SlideShare a Scribd company logo
7
Most read
9
Most read
20
Most read
The Materials Project 
Overview and infrastructure 
Anubhav 
Jain, 
Berkeley 
LAB 
MAVRL 
Workshop, 
Nov 
2014
① Introduction to the Materials Project 
② Overview of computational infrastructure 
2
3 
• mostly 
DFT 
(for 
now) 
• mostly 
inorganics 
(for 
now)
Compounds 
Total 
Energies 
Optimized 
Structures 
Band 
Structures 
Elastic 
Tensor Defects 
today ~60,000 ✔ ✔ 
~50% 
~1000 
(soon) 
~100 
(soon) 
near – 
term ~60,000 ✔ ✔ ✔ 
>5000 
>500 
medium – 
term 
90,000 + 
(all of ICSD 
plus many 
predictions) 
✔ ✔ ✔ 
common 
compounds 
common 
compounds
¡ Search/explore DFT data on materials 
§ many people seem to use it get optimized POSCARs 
¡ Make interactive phase diagrams 
¡ Make interactive Pourbaix diagrams (E-pH) 
¡ Calculate reaction energies, compare w/expt 
¡ Predict structures of new compositions 
¡ Explore Li ion battery calculation data 
¡ Edit crystals
6
M. 
Meinert, 
M.P. 
Geisler, 
Phase 
stability 
of 
chromium 
based 
compensated 
ferrimagnets 
with 
inverse 
Heusler 
structure, 
J. 
Magn. 
Magn. 
Mater. 
341 
(2013) 
72–74. 
J. 
Rustad, 
Density 
functional 
calculations 
of 
the 
enthalpies 
of 
formation 
of 
rare-­‐earth 
orthophosphates, 
Am. 
Mineral. 
97 
(2012) 
791–799. 
M. 
Fondell, 
T.J. 
Jacobsson, 
M. 
Boman, 
T. 
Edvinsson, 
Optical 
quantum 
confinement 
in 
low 
dimensional 
hematite, 
J. 
Mater. 
Chem. 
A. 
2 
(2014) 
3352.
K. 
He, 
Y. 
Zhou, 
P. 
Gao, 
L. 
Wang, 
N. 
Pereira, 
G.G. 
Amatucci, 
et 
al., 
Sodiation 
via 
Heterogeneous 
Disproportionation 
in 
FeF2 
Electrodes 
for 
Sodium-­‐Ion 
Batteries., 
ACS 
Nano. 
8 
(2014) 
7251–9. 
M.M. 
Doeff, 
J. 
Cabana, 
M. 
Shirpour, 
Titanate 
Anodes 
for 
Sodium 
Ion 
Batteries, 
J. 
Inorg. 
Organomet. 
Polym. 
Mater. 
24 
(2013) 
5–14.
https://www.youtube.com/user/MaterialsProject 
https://www.youtube.com/watch?v=cG1J6zeU0IM
! 
Materials Project 
team 
Any materials researcher
① Introduction to the Materials Project 
② Overview of computational infrastructure 
11
The web site is only the 
tip of the iceberg… 
pymatgen 
FireWorks 
REST 
API 
custodian 
MPWorks 
MPEnv 
rubicon
The Materials Project: overview and infrastructure
We’ve developed several broadly useful 
software packages for the community 
• All codes are under 3 years old 
– but they are already used worldwide with healthy user 
communities and outside contributors/testers 
(physics/materials 
science) 
(general 
workflows 
/ 
supercomputers) 
+ custodian, pymatgen-db, MPWorks, MPEnv, 
materialsapi
Hierarchical design of codebases keeps 
infrastructure nimble to changes 
WORKFLOW CODE 
CHEMISTRY CODE
Many types of use cases 
FireWorks 
pymatgen 
custodian 
MPWorks 
Crystal workflows 
FireWorks 
pymatgen 
custodian 
rubicon (private) 
Molecule workflows 
pymatgen 
FireWorks 
external 
MAST, MaterialsHub 
external 
