SlideShare a Scribd company logo
恩墨科技 成就所托
                                  www.eNMOU.com




© 2007-2009 Eygle.com All rights reserved.        1
深 入 解 析 Oracle
                   -数据库架构设计与性能优化实践



                                             • 盖国强 (eygle)
                                                         北京恩墨科技
                                             •   Mobile:13911812803
                                             •   MSN: eygle@hotmail.com
                                             •   Site : www.eygle.com
                                             •   Mail: eygle@eygle.com
© 2007-2009 Eygle.com All rights reserved.                          2
Who am I
          10+ 年 Oracle数据库经验
          北京恩墨科技有限公司 创始人
          ITPUB论坛超级版主
          Oracle ACE 总监
          博客站点: www.eygle.com
           公司站点: www.enmou.com
          成长于网络、回馈于网络 www.acoug.org




           2004              2005             2006   2007   2008   2009

© 2007-2009 Eygle.com All rights reserved.                                3
企业面临的数据现状
    •   海量的数据累积
    •   不断增长的存储与IO压力
    •   统计与运算的性能衰减
    •   扩展能力的瓶颈




© 2007-2009 Eygle.com All rights reserved.   4
(一)充分了解你的数据




© 2007-2009 Eygle.com All rights reserved.   5
架构设计:了解数据访问频度
    • 高频表的存储与优化




© 2007-2009 Eygle.com All rights reserved.   6
(二)制定数据缓存与归档机制




© 2007-2009 Eygle.com All rights reserved.   7
缓存为王:Default / Keep Cache
                       Auto-tuned


                                                                             nK Buffer
                      Default                     Keep         Recycle
                                                                             cache

                                                                                           F

                                                                                           E
                                  Working set 1              Working set 2
                              B                          E                                 D

                              A              C           F           F                     C
                                                                             …
                              C              A           D           D                     B

                                                                                           A
                            LRU        CKPTs         LRU          CKPTs
                                                                                         Buffer
                                                                                         cache



© 2007-2009 Eygle.com All rights reserved.                                                        8
缓存为王:Default Cache




© 2007-2009 Eygle.com All rights reserved.   9
(三)学习Oracle的设计理念




© 2007-2009 Eygle.com All rights reserved.   10
架构设计:拆分与分割
    • Oracle的内存管理演进




© 2007-2009 Eygle.com All rights reserved.   11
架构设计:分表、分区、分库




© 2007-2009 Eygle.com All rights reserved.   12
Oracle11g:Result Cache
    • Result Cache又可以分为
                                                                         Shared Pool
          – Server Result Cache
                                                                        Server Result
          – Client Result Cache                                            Cache
           SQL> select /*+ result_cache */ count(*) from eygle;
                                                                            Library
             COUNT(*)
           ----------                                                       Cache
              15993
                                                                        Data Dictionary
           Statistics                                                       Cache
           ----------------------------------------------------------
                   0 recursive calls
                   0 db block gets
                   0 consistent gets
                   0 physical reads
                   0 redo size
                  420 bytes sent via SQL*Net to client
                  416 bytes received via SQL*Net from client
                   2 SQL*Net roundtrips to/from client
                   0 sorts (memory)
                   0 sorts (disk)
                   1 rows processed




© 2007-2009 Eygle.com All rights reserved.                                                13
(四)在瓶颈之处寻找突破




© 2007-2009 Eygle.com All rights reserved.   14
Cache为王:Flash Cache 支持
     4. User Process reads
                    Extended Buffer Cache
       blocks from SGA
       (copied from Flash
       Cache if not in SGA)


                Hot Data                                                                                  Warm Data
                     16 GB                                                          120 GB
                     SGA Memory                             3. Clean blocks         Flash Cache
                                                               moved to Flash
                                                               Cache based on
                                                               LRU*


                                1. Blocks read   2. Dirty blocks flushed to disk
                                   into buffer
                                   cache




                Cold Data
                      360 GB
                      Magnetic Disks
                                                                                   * Headers for Flash Cached
                                                                                     blocks kept in SGA


