SlideShare a Scribd company logo
Antonio Chessa, Stefan Boumans and Jan Walschots
Scanner data workshop, Rome, 1-2 Oct. 2015
Towards a new methodology for
scanner data in the Dutch CPI
Outline
2
• Historical background
• Motivation and aims of new methodology
• Integration in CPI framework
• The index method
• Results
• Future plans
Scanner data vs Survey data
Scanner data
• Data on all transactions
• Order of 10-100,000 EANs
• Automised price collection
• Turnover
• Quantities sold
• Info about article characteristics in
EAN descriptions and/or in separate
fields
Issues:
• Returned articles
• Discounts
Survey data
• Sample of price observations
• Several 100s of products
• Prices collected by price collectors
• Prices observed in shops
• Sales are not available
• Consumer specialist sets up article
descriptions
3
Methods for supermarket scanner data
4
Version 0 Version 1 Version 2
Developed/used in Late 1990s 2002-2009 2010-present
Sample All data Basket All EANs that satisfy
(± 10,000 EANs certain filters
per retailer)
Homogeneous products EANs EANs EANs
Replacements No Yes, manually No
(EANs with large
turnover share)
Index method Monthly chained Laspeyres, with Monthly chained Jevons,
Fisher index yearly fixed weights with equal weights for
'accepted' EANs
Implemented? No Yes Yes
Issues with Version 2
5
EAN: 36-00521-74076-7
Elvive shampoo 2-in-1
multivitamine
Content: 250 ML
Price week 38: € 3,18
Price week 39: € 2,00
EAN: 36-00522-00499-8
Elvive shampoo 2-in-1
multivitamine
Content: 250 ML
In week 39 sold for first time
Price week 39: € 3,98
• Filter settings (need to be tested)
• Relaunches may lead to downward bias of price index
• Price dump filter is used, but EANs are not matched
Electronic transaction data in CPI 2015
6
Retailers Transaction data Survey data
Supermarkets* 13.5
Do it yourself stores* 0.5 0.9
Department stores* 0.7
Drug stores* 0.6
Travel agencies 1.7
Fuel 3.6
Mobile phones 0.5
Other 78.0
Total 21.1 78.9
* Scanner data, i.e. transaction data specified by EAN/GTIN
in % of Coicop weights:
Research objective:
7
Investigate whether a generic method can be developed that can be
applied to scanner data of different retailers/consumer goods
Specific focus:
• Process all articles/EANs
• Timely include new articles
• Reduce use of filters
• Handle relaunches
New methodology within CPI
8
(L-)Coicops
Consumption
segments
Homogeneous
products
Individual
articles/EANs
Laspeyrestype
indices
QU-indices
Productprices
(unitvalues)
Transactionprices
Article groups Indexcalculation
Men's T-shirts
#items,fabric,
colour, sleeve
EANsfor men's
T-shirts
Example
L-Coicop
Menswear
New methodology within CPI
9
(L-)Coicops
Consumption
segments
Homogeneous
products
Individual
articles/EANs
Laspeyrestype
indices
QU-indices
Productprices
(unitvalues)
Transactionprices
Article groups Indexcalculation
Men's T-shirts
#items,fabric,
colour, sleeve
EANsfor men's
T-shirts
Example
L-Coicop
Menswear
Index method (“QU-method”)
10
• Definition:
Value index  Weighted quantity index
• Some special cases:
 If for all products i  Laspeyres index
 If for all products i  Paasche index
 All products homogeneous  Unit value index
0 = base month
t = publication month
G = consumption segment
i = homogeneous product
QU-index is an adjusted unit value index
11
Unit value index
Shift in ‘product mix’
Choices about
12
• Form:
• The are allowed to vary from year to year
• Fixed base month (December of each year)
• Choices based on statistical and sensitivity analyses