Berlin ML, JGI, MoDeNa
These codes are open-source 
• Whatever we develop can be used and 
extended by the community 
– http://www.github.com/materialsproject
The infrastructure allows us to be 
collaborative and scale beyond ourselves 
Code 
Paper 
Code 
Paper 
Code 
Paper 
Code 
Paper 
Paper 
Paper 
Paper 
Paper 
Paper 
Paper 
vs. Paper
The rest of this workshop 
• Explains the software tools in more detail 
• Workshop enough to get you started, but will not 
make you an expert 
• The only way to learn is to try it, read the 
manuals, and ask questions, e.g.: 
– https://groups.google.com/forum/#!forum/matproj-develop 
– https://groups.google.com/forum/#!forum/pymatgen 
• And finally …
Have faith that investing in learning is 
a good use of your time! 
(unless 
you 
plan 
to 
rePre 
in 
the 
next 
year, 
think 
of 
your 
long-­‐term 
goals)
Thanks! 
Berkeley Lab (Univ of California) Mail - [Matgen] Pourbaix Di... https://mail.google.com/mail/u/0/?ui=2&ik=19a06e26c2&view... 
Kristin Persson <kapersson@lbl.gov> 
H 
H He 
B 
Be 
C 
Li 
N 
Li Be B C N O F Ne 
1.381 
Al 
1.391 
Cl 
Mg 
Na 
P 
S 
Si 
Na Mg Al Si P S Cl Ar 
1.657 
As 
Br 
Ca 
Co 
Cr 
Cu 
Fe 
Ga 
Ge 
K 
Mn 
Ni 
Sc 
Se 
Ti 
V 
Zn 
K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 
Ag 
1.809 
Cd 
I 
In 
Mo 
Nb 
Pd 
Rb 
Rh 
Ru 
Sb 
Sn 
Sr 
Tc 
Te 
Y 
Zr 
Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe 
[Matgen] Pourbaix 1.779 
Diagrams on the Materials Project 
4 messages 
Au 
Bi 
support@materialsproject.org <support@materialsproject.org> Wed, Oct 2, 2013 at 2:41 PM 
Reply-To: matgen@nersc.gov 
To: matgen@nersc.gov 
Hf 
Hg 
Ir 
Os 
Pb 
Pt 
Re 
Ta 
Tl 
W 
Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn 
1.864 
Dy 
Er 
Eu 
Gd 
Ho 
Lu 
Tb 
Tm 
Yb 
Pourbaix 4 
Diagrams on the Materials Project 
Today, app. Pourbaix 2 
we are excited to announce the release of the Pourbaix diagram 
diagrams are solid-aqueous phase diagrams as a function of 
pH, standard hydrogen potential and composition that can be used to 
E  Ef (eV) 
0 
-2 
-4 
 L B1|B Z  X|Q F P1 Z|L P 
Wave Vector 
1.932 
Rf Db Sg Bh Hs Mt 
Ce 
Nd 
Np 
Pr 
Pa 
Sm 
Pu 
Th 
U 
1 of 4 10/3/13 6:48 PM 
Ba 
Cs 
Cs Ba 
La 
La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 
Fr Ra 
Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr 
2.281 
2.087 
2.016 
1.409 
1.837 
1.871 
2.097 
1.767 
1.782 
1.81 
2.476 
1.672 
2.056 
2.033 
2.061 
1.815 
1.776 
2.074 
1.781 
0.971 
1.937 
1.928 
2.055 
1.978 
2.002 
1.936 
2.058 
2.191 
1.383 
1.948 
1.658 
1.806 
1.942 
1.482 
1.652 
1.958 
2.141 
1.748 
2.085 
1.712 
2.104 
2.083 
1.89 
2.246 
1.95 
2.08 
2.268 
1.935 
1.917 
1.917 
1.753 
1.944 
1.884 
1.88 
1.628 
2.09 
1.983 
1.989 
1.931 
2.163 
1.91 
1.99 
2.165 
1.84 
2.082 
2.015 
2.092 
1.824 
1.947 
2.06 
1.876 
1.749 
1.993 
Materials 
Project 
and 
MAVRL 
teams, 
along 
with 
worldwide 
collaborators!