© 2007-2009 Eygle.com All rights reserved.                                                                      15
Oracle In Memory Database Cache
                 Offload Data processing to Middle Tier resources
                                                        Business       Business
         • Data cached in application                  Applications   Applications


           memory                                       Cached
                                                         tables
                                                                      Cached
                                                                       tables
             • Synchronized with Oracle Database

         • Fast, consistent response times
               – High transaction throughput
               – Scale out with In-Memory cached
                 Grid
         • Standard Oracle Interfaces
               – SQL, PL/SQL, OCI


© 2007-2009 Eygle.com All rights reserved.                                      16
(五)精心设计每一个资源消耗




© 2007-2009 Eygle.com All rights reserved.   17
数据库的使命:读、写与展示




© 2007-2009 Eygle.com All rights reserved.   18
数据库的使命:读、写与展示




© 2007-2009 Eygle.com All rights reserved.   19
矛与盾的抉择:灵活性与性能




© 2007-2009 Eygle.com All rights reserved.   20
架构设计:排序与翻页




© 2007-2009 Eygle.com All rights reserved.   21
架构设计:Scale UP / OUT
  • 水平扩展构架体系
        – Scale out的解决方案                     解决单库天花板问题
        – 对业务基本透明
        – 可动态扩展
  • 支持任何数据库
  • 未来支持多主结构
        – 坏掉任何一个主库,不影响业务
  • 未来支持压力动态均衡
        – 数据可以动态分布
        – 可以方便的扩展/减少数据库主机、

        (引自 陈吉平 淘宝网架构介绍)


© 2007-2009 Eygle.com All rights reserved.               22
Sun Oracle Database Machine
                Get on the Grid Faster - OLTP & Data Warehousing

                                             Oracle Database Server Grid
                                             • 8 Database Servers
                                                 – 64 Cores
                                                 – 400 GB DRAM
                                             Exadata Storage Server Grid
                                             • 14 Storage Servers
                                                 – 5TB Smart Flash Cache
                                                 – 336 TB Disk Storage
                                             Unified Server/Storage Network
                                             • 40 Gb/sec Infiniband Links
                                                 – 880 Gb/sec Aggregate Throughput
                                             Completely Fault Tolerant



© 2007-2009 Eygle.com All rights reserved.                                           23
Significantly Reduce Storage Usage
                                  Advanced OLTP Compression

                               • Compress large application tables
                                  – Transaction processing, data warehousing
                               • Compress all data types
                                  – Structured and unstructured data types
                               • Improve query performance
                                  – Cascade storage savings throughout data center

                                               Up To



                                              4X
                                               Compression

© 2007-2009 Eygle.com All rights reserved.                                           24
Sun Oracle Exadata Storage Server
                                 Hybrid Columnar Compression


    • Data stored by column
      and then compressed
    • Useful for data that is bulk
      loaded or moved
    • Query mode for data warehousing
         – Typical 10X compression ratios
         – Scans improve accordingly
    • Archival mode for old data
         – Typical 15- 50X compression ratios
                                                               Up To


                                                               50X
© 2007-2009 Eygle.com All rights reserved.                             25
恩墨科技 成就所托

                               www.eNMOU.com




© 2007-2009 Eygle.com All rights reserved.     26

More Related Content

PPTX
Algorithmic Memory Increases Memory Performance by an Order of Magnitude
PDF
VLDB 2009 Tutorial on Column-Stores
PPTX
Extend starfish to Support the Growing Hadoop Ecosystem
PPT
Less03 db dbca
PDF
I can\'t believe this is butter - A Tour of btrfs
PDF
SSD based storage tuning for databases
PPT
Snapmirror Design
PDF
Sun storage tek 6140 technical presentation
Algorithmic Memory Increases Memory Performance by an Order of Magnitude
VLDB 2009 Tutorial on Column-Stores
Extend starfish to Support the Growing Hadoop Ecosystem
Less03 db dbca
I can\'t believe this is butter - A Tour of btrfs
SSD based storage tuning for databases
Snapmirror Design
Sun storage tek 6140 technical presentation

What's hot (19)

PDF
Sun storage tek 6140 customer presentation
PPT
Less01 architecture
PPT
Less08 users
PPTX
VLSI Physical Design Flow(http://www.vlsisystemdesign.com)
PDF
Sun storage tek 2500 series disk array technical presentation
PPT
D17316 gc20 l03_broker_em
PDF
Joel Gibson - Challenge 2 - Virtual Design Master
PDF
Greenplum Analytics Workbench - What Can a Private Hadoop Cloud Do For You?
 