__________________________________
For more details, see paper:
Chessa A.G.,Towards a generic price index method for scanner data in the DutchCPI.
Ottawa Group Meeting, 20-22 May 2015, Urayasu City, Japan.
Computational method
13
• Iterative method (alternate updates of index and product weights)
• Monthly update of weights with product prices and quantities
• Direct index with updated weights
• Index with yearly fixed product weights is used as benchmark
(transitive)
Tests
14
• Department store scanner data and mobile phone data
• Results validated
• Move towards CPI production for both data sets by January 2016
Results: Contribution of new products
15
50
60
70
80
90
100
110
120
130
140
150
200902
200904
200906
200908
200910
200912
201002
201004
201006
201008
201010
201012
201102
201104
201106
201108
201110
201112
201202
201204
201206
201208
201210
201212
201302
Underwear
QU-index Direct index MoM index
50
60
70
80
90
100
110
120
130
140
150
200902
200904
200906
200908
200910
200912
201002
201004
201006
201008
201010
201012
201102
201104
201106
201108
201110
201112
201202
201204
201206
201208
201210
201212
201302
Socks
QU-index Direct index MoM index
0
20
40
60
80
100
120
140
160
180
200
200902
200904
200906
200908
200910
200912
201002
201004
201006
201008
201010
201012
201102
201104
201106
201108
201110
201112
201202
201204
201206
201208
201210
201212
201302
Pulloversand Cardigans
QU-index Direct index MoM index
50
60
70
80
90
100
110
120
130
140
150
200902
200904
200906
200908
200910
200912
201002
201004
201006
201008
201010
201012
201102
201104
201106
201108
201110
201112
201202
201204
201206
201208
201210
201212
201302T-shirts
QU-index Direct index MoM index
Price indices for menswear, department store scanner data (Feb. 2009 = 100)
Test results and benchmarking
16
0
20
40
60
80
100
120
140
160
180
200
201212
201302
201304
201306
201308
201310
201312
201402
201404
201406
201408
201410
201412
201502
Cake
Benchmark Real time index
0
20
40
60
80
100
120
140
160
180
200
201212
201302
201304
201306
201308
201310
201312
201402
201404
201406
201408
201410
201412
201502
Crisps
Benchmark Real time index
0
20
40
60
80
100
120
140
160
180
200
201212
201302
201304
201306
201308
201310
201312
201402
201404
201406
201408
201410
201412
201502
Men'sT-shirts
Benchmark Real time
0
20
40
60
80
100
120
140
160
180
200
201212
201302
201304
201306
201308
201310
201312
201402
201404
201406
201408
201410
201412
201502
Ladies' T-shirts
Benchmark Real time
0
20
40
60
80
100
120
140
160
180
200
201212
201302
201304
201306
201308
201310
201312
201402
201404
201406
201408
201410
201412
201502
Toilettowels
Benchmark Real time
0
20
40
60
80
100
120
140
160
180
200
201212
201302
201304
201306
201308
201310
201312
201402
201404
201406
201408
201410
201412
201502
Kitchentowels
Benchmark Real time
Department store scanner data
(Dec. 2012 = 100)
Benchmark index has yearly
fixed product weights
“Real time index” makes use of
monthly updated weights
Short term plans
17
• Current state:
 Methodology tested for department store and mobile phones
 Work is in progress for other sectors
• Future plans and aims:
 January 2016: In production for dept store and mobile phones
 From second half of 2015:
 Method applied to drugstore scanner data
 Additional data needed (discounts, maybe also on article characteristics)
 Preliminary research for DIY-stores (additional data was needed, test data received)
 Started with supermarkets (small scale research)