More Related Content

PDF
Software tools for calculating materials properties in high-throughput (pymat...
PDF
The Materials Project: An Electronic Structure Database for Community-Based M...
PDF
汎用ニューラルネットワークポテンシャル「PFP」による材料探索_MRS-J2021招待講演_2021/12/15
PDF
汎用なNeural Network Potential「Matlantis」を使った新素材探索_2022応用物理学会_2022/3/22
PDF
PFP:材料探索のための汎用Neural Network Potential_中郷_20220422POLセミナー
PDF
ICLR2019 読み会in京都 ICLRから読み取るFeature Disentangleの研究動向
PDF
Matlantisに込められた 技術・思想_高本_Matlantis User Conference
PDF
The Materials Project: A Community Data Resource for Accelerating New Materia...
Software tools for calculating materials properties in high-throughput (pymat...
The Materials Project: An Electronic Structure Database for Community-Based M...
汎用ニューラルネットワークポテンシャル「PFP」による材料探索_MRS-J2021招待講演_2021/12/15
汎用なNeural Network Potential「Matlantis」を使った新素材探索_2022応用物理学会_2022/3/22
PFP:材料探索のための汎用Neural Network Potential_中郷_20220422POLセミナー
ICLR2019 読み会in京都 ICLRから読み取るFeature Disentangleの研究動向
Matlantisに込められた 技術・思想_高本_Matlantis User Conference
The Materials Project: A Community Data Resource for Accelerating New Materia...

What's hot (20)

PDF
第2回 配信講義 計算科学技術特論A (2021)
PDF
Graphs, Environments, and Machine Learning for Materials Science
PDF
Graph neural networks overview
PDF
Deep learning勉強会20121214ochi
PDF
ทางเลือกใหม่ในการกำจัดโรคและแมลงด้วยคลื่นความถี่วิทยุ
PDF
素材産業のDxに貢献する 『Matlantis』のご紹介_nano tech2022_2022/1/28
PDF
Overcoming Catastrophic Forgetting in Neural Networks読んだ
PDF
Openfermionを使った分子の計算 part I
PPTX
【DL輪読会】Data-Efficient Reinforcement Learning with Self-Predictive Representat...
PDF
[DL輪読会]Relational inductive biases, deep learning, and graph networks
PDF
C++による数値解析の並列化手法
PDF
[DL輪読会]Imagination-Augmented Agents for Deep Reinforcement Learning / Learnin...
PDF
Density functional theory calculations and data mining for new thermoelectric...
PDF
深層強化学習の self-playで、複雑な行動を機械に学習させたい!
PDF
NeurIPS2020参加報告
PPTX
Semi supervised, weakly-supervised, unsupervised, and active learning
PDF
PR-355: Masked Autoencoders Are Scalable Vision Learners
PPTX
PDF
Conducting and Enabling Data-Driven Research Through the Materials Project
第2回 配信講義 計算科学技術特論A (2021)
Graphs, Environments, and Machine Learning for Materials Science
Graph neural networks overview
Deep learning勉強会20121214ochi
ทางเลือกใหม่ในการกำจัดโรคและแมลงด้วยคลื่นความถี่วิทยุ
素材産業のDxに貢献する 『Matlantis』のご紹介_nano tech2022_2022/1/28
Overcoming Catastrophic Forgetting in Neural Networks読んだ
Openfermionを使った分子の計算 part I
【DL輪読会】Data-Efficient Reinforcement Learning with Self-Predictive Representat...
[DL輪読会]Relational inductive biases, deep learning, and graph networks
C++による数値解析の並列化手法
[DL輪読会]Imagination-Augmented Agents for Deep Reinforcement Learning / Learnin...
Density functional theory calculations and data mining for new thermoelectric...
深層強化学習の self-playで、複雑な行動を機械に学習させたい!
NeurIPS2020参加報告
Semi supervised, weakly-supervised, unsupervised, and active learning
PR-355: Masked Autoencoders Are Scalable Vision Learners
Conducting and Enabling Data-Driven Research Through the Materials Project
Ad