PDF
White Paper: Using Perforce 'Attributes' for Managing Game Asset Metadata
PPTX
Place decap
PDF
Sun storage tek 2500 series disk array customer presentation
PDF
Sun storage tek 2500 series disk array sales presentation
PDF
Presentation sun storage tek™ 2500 series
PDF
Dba 3+ exp qus
PDF
Facebook's HBase Backups - StampedeCon 2012
PDF
Hadoop Distributed File System Reliability and Durability at Facebook
PDF
IBM Solid State in eX5 servers
PDF
Intel - Challenges and Opportunities in Cloud-Based Genomics Analytics
Sun storage tek 6140 customer presentation
Less01 architecture
Less08 users
VLSI Physical Design Flow(http://www.vlsisystemdesign.com)
Sun storage tek 2500 series disk array technical presentation
D17316 gc20 l03_broker_em
Joel Gibson - Challenge 2 - Virtual Design Master
Greenplum Analytics Workbench - What Can a Private Hadoop Cloud Do For You?
 
White Paper: Using Perforce 'Attributes' for Managing Game Asset Metadata
Place decap
Sun storage tek 2500 series disk array customer presentation
Sun storage tek 2500 series disk array sales presentation
Presentation sun storage tek™ 2500 series
Dba 3+ exp qus
Facebook's HBase Backups - StampedeCon 2012
Hadoop Distributed File System Reliability and Durability at Facebook
IBM Solid State in eX5 servers
Intel - Challenges and Opportunities in Cloud-Based Genomics Analytics
Ad

Similar to 深入解析Oracle-数据库架构设计与性能优化实践 (20)

PDF
Oracle Cloud PaaS & IaaS:2019年12月度サービス情報アップデート
PPT
Why_Oracle_Hardware.ppt
PDF
Intel - optimizing ceph performance by leveraging intel® optane™ and 3 d nand...
PDF
G108277 ds8000-resiliency-lagos-v1905c
PDF
Built-in Replication in PostgreSQL
PPTX
SDC20 ScaleFlux.pptx
PPT
Less04 database instance
PDF
SharePoint Storage Best Practices
PPT
SUN+Oracle存储产品介绍
PPTX
Ceph Day KL - Delivering cost-effective, high performance Ceph cluster
PPTX
Sparc m6 32 in-memory infrastructure for the entire enterprise
PDF
QCon2016--Drive Best Spark Performance on AI
PDF
Ceph Day Seoul - Delivering Cost Effective, High Performance Ceph cluster
PDF
OpenDBCamp Virtualization
PPTX
Ceph Day Tokyo - Delivering cost effective, high performance Ceph cluster
PDF
Ceph Day Taipei - Delivering cost-effective, high performance, Ceph cluster
PPTX
Miro Consulting Oracle Exadata Database Machine Offering
DOC
Resume_CQ_Edward
PDF
PostgreSQL Write-Ahead Log (Heikki Linnakangas)
PDF
CLFS 2010
Oracle Cloud PaaS & IaaS:2019年12月度サービス情報アップデート
Why_Oracle_Hardware.ppt
Intel - optimizing ceph performance by leveraging intel® optane™ and 3 d nand...
G108277 ds8000-resiliency-lagos-v1905c
Built-in Replication in PostgreSQL
SDC20 ScaleFlux.pptx
Less04 database instance
SharePoint Storage Best Practices
SUN+Oracle存储产品介绍
Ceph Day KL - Delivering cost-effective, high performance Ceph cluster
Sparc m6 32 in-memory infrastructure for the entire enterprise
QCon2016--Drive Best Spark Performance on AI
Ceph Day Seoul - Delivering Cost Effective, High Performance Ceph cluster
OpenDBCamp Virtualization
Ceph Day Tokyo - Delivering cost effective, high performance Ceph cluster
Ceph Day Taipei - Delivering cost-effective, high performance, Ceph cluster
Miro Consulting Oracle Exadata Database Machine Offering
Resume_CQ_Edward
PostgreSQL Write-Ahead Log (Heikki Linnakangas)
CLFS 2010
Ad