More Related Content

PPTX
Performance Indicators for Plastic Manufacturing
PPTX
Frost - Surfactants SA
PPTX
Presentation on the state of play for a recommendation on obtaining scanner d...
PPTX
Sampling design issues in Italian experience on scanner data and the possible...
PDF
Preliminary results of scanner data analysis and their use to estimate italia...
PPTX
Polish scanner data project - first steps - Anna Bobel, Tomasz Pietras
PPTX
Towards a recommendation on scanner data - DJ Hoogerdijk
PPTX
Scanner data in the luxembourg hicp cpi moving towards implementation - Vanda...
Performance Indicators for Plastic Manufacturing
Frost - Surfactants SA
Presentation on the state of play for a recommendation on obtaining scanner d...
Sampling design issues in Italian experience on scanner data and the possible...
Preliminary results of scanner data analysis and their use to estimate italia...
Polish scanner data project - first steps - Anna Bobel, Tomasz Pietras
Towards a recommendation on scanner data - DJ Hoogerdijk
Scanner data in the luxembourg hicp cpi moving towards implementation - Vanda...

Similar to Outline of a framework for integral processing of scanner data in the Duch CPI - Antonio Chessa, Stefan Boumans and Jan Walschots (20)

PPTX
The Swedish experience with scanner data from sampling to index calculation -...
PDF
Scanner data current practice - Berthed Feldmann
PPT
K-CPI-Survey and its relationship with the state economies.
PPTX
Index Numbers class 12 economic works.pptx
PPT
Chapter 15_Index Numbers presentation.ppt
PPTX
tot_wp-content_uploads_2019_12_m10_session-i.pptx
PDF
Belgian scanner data project: methodology and results - Ken Van Loon, Françoi...
PPT
PPT
Angka Indeks Chapter 16 17PowerPoint.ppt
PPT
Types Of Index Numbers
PPT
Real sale prices vs. displayed prices : an issue to consider before expanding...
PPT
3 Presentation on Price Statistics by Federal Bureau of Statistics.ppt
PPTX
Statistics index number tot_wp-content_uploads_2019_12_m10_session-i.pptx
PPTX
Consumer Price Index
PPTX
Understanding Price Index_ An Essential Guide for Business.pptx
PPT
Al 13 - chapter 6
PPTX
Index number
PDF
Index number
PPTX
statsics ppt [1].pptx
PPTX
Inflation - How it's measured
The Swedish experience with scanner data from sampling to index calculation -...
Scanner data current practice - Berthed Feldmann
K-CPI-Survey and its relationship with the state economies.
Index Numbers class 12 economic works.pptx
Chapter 15_Index Numbers presentation.ppt
tot_wp-content_uploads_2019_12_m10_session-i.pptx
Belgian scanner data project: methodology and results - Ken Van Loon, Françoi...
Angka Indeks Chapter 16 17PowerPoint.ppt
Types Of Index Numbers
Real sale prices vs. displayed prices : an issue to consider before expanding...
3 Presentation on Price Statistics by Federal Bureau of Statistics.ppt
Statistics index number tot_wp-content_uploads_2019_12_m10_session-i.pptx
Consumer Price Index
Understanding Price Index_ An Essential Guide for Business.pptx
Al 13 - chapter 6
Index number
Index number
statsics ppt [1].pptx
Inflation - How it's measured
Ad

More from Istituto nazionale di statistica (20)

PPTX
Censimenti Permanenti Istituzioni non profit
PPTX
Censimenti Permanenti Istituzioni non profit
PPTX
Censimenti Permanenti Istituzioni non profit
PPTX
Censimenti Permanenti Istituzioni non profit
PPTX
Censimenti Permanenti Istituzioni non profit
PPTX
Censimenti Permanenti Istituzioni non profit
PPTX
Censimento Permanente Istituzioni Pubbliche
PDF
Censimento Permanente Istituzioni Pubbliche
PPTX
Censimento Permanente Istituzioni Pubbliche
PPTX
Censimento Permanente Istituzioni Pubbliche
PPTX
14a Conferenza Nazionale di Statisticacnstatistica14
PPTX
14a Conferenza Nazionale di Statistica
PPSX
14a Conferenza Nazionale di Statistica
PPTX
14a Conferenza Nazionale di Statistica
PDF
14a Conferenza Nazionale di Statistica
PDF
14a Conferenza Nazionale di Statistica
PPTX
14a Conferenza Nazionale di Statistica
PPTX
14a Conferenza Nazionale di Statistica
PPTX
14a Conferenza Nazionale di Statistica
PDF
14a Conferenza Nazionale di Statistica
Censimenti Permanenti Istituzioni non profit
Censimenti Permanenti Istituzioni non profit
Censimenti Permanenti Istituzioni non profit
Censimenti Permanenti Istituzioni non profit
Censimenti Permanenti Istituzioni non profit
Censimenti Permanenti Istituzioni non profit
Censimento Permanente Istituzioni Pubbliche
Censimento Permanente Istituzioni Pubbliche
Censimento Permanente Istituzioni Pubbliche
Censimento Permanente Istituzioni Pubbliche
14a Conferenza Nazionale di Statisticacnstatistica14
14a Conferenza Nazionale di Statistica
14a Conferenza Nazionale di Statistica
14a Conferenza Nazionale di Statistica
14a Conferenza Nazionale di Statistica
14a Conferenza Nazionale di Statistica
14a Conferenza Nazionale di Statistica
14a Conferenza Nazionale di Statistica
14a Conferenza Nazionale di Statistica
14a Conferenza Nazionale di Statistica
Ad

Recently uploaded (20)