Viewers also liked (20)

PDF
FireWorks workflow software
PDF
MAVRL Workshop 2014 - Python Materials Genomics (pymatgen)
PDF
MAVRL Workshop 2014 - pymatgen-db & custodian
PDF
Creating It from Bit - Designing Materials by Integrating Quantum Mechanics, ...
PDF
Software tools to facilitate materials science research
PDF
FireWorks overview
PDF
Open Chemistry: Input Preparation, Data Visualization & Analysis
PDF
Application of the Materials Project database and data mining towards the des...
PDF
Combining density functional theory calculations, supercomputing, and data-dr...
PDF
Combining High-Throughput Computing and Statistical Learning to Develop and U...
PDF
The Materials Project and computational materials discovery
PPT
Educational Software Categories
PDF
ALPSチュートリアル(4) Python入門
PPT
Academic Software
PDF
NANO266 - Lecture 2 - The Hartree-Fock Approach
PDF
UCSD NANO106 - 02 - 3D Bravis Lattices and Lattice Computations
PDF
NANO266 - Lecture 4 - Introduction to DFT
PDF
Combining density functional theory calculations, supercomputing, and data-dr...
PDF
Targeted Band Structure Design and Thermoelectric Materials Discovery Using H...
PDF
UCSD NANO106 - 07 - Material properties and tensors
FireWorks workflow software
MAVRL Workshop 2014 - Python Materials Genomics (pymatgen)
MAVRL Workshop 2014 - pymatgen-db & custodian
Creating It from Bit - Designing Materials by Integrating Quantum Mechanics, ...
Software tools to facilitate materials science research
FireWorks overview
Open Chemistry: Input Preparation, Data Visualization & Analysis
Application of the Materials Project database and data mining towards the des...
Combining density functional theory calculations, supercomputing, and data-dr...
Combining High-Throughput Computing and Statistical Learning to Develop and U...
The Materials Project and computational materials discovery
Educational Software Categories
ALPSチュートリアル(4) Python入門
Academic Software
NANO266 - Lecture 2 - The Hartree-Fock Approach
UCSD NANO106 - 02 - 3D Bravis Lattices and Lattice Computations
NANO266 - Lecture 4 - Introduction to DFT
Combining density functional theory calculations, supercomputing, and data-dr...
Targeted Band Structure Design and Thermoelectric Materials Discovery Using H...
UCSD NANO106 - 07 - Material properties and tensors
Ad

Similar to The Materials Project: overview and infrastructure (20)

PDF
Open-source tools for generating and analyzing large materials data sets
PDF
NANO266 - Lecture 12 - High-throughput computational materials design
PDF
Combining density functional theory calculations, supercomputing, and data-dr...
PDF
The Materials Project: Experiences from running a million computational scien...
PDF
2014 11-13-sbsm032-reproducible research
PDF
Discovering and Exploring New Materials through the Materials Project
PDF
Discovering new functional materials for clean energy and beyond using high-t...
PDF
Overview of accelerated materials design efforts in the Hacking Materials res...
PDF
Computational Materials Design and Data Dissemination through the Materials P...
PDF
ICME Workshop Jul 2014 - The Materials Project
PDF
Materials discovery through theory, computation, and machine learning
PPT
Capstone powerpoint
PDF
Jon Batchelder c.v.
PDF
Advances In Nuclear Physics Structure And Reactions Rajeev K Puri
PDF
2015 10-7-11am-reproducible research
PPTX
studies of new materials based on hydrazine for solar cell application USING ...
PPTX
Morgan uw maGIV v1.3 dist
PDF
Chap1 intro to-accelerators_final
PPTX
C6.05: New ocean-colour products for the user community - Shubha Sathyendrana...
PDF
Ng_Defense_expo
Open-source tools for generating and analyzing large materials data sets
NANO266 - Lecture 12 - High-throughput computational materials design
Combining density functional theory calculations, supercomputing, and data-dr...
The Materials Project: Experiences from running a million computational scien...
2014 11-13-sbsm032-reproducible research
Discovering and Exploring New Materials through the Materials Project
Discovering new functional materials for clean energy and beyond using high-t...
Overview of accelerated materials design efforts in the Hacking Materials res...
Computational Materials Design and Data Dissemination through the Materials P...
ICME Workshop Jul 2014 - The Materials Project
Materials discovery through theory, computation, and machine learning
Capstone powerpoint
Jon Batchelder c.v.
Advances In Nuclear Physics Structure And Reactions Rajeev K Puri
2015 10-7-11am-reproducible research
studies of new materials based on hydrazine for solar cell application USING ...
Morgan uw maGIV v1.3 dist
Chap1 intro to-accelerators_final
C6.05: New ocean-colour products for the user community - Shubha Sathyendrana...
Ng_Defense_expo