Recently uploaded (20)

PPTX
Spectroscopy.pptx food analysis technology
PDF
gpt5_lecture_notes_comprehensive_20250812015547.pdf
PDF
Spectral efficient network and resource selection model in 5G networks
PDF
Unlocking AI with Model Context Protocol (MCP)
PDF
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
PPTX
20250228 LYD VKU AI Blended-Learning.pptx
PDF
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
PPTX
Tartificialntelligence_presentation.pptx
PDF
MIND Revenue Release Quarter 2 2025 Press Release
PDF
Encapsulation_ Review paper, used for researhc scholars
PDF
Per capita expenditure prediction using model stacking based on satellite ima...
PDF
Agricultural_Statistics_at_a_Glance_2022_0.pdf
PDF
Approach and Philosophy of On baking technology
PDF
Advanced methodologies resolving dimensionality complications for autism neur...
PDF
cuic standard and advanced reporting.pdf
PPT
Teaching material agriculture food technology
PDF
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
PPTX
SOPHOS-XG Firewall Administrator PPT.pptx
PDF
Diabetes mellitus diagnosis method based random forest with bat algorithm
PPT
“AI and Expert System Decision Support & Business Intelligence Systems”
Spectroscopy.pptx food analysis technology
gpt5_lecture_notes_comprehensive_20250812015547.pdf
Spectral efficient network and resource selection model in 5G networks
Unlocking AI with Model Context Protocol (MCP)
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
20250228 LYD VKU AI Blended-Learning.pptx
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
Tartificialntelligence_presentation.pptx
MIND Revenue Release Quarter 2 2025 Press Release
Encapsulation_ Review paper, used for researhc scholars
Per capita expenditure prediction using model stacking based on satellite ima...
Agricultural_Statistics_at_a_Glance_2022_0.pdf
Approach and Philosophy of On baking technology
Advanced methodologies resolving dimensionality complications for autism neur...
cuic standard and advanced reporting.pdf
Teaching material agriculture food technology
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
SOPHOS-XG Firewall Administrator PPT.pptx
Diabetes mellitus diagnosis method based random forest with bat algorithm
“AI and Expert System Decision Support & Business Intelligence Systems”