PDF
David L Page_DCI Research Study Journey_how Methodology can inform one's prac...
PDF
MBA _Common_ 2nd year Syllabus _2021-22_.pdf
PDF
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
PPTX
20th Century Theater, Methods, History.pptx
PPTX
Computer Architecture Input Output Memory.pptx
PDF
International_Financial_Reporting_Standa.pdf
PDF
Chinmaya Tiranga quiz Grand Finale.pdf
PDF
Complications of Minimal Access-Surgery.pdf
PPTX
Introduction to pro and eukaryotes and differences.pptx
PDF
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 2).pdf
PDF
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
PDF
Trump Administration's workforce development strategy
PPTX
Unit 4 Computer Architecture Multicore Processor.pptx
PDF
AI-driven educational solutions for real-life interventions in the Philippine...
PDF
Environmental Education MCQ BD2EE - Share Source.pdf
PDF
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
PDF
Weekly quiz Compilation Jan -July 25.pdf
PDF
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
PDF
Hazard Identification & Risk Assessment .pdf
DOCX
Cambridge-Practice-Tests-for-IELTS-12.docx
David L Page_DCI Research Study Journey_how Methodology can inform one's prac...
MBA _Common_ 2nd year Syllabus _2021-22_.pdf
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
20th Century Theater, Methods, History.pptx
Computer Architecture Input Output Memory.pptx
International_Financial_Reporting_Standa.pdf
Chinmaya Tiranga quiz Grand Finale.pdf
Complications of Minimal Access-Surgery.pdf
Introduction to pro and eukaryotes and differences.pptx
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 2).pdf
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
Trump Administration's workforce development strategy
Unit 4 Computer Architecture Multicore Processor.pptx
AI-driven educational solutions for real-life interventions in the Philippine...
Environmental Education MCQ BD2EE - Share Source.pdf
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
Weekly quiz Compilation Jan -July 25.pdf
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
Hazard Identification & Risk Assessment .pdf
Cambridge-Practice-Tests-for-IELTS-12.docx

Outline of a framework for integral processing of scanner data in the Duch CPI - Antonio Chessa, Stefan Boumans and Jan Walschots