More from Anubhav Jain (20)

PDF
A Career at a U.S. National Lab: Perspective from a Mid-Career Scientist
PDF
Research opportunities in materials design using AI/ML
PDF
Accelerating materials discovery with big data and machine learning
PDF
Predicting the Synthesizability of Inorganic Materials: Convex Hulls, Literat...
PDF
Discovering advanced materials for energy applications: theory, high-throughp...
PDF
Applications of Large Language Models in Materials Discovery and Design
PDF
An AI-driven closed-loop facility for materials synthesis
PDF
Best practices for DuraMat software dissemination
PDF
Best practices for DuraMat software dissemination
PDF
Available methods for predicting materials synthesizability using computation...
PDF
Efficient methods for accurately calculating thermoelectric properties – elec...
PDF
Natural Language Processing for Data Extraction and Synthesizability Predicti...
PDF
Machine Learning for Catalyst Design
PDF
Natural language processing for extracting synthesis recipes and applications...
PDF
Accelerating New Materials Design with Supercomputing and Machine Learning
PDF
DuraMat CO1 Central Data Resource: How it started, how it’s going …
PDF
The Materials Project
PDF
Evaluating Chemical Composition and Crystal Structure Representations using t...
PDF
Perspectives on chemical composition and crystal structure representations fr...
PDF
The Materials Project: Applications to energy storage and functional materia...
A Career at a U.S. National Lab: Perspective from a Mid-Career Scientist
Research opportunities in materials design using AI/ML
Accelerating materials discovery with big data and machine learning
Predicting the Synthesizability of Inorganic Materials: Convex Hulls, Literat...
Discovering advanced materials for energy applications: theory, high-throughp...
Applications of Large Language Models in Materials Discovery and Design
An AI-driven closed-loop facility for materials synthesis
Best practices for DuraMat software dissemination
Best practices for DuraMat software dissemination
Available methods for predicting materials synthesizability using computation...
Efficient methods for accurately calculating thermoelectric properties – elec...
Natural Language Processing for Data Extraction and Synthesizability Predicti...
Machine Learning for Catalyst Design
Natural language processing for extracting synthesis recipes and applications...
Accelerating New Materials Design with Supercomputing and Machine Learning
DuraMat CO1 Central Data Resource: How it started, how it’s going …
The Materials Project
Evaluating Chemical Composition and Crystal Structure Representations using t...
Perspectives on chemical composition and crystal structure representations fr...
The Materials Project: Applications to energy storage and functional materia...

Recently uploaded (20)

