...
Ceph Day New York 2014: Best Practices for Ceph-Powered Implementations of St...
OpenStack at the speed of business with SolidFire & Red Hat
Β 
Stream Data Processing at Big Data Landscape by Oleksandr Fedirko
Revolutionary Storage for Modern Databases, Applications and Infrastrcture
Boyan Krosnov - Building a software-defined cloud - our experience
Data Centre of the Future and challenges
Optimising Service Deployment and Infrastructure Resource Configuration
SplunkLive! Nutanix Session - Turnkey and scalable infrastructure for Splunk ...
Β 
Capital One Delivers Risk Insights in Real Time with Stream Processing
OSMC 2019 | Monitoring Alerts and Metrics on Large Power Systems Clusters by ...
Application and Network Orchestration using Heat & Tosca
SDN and NFV: Friends or Enemies
Data Center for Cloud Computing - DC3X
VMworld 2013: How SRP Delivers More Than Power to Their Customers
Ad

More from Debojyoti Dutta (6)

PDF
Storage Visibility for Operations - A Ceph Story
PDF
Network Visibility For Openstack Operations
PDF
Predictive Analytics & Visualization - Towards Data Driven Insights for Opens...
PPTX
Engineering Big Data Infra with Openstack
PPTX
Donabe-essex-conference-readout
PPTX
Donabe - Basic Models/Technology
Storage Visibility for Operations - A Ceph Story
Network Visibility For Openstack Operations
Predictive Analytics & Visualization - Towards Data Driven Insights for Opens...
Engineering Big Data Infra with Openstack
Donabe-essex-conference-readout
Donabe - Basic Models/Technology

Recently uploaded (20)

PDF
SASE Traffic Flow - ZTNA Connector-1.pdf
PDF
How to Ensure Data Integrity During Shopify Migration_ Best Practices for Sec...
PPTX
artificial intelligence overview of it and more
PPTX
innovation process that make everything different.pptx
PPTX
June-4-Sermon-Powerpoint.pptx USE THIS FOR YOUR MOTIVATION
PDF
Cloud-Scale Log Monitoring _ Datadog.pdf
PDF
Testing WebRTC applications at scale.pdf
PDF
πŸ’° π”πŠπ“πˆ πŠπ„πŒπ„ππ€ππ†π€π πŠπˆππ„π‘πŸ’πƒ π‡π€π‘πˆ 𝐈𝐍𝐈 πŸπŸŽπŸπŸ“ πŸ’°
Β 
PDF
Unit-1 introduction to cyber security discuss about how to secure a system
PDF
WebRTC in SignalWire - troubleshooting media negotiation
PPTX
Introuction about ICD -10 and ICD-11 PPT.pptx
PDF
Sims 4 Historia para lo sims 4 para jugar
PDF
Paper PDF World Game (s) Great Redesign.pdf
PPT
isotopes_sddsadsaadasdasdasdasdsa1213.ppt
PPTX
Module 1 - Cyber Law and Ethics 101.pptx
PDF
Best Practices for Testing and Debugging Shopify Third-Party API Integrations...
PDF
An introduction to the IFRS (ISSB) Stndards.pdf
PDF
Slides PDF The World Game (s) Eco Economic Epochs.pdf
PDF
Decoding a Decade: 10 Years of Applied CTI Discipline
PPTX
international classification of diseases ICD-10 review PPT.pptx
SASE Traffic Flow - ZTNA Connector-1.pdf
How to Ensure Data Integrity During Shopify Migration_ Best Practices for Sec...