深入解析Oracle-数据库架构设计与性能优化实践

  • 1. 恩墨科技 成就所托 www.eNMOU.com © 2007-2009 Eygle.com All rights reserved. 1
  • 2. 深 入 解 析 Oracle -数据库架构设计与性能优化实践 • 盖国强 (eygle) 北京恩墨科技 • Mobile:13911812803 • MSN: eygle@hotmail.com • Site : www.eygle.com • Mail: eygle@eygle.com © 2007-2009 Eygle.com All rights reserved. 2
  • 3. Who am I  10+ 年 Oracle数据库经验  北京恩墨科技有限公司 创始人  ITPUB论坛超级版主  Oracle ACE 总监  博客站点: www.eygle.com 公司站点: www.enmou.com  成长于网络、回馈于网络 www.acoug.org 2004 2005 2006 2007 2008 2009 © 2007-2009 Eygle.com All rights reserved. 3
  • 4. 企业面临的数据现状 • 海量的数据累积 • 不断增长的存储与IO压力 • 统计与运算的性能衰减 • 扩展能力的瓶颈 © 2007-2009 Eygle.com All rights reserved. 4
  • 6. 架构设计:了解数据访问频度 • 高频表的存储与优化 © 2007-2009 Eygle.com All rights reserved. 6
  • 8. 缓存为王:Default / Keep Cache Auto-tuned nK Buffer Default Keep Recycle cache F E Working set 1 Working set 2 B E D A C F F C … C A D D B A LRU CKPTs LRU CKPTs Buffer cache © 2007-2009 Eygle.com All rights reserved. 8
  • 9. 缓存为王:Default Cache © 2007-2009 Eygle.com All rights reserved. 9
  • 11. 架构设计:拆分与分割 • Oracle的内存管理演进 © 2007-2009 Eygle.com All rights reserved. 11
  • 13. Oracle11g:Result Cache • Result Cache又可以分为 Shared Pool – Server Result Cache Server Result – Client Result Cache Cache SQL> select /*+ result_cache */ count(*) from eygle; Library COUNT(*) ---------- Cache 15993 Data Dictionary Statistics Cache ---------------------------------------------------------- 0 recursive calls 0 db block gets 0 consistent gets 0 physical reads 0 redo size 420 bytes sent via SQL*Net to client 416 bytes received via SQL*Net from client 2 SQL*Net roundtrips to/from client 0 sorts (memory) 0 sorts (disk) 1 rows processed © 2007-2009 Eygle.com All rights reserved. 13
  • 15. Cache为王:Flash Cache 支持 4. User Process reads Extended Buffer Cache blocks from SGA (copied from Flash Cache if not in SGA) Hot Data Warm Data 16 GB 120 GB SGA Memory 3. Clean blocks Flash Cache moved to Flash Cache based on LRU* 1. Blocks read 2. Dirty blocks flushed to disk into buffer cache Cold Data 360 GB Magnetic Disks * Headers for Flash Cached blocks kept in SGA © 2007-2009 Eygle.com All rights reserved. 15
  • 16. Oracle In Memory Database Cache Offload Data processing to Middle Tier resources Business Business • Data cached in application Applications Applications memory Cached tables Cached tables • Synchronized with Oracle Database • Fast, consistent response times – High transaction throughput – Scale out with In-Memory cached Grid • Standard Oracle Interfaces – SQL, PL/SQL, OCI © 2007-2009 Eygle.com All rights reserved. 16
  • 22. 架构设计:Scale UP / OUT • 水平扩展构架体系 – Scale out的解决方案 解决单库天花板问题 – 对业务基本透明 – 可动态扩展 • 支持任何数据库 • 未来支持多主结构 – 坏掉任何一个主库,不影响业务 • 未来支持压力动态均衡 – 数据可以动态分布 – 可以方便的扩展/减少数据库主机、 (引自 陈吉平 淘宝网架构介绍) © 2007-2009 Eygle.com All rights reserved. 22
  • 23. Sun Oracle Database Machine Get on the Grid Faster - OLTP & Data Warehousing Oracle Database Server Grid • 8 Database Servers – 64 Cores – 400 GB DRAM Exadata Storage Server Grid • 14 Storage Servers – 5TB Smart Flash Cache – 336 TB Disk Storage Unified Server/Storage Network • 40 Gb/sec Infiniband Links – 880 Gb/sec Aggregate Throughput Completely Fault Tolerant © 2007-2009 Eygle.com All rights reserved. 23
  • 24. Significantly Reduce Storage Usage Advanced OLTP Compression • Compress large application tables – Transaction processing, data warehousing • Compress all data types – Structured and unstructured data types • Improve query performance – Cascade storage savings throughout data center Up To 4X Compression © 2007-2009 Eygle.com All rights reserved. 24
  • 25. Sun Oracle Exadata Storage Server Hybrid Columnar Compression • Data stored by column and then compressed • Useful for data that is bulk loaded or moved • Query mode for data warehousing – Typical 10X compression ratios – Scans improve accordingly • Archival mode for old data – Typical 15- 50X compression ratios Up To 50X © 2007-2009 Eygle.com All rights reserved. 25
  • 26. 恩墨科技 成就所托 www.eNMOU.com © 2007-2009 Eygle.com All rights reserved. 26