  • 1. Antonio Chessa, Stefan Boumans and Jan Walschots Scanner data workshop, Rome, 1-2 Oct. 2015 Towards a new methodology for scanner data in the Dutch CPI
  • 2. Outline 2 • Historical background • Motivation and aims of new methodology • Integration in CPI framework • The index method • Results • Future plans
  • 3. Scanner data vs Survey data Scanner data • Data on all transactions • Order of 10-100,000 EANs • Automised price collection • Turnover • Quantities sold • Info about article characteristics in EAN descriptions and/or in separate fields Issues: • Returned articles • Discounts Survey data • Sample of price observations • Several 100s of products • Prices collected by price collectors • Prices observed in shops • Sales are not available • Consumer specialist sets up article descriptions 3
  • 4. Methods for supermarket scanner data 4 Version 0 Version 1 Version 2 Developed/used in Late 1990s 2002-2009 2010-present Sample All data Basket All EANs that satisfy (± 10,000 EANs certain filters per retailer) Homogeneous products EANs EANs EANs Replacements No Yes, manually No (EANs with large turnover share) Index method Monthly chained Laspeyres, with Monthly chained Jevons, Fisher index yearly fixed weights with equal weights for 'accepted' EANs Implemented? No Yes Yes
  • 5. Issues with Version 2 5 EAN: 36-00521-74076-7 Elvive shampoo 2-in-1 multivitamine Content: 250 ML Price week 38: € 3,18 Price week 39: € 2,00 EAN: 36-00522-00499-8 Elvive shampoo 2-in-1 multivitamine Content: 250 ML In week 39 sold for first time Price week 39: € 3,98 • Filter settings (need to be tested) • Relaunches may lead to downward bias of price index • Price dump filter is used, but EANs are not matched
  • 6. Electronic transaction data in CPI 2015 6 Retailers Transaction data Survey data Supermarkets* 13.5 Do it yourself stores* 0.5 0.9 Department stores* 0.7 Drug stores* 0.6 Travel agencies 1.7 Fuel 3.6 Mobile phones 0.5 Other 78.0 Total 21.1 78.9 * Scanner data, i.e. transaction data specified by EAN/GTIN in % of Coicop weights:
  • 7. Research objective: 7 Investigate whether a generic method can be developed that can be applied to scanner data of different retailers/consumer goods Specific focus: • Process all articles/EANs • Timely include new articles • Reduce use of filters • Handle relaunches
  • 8. New methodology within CPI 8 (L-)Coicops Consumption segments Homogeneous products Individual articles/EANs Laspeyrestype indices QU-indices Productprices (unitvalues) Transactionprices Article groups Indexcalculation Men's T-shirts #items,fabric, colour, sleeve EANsfor men's T-shirts Example L-Coicop Menswear
  • 9. New methodology within CPI 9 (L-)Coicops Consumption segments Homogeneous products Individual articles/EANs Laspeyrestype indices QU-indices Productprices (unitvalues) Transactionprices Article groups Indexcalculation Men's T-shirts #items,fabric, colour, sleeve EANsfor men's T-shirts Example L-Coicop Menswear
  • 10. Index method (“QU-method”) 10 • Definition: Value index  Weighted quantity index • Some special cases:  If for all products i  Laspeyres index  If for all products i  Paasche index  All products homogeneous  Unit value index 0 = base month t = publication month G = consumption segment i = homogeneous product
  • 11. QU-index is an adjusted unit value index 11 Unit value index Shift in ‘product mix’
  • 12. Choices about 12 • Form: • The are allowed to vary from year to year • Fixed base month (December of each year) • Choices based on statistical and sensitivity analyses __________________________________ For more details, see paper: Chessa A.G.,Towards a generic price index method for scanner data in the DutchCPI. Ottawa Group Meeting, 20-22 May 2015, Urayasu City, Japan.
  • 13. Computational method 13 • Iterative method (alternate updates of index and product weights) • Monthly update of weights with product prices and quantities • Direct index with updated weights • Index with yearly fixed product weights is used as benchmark (transitive)
  • 14. Tests 14 • Department store scanner data and mobile phone data • Results validated • Move towards CPI production for both data sets by January 2016
  • 15. Results: Contribution of new products 15 50 60 70 80 90 100 110 120 130 140 150 200902 200904 200906 200908 200910 200912 201002 201004 201006 201008 201010 201012 201102 201104 201106 201108 201110 201112 201202 201204 201206 201208 201210 201212 201302 Underwear QU-index Direct index MoM index 50 60 70 80 90 100 110 120 130 140 150 200902 200904 200906 200908 200910 200912 201002 201004 201006 201008 201010 201012 201102 201104 201106 201108 201110 201112 201202 201204 201206 201208 201210 201212 201302 Socks QU-index Direct index MoM index 0 20 40 60 80 100 120 140 160 180 200 200902 200904 200906 200908 200910 200912 201002 201004 201006 201008 201010 201012 201102 201104 201106 201108 201110 201112 201202 201204 201206 201208 201210 201212 201302 Pulloversand Cardigans QU-index Direct index MoM index 50 60 70 80 90 100 110 120 130 140 150 200902 200904 200906 200908 200910 200912 201002 201004 201006 201008 201010 201012 201102 201104 201106 201108 201110 201112 201202 201204 201206 201208 201210 201212 201302T-shirts QU-index Direct index MoM index Price indices for menswear, department store scanner data (Feb. 2009 = 100)
  • 16. Test results and benchmarking 16 0 20 40 60 80 100 120 140 160 180 200 201212 201302 201304 201306 201308 201310 201312 201402 201404 201406 201408 201410 201412 201502 Cake Benchmark Real time index 0 20 40 60 80 100 120 140 160 180 200 201212 201302 201304 201306 201308 201310 201312 201402 201404 201406 201408 201410 201412 201502 Crisps Benchmark Real time index 0 20 40 60 80 100 120 140 160 180 200 201212 201302 201304 201306 201308 201310 201312 201402 201404 201406 201408 201410 201412 201502 Men'sT-shirts Benchmark Real time 0 20 40 60 80 100 120 140 160 180 200 201212 201302 201304 201306 201308 201310 201312 201402 201404 201406 201408 201410 201412 201502 Ladies' T-shirts Benchmark Real time 0 20 40 60 80 100 120 140 160 180 200 201212 201302 201304 201306 201308 201310 201312 201402 201404 201406 201408 201410 201412 201502 Toilettowels Benchmark Real time 0 20 40 60 80 100 120 140 160 180 200 201212 201302 201304 201306 201308 201310 201312 201402 201404 201406 201408 201410 201412 201502 Kitchentowels Benchmark Real time Department store scanner data (Dec. 2012 = 100) Benchmark index has yearly fixed product weights “Real time index” makes use of monthly updated weights
  • 17. Short term plans 17 • Current state:  Methodology tested for department store and mobile phones  Work is in progress for other sectors • Future plans and aims:  January 2016: In production for dept store and mobile phones  From second half of 2015:  Method applied to drugstore scanner data  Additional data needed (discounts, maybe also on article characteristics)  Preliminary research for DIY-stores (additional data was needed, test data received)  Started with supermarkets (small scale research)