artificial intelligence overview of it and more
innovation process that make everything different.pptx
June-4-Sermon-Powerpoint.pptx USE THIS FOR YOUR MOTIVATION
Cloud-Scale Log Monitoring _ Datadog.pdf
Testing WebRTC applications at scale.pdf
πŸ’° π”πŠπ“πˆ πŠπ„πŒπ„ππ€ππ†π€π πŠπˆππ„π‘πŸ’πƒ π‡π€π‘πˆ 𝐈𝐍𝐈 πŸπŸŽπŸπŸ“ πŸ’°
Β 
Unit-1 introduction to cyber security discuss about how to secure a system
WebRTC in SignalWire - troubleshooting media negotiation
Introuction about ICD -10 and ICD-11 PPT.pptx
Sims 4 Historia para lo sims 4 para jugar
Paper PDF World Game (s) Great Redesign.pdf
isotopes_sddsadsaadasdasdasdasdsa1213.ppt
Module 1 - Cyber Law and Ethics 101.pptx
Best Practices for Testing and Debugging Shopify Third-Party API Integrations...
An introduction to the IFRS (ISSB) Stndards.pdf
Slides PDF The World Game (s) Eco Economic Epochs.pdf
Decoding a Decade: 10 Years of Applied CTI Discipline
international classification of diseases ICD-10 review PPT.pptx

Optimized placement in Openstack for NFV

  • 1. Increasing Β Infrastructure Β Ef/iciency Β via Β Optimized Β  NFV Β Placement Β in Β OpenStack Β Clouds Β  Yathiraj Β Udupi, Β Debo Β Dutta  – Β Cisco Β  Ram Β (Ramki) Β Krishnan Β -­‐ Β Brocade Β  Β  OpenStack Β Atlanta Β Summit, Β  Β May Β 2014 Β 
  • 2. Who and why? Debo/Yathi Β -­‐ Β Cisco Β Cloud Β CTO Β ofLice Β  Ramki Β -­‐ Β Brocade Β CTO Β ofLice Β  Goal: Β Drive Β Innovative Β Open Β Source Β solutions Β  for Β NFV Β with Β OpenStack Β 
  • 3. Our Thesis β€’β€― Toby Β Ford@AT&T’s Β NFV Β talk Β on Β Tue, Β May Β 13th Β  β€’β€― Worlds Β of Β IT Β and Β Telco Β are Β coming Β together Β  Β  β€’β€― Telco Β Cloud Β -­‐ Β OpenStack Β as Β the Β infrastructure Β foundation Β  β€’β€― Goal: Β Transform Β OpenStack Β to Β a Β Carrier-­‐grade Β  cloud Β solution Β  Β  β€’β€― We Β deep Β dive Β into Β some Β high-­‐level Β gaps Β Toby Β identiLied Β  β€’β€― We Β demo Β some Β initial Β progress Β 
  • 4. Agenda Β  β€’β€― NFV Β Summary Β  β€’β€― Cloud Β NFV Β Use Β Case Β  β€’β€― Drive Β Innovation Β -­‐ Β EfLicient Β Resource Β  Placement Β Strategies Β  β€’β€― Extensions Β to Β OpenStack Β scheduler Β  β€’β€― Conclusion Β  Β 
  • 5. Network Functions Virtualization (NFV) NFV Vision Source: ETSI NFV White Paper β€’β€― Global Β movement Β by Β network Β  operators Β -­‐ Β AT&T, Β Verizon, Β BT, Β  CenturyLink, Β Deutsche Β Telekom, Β  Telefonica, Β KDDI Β etc. Β  β€’β€― General Β purpose Β  Β hardware Β -­‐ Β  OPEX Β and Β CAPEX Β savings Β  β€’β€― Increased Β automation  – Β OPEX Β  savings, Β faster Β time Β to Β market Β  β€’β€― New Β business Β models Β and Β value Β  added Β services
  • 6. NFV Use Case - NFVIaas Motivation Β  Β  β€’β€― Network Β Functions Β in Β the Β cloud Β  β€’β€― Combined Β value  – Β Infrastructure Β as Β a Β service Β  (IaaS)  – Β Compute/storage Β infra, Β Network Β as Β  a Β service Β (NaaS)  – Β WAN Β network Β infra Β  β€’β€― Leverage Β NFV Β Infra Β of Β another Β SP  – Β increase Β  resiliency, Β reduce Β latency Β (CDN), Β regulatory Β  requirements Β  Β  Β  Where Β are Β we Β are Β today Β ? Β  β€’β€― Compute/storage Β is Β treated Β independent Β of Β  network, Β no Β energy Β efLiciency Β  considerations Β  β€’β€― Service Β value Β is Β not Β maximized Β  NFV Use Case – NFVIaaS Source: ETSI NFV Use Cases
  • 7. NaaS Virtualized Β  Network Β  Bandwidth Β Bandwidth Β  Virtual Β  Machine Β  Virtual Β  Machine Β  Virtual Β  Machine Β  Virtual Β  Machine Β  WAN Bandwidth on Demand Data Β Center Β 1 Β  Data Β Center Β 2 Β  BeneLits Β  β€’β€― Use Β WAN Β bandwidth Β as Β needed, Β avoid Β Lixed Β cost Β due Β to Β reservation Β  (typically Β 1.5 Β times Β peak)  – Β typically Β leverage Β MPLS Β technologies Β  β€’β€― Popular Β use Β cases Β -­‐ Β Disaster Β Recovery Β , Β On-­‐demand Β backup Β across Β WAN Β  StorageStorage
  • 8. NFVIaas (IaaS+NaaS) Virtualized Β  Network Β  Bandwidth Β Bandwidth Β  Virtual Β  Machine Β  Virtual Β  Machine Β  Virtual Β  Machine Β  Virtual Β  Machine Β  Data Β Center Β 1 Β  Data Β Center Β 2 Β  Where Β do Β we Β want Β to Β get Β to Β ? Β  β€’β€― Beyond Β WAN Β Bandwidth Β savings Β  β€’β€― Optimal Β resource Β placement Β across Β DCs Β -­‐ Β Increase Β Energy Β efLiciency Β while Β maintaining Β  multi-­‐tenant Β fairness Β and Β improving Β performance  – Β CAPEX/OPEX Β savings, Β Improve Β QoE, Β  Address Β regulatory Β requirements Β  β€’β€― Popular Β use Β cases Β -­‐ Β Disaster Β Recovery, Β On-­‐demand Β backup Β across Β WAN, Β Virtualized Β CDN Β  Compute/Storage/WAN Bandwidth on Demand + Energy Efficiency Storage Storage
  • 9. NFVIaas (IaaS+NaaS) β€’β€― Power Β usage Β in Β DCs Β -­‐-­‐ Β servers Β Γ οƒ  Β heavy Β hitter Β  β€’β€― Server Β power Β proLiles Β typically Β non-­‐linear; Β ~45% Β of Β peak Β power Β with Β ~20% Β of Β  offered Β load; Β ~30% Β power Β in Β idle Β state Β  β€’β€― InefLicient Β to Β keep Β servers Β powered Β on Β under Β low Β load Β conditions Β  Energy Efficiency Issues SPEC Β Benchmark Β results: Β HP Β ProLiant Β DL380p Β rack Β server Β  Source: Β http://i.dell.com/sites/doccontent/shared-­‐content/data-­‐sheets/en/Documents/Comparing-­‐Dell-­‐R720-­‐and-­‐HP-­‐Proliant-­‐DL380p-­‐Gen8-­‐Servers.pdf Β 
  • 10. NFV – Huge opportunity for Openstack Energy Β aware Β joint Β scheduling Β of Β  compute/storage/networking Β  resources  – Β example Β below Β  β€’β€― NFV Β Customer Β submits Β job Β request, Β e.g. Β  backup, Β with Β elasticity Β windows Β  β€’β€― NFV Β Provider Β returns Β back Β information Β  about Β time Β window Β to Β schedule Β backup Β  β€’β€― Trigger Β other Β events Β e.g. Β Consolidate Β  workloads; Β Finish Β one Β job Β and Β start Β and Β the Β  next; Β Power Β down Β resources Β (especially Β  servers) Β after Β job Β completion Β  Β  Β  Our Β Solution: Β Smart Β Scheduler Β in Β  Openstack Β  How do we get there ? Solver Β  Β  Scheduler Β  Adapted Β from Β ETSI Β NFV Β Architectural Β Framework Β 
  • 11. Users: Minimize costs… (Energy & Network Efficiency) Maximize Performance... Infrastructure: State (BigData?) (Storage/Network/Compute state, Energy Profiles, Policy/ constraints etc.) Smart Scheduling in Smart Scheduling in OpenStack for Optimized NFV Resource Placements Our Solution Smart Scheduler in Openstack β€’β€― Use analytics to determine current state of the Openstack deployment. β€’β€― Use resource management techniques to pick resources based on business constraints
  • 12. Candidate Solution: Unified Constraints-based Scheduling A Smart Resource Placement Engine β€’β€― Unified constraints involving network, storage, compute, energy, etc. β€’β€― Global state + analytics β€’β€― Blazing fast implementations via Apache licensed third-party Solver libraries Sources: β€’β€― https://docs.google.com/document/d/1IiPI0sfaWb1bdYiMWzAAx0HYR6UqzOan_Utgml5W1HI/edit β€’β€― https://github.com/CiscoSystems/nova-solver-scheduler
  • 13. Solver Scheduler: Smart Scheduling in OS Intelligent Placement Engine Plug in Plug in Scheduling Decision Cost Functions Constraint Functions Users: Minimize costs… (Energy & Network Efficiency) Maximize Performance... Infrastructure: Server State... Energy Profiles… Network Link Capacities… System Capacity...Sources: β€’β€― https://docs.google.com/document/d/1IiPI0sfaWb1bdYiMWzAAx0HYR6UqzOan_Utgml5W1HI/edit β€’β€― https://github.com/CiscoSystems/nova-solver-scheduler
  • 14. An Example LP Problem Formulation Supply Β  Demand Β  Cost Β Metric Β  to Β  Β  Minimize Β  Constraints Β to Β  satisfy Β  Cost Β  Variables Β  to Β solve Β  Scheduling can be Complex
  • 15. DEMO: Smart Scheduling for NFV Service VMs with Compute/Storage Affinity Constraints Applicable Scenarios: 1.β€― CDN NFV Service VMs that need data on certain storage volumes, on physical servers that are on or closest to the data. 2.β€― Backup NFV Service VMs placement. Multinode devstack setup: -β€― Host-1: (Controller, Compute node) -β€― Host-2: (Compute node with demo_vol_1 Volume) -β€― Host-3: (Compute node with demo_vol_2 Volume) Boot 2 VMs specifying the requested volumes to be close in proximity Results: Optimal placement by picking the two physical volume hosts: Host-2 and Host-3. Host-­‐3: Β  Β  Host-­‐2: Β  Β  Host-­‐1: Β demo_vol_1 Β  demo_vol_2 Β 
  • 16. Demo: Smart Scheduling with Compute-Storage Affinity
  • 17. Conclusion Β  β€’β€― NFV Β Value Β Proposition Β  β€’β€― NVF Β is Β a Β killer Β use-­‐case Β for Β Openstack Β  Β  β€’β€― Call Β for Β community Β action Β  β€’β€― Scheduler Β Gap Β and Β a Β candidate Β solution Β [e.g. Β SolverScheduler, Β blueprint Β exists, Β  code Β pushed Β for Β review Β in Β Icehouse] Β  β€’β€― Cross-­‐Scheduler Β API Β w. Β constraints Β [e.g. Β augment Β server-­‐groups Β API Β released Β in Β  Icehouse] Β  β€’β€― Neutron Β hooks Β for Β Virtual Β Network Β Services Β (and Β API) Β  Β