PDF
Placing the Near-Earth Object Impact Probability in Context
PPTX
neck nodes and dissection types and lymph nodes levels
PPTX
famous lake in india and its disturibution and importance
PDF
HPLC-PPT.docx high performance liquid chromatography
PPTX
BIOMOLECULES PPT........................
PDF
Phytochemical Investigation of Miliusa longipes.pdf
PPTX
Taita Taveta Laboratory Technician Workshop Presentation.pptx
PPT
The World of Physical Science, • Labs: Safety Simulation, Measurement Practice
PPTX
The KM-GBF monitoring framework – status & key messages.pptx
PDF
bbec55_b34400a7914c42429908233dbd381773.pdf
PDF
Unveiling a 36 billion solar mass black hole at the centre of the Cosmic Hors...
PPTX
2Systematics of Living Organisms t-.pptx
PDF
AlphaEarth Foundations and the Satellite Embedding dataset
PDF
Biophysics 2.pdffffffffffffffffffffffffff
PPTX
DRUG THERAPY FOR SHOCK gjjjgfhhhhh.pptx.
PDF
SEHH2274 Organic Chemistry Notes 1 Structure and Bonding.pdf
PDF
The scientific heritage No 166 (166) (2025)
PPTX
2. Earth - The Living Planet Module 2ELS
PDF
An interstellar mission to test astrophysical black holes
PPTX
G5Q1W8 PPT SCIENCE.pptx 2025-2026 GRADE 5
Placing the Near-Earth Object Impact Probability in Context
neck nodes and dissection types and lymph nodes levels
famous lake in india and its disturibution and importance
HPLC-PPT.docx high performance liquid chromatography
BIOMOLECULES PPT........................
Phytochemical Investigation of Miliusa longipes.pdf
Taita Taveta Laboratory Technician Workshop Presentation.pptx
The World of Physical Science, • Labs: Safety Simulation, Measurement Practice
The KM-GBF monitoring framework – status & key messages.pptx
bbec55_b34400a7914c42429908233dbd381773.pdf
Unveiling a 36 billion solar mass black hole at the centre of the Cosmic Hors...
2Systematics of Living Organisms t-.pptx
AlphaEarth Foundations and the Satellite Embedding dataset
Biophysics 2.pdffffffffffffffffffffffffff
DRUG THERAPY FOR SHOCK gjjjgfhhhhh.pptx.
SEHH2274 Organic Chemistry Notes 1 Structure and Bonding.pdf
The scientific heritage No 166 (166) (2025)
2. Earth - The Living Planet Module 2ELS
An interstellar mission to test astrophysical black holes
G5Q1W8 PPT SCIENCE.pptx 2025-2026 GRADE 5

The Materials Project: overview and infrastructure

  • 1. The Materials Project Overview and infrastructure Anubhav Jain, Berkeley LAB MAVRL Workshop, Nov 2014
  • 2. ① Introduction to the Materials Project ② Overview of computational infrastructure 2
  • 3. 3 • mostly DFT (for now) • mostly inorganics (for now)
  • 4. Compounds Total Energies Optimized Structures Band Structures Elastic Tensor Defects today ~60,000 ✔ ✔ ~50% ~1000 (soon) ~100 (soon) near – term ~60,000 ✔ ✔ ✔ >5000 >500 medium – term 90,000 + (all of ICSD plus many predictions) ✔ ✔ ✔ common compounds common compounds
  • 5. ¡ Search/explore DFT data on materials § many people seem to use it get optimized POSCARs ¡ Make interactive phase diagrams ¡ Make interactive Pourbaix diagrams (E-pH) ¡ Calculate reaction energies, compare w/expt ¡ Predict structures of new compositions ¡ Explore Li ion battery calculation data ¡ Edit crystals
  • 6. 6
  • 7. M. Meinert, M.P. Geisler, Phase stability of chromium based compensated ferrimagnets with inverse Heusler structure, J. Magn. Magn. Mater. 341 (2013) 72–74. J. Rustad, Density functional calculations of the enthalpies of formation of rare-­‐earth orthophosphates, Am. Mineral. 97 (2012) 791–799. M. Fondell, T.J. Jacobsson, M. Boman, T. Edvinsson, Optical quantum confinement in low dimensional hematite, J. Mater. Chem. A. 2 (2014) 3352.
  • 8. K. He, Y. Zhou, P. Gao, L. Wang, N. Pereira, G.G. Amatucci, et al., Sodiation via Heterogeneous Disproportionation in FeF2 Electrodes for Sodium-­‐Ion Batteries., ACS Nano. 8 (2014) 7251–9. M.M. Doeff, J. Cabana, M. Shirpour, Titanate Anodes for Sodium Ion Batteries, J. Inorg. Organomet. Polym. Mater. 24 (2013) 5–14.
  • 10. ! Materials Project team Any materials researcher
  • 11. ① Introduction to the Materials Project ② Overview of computational infrastructure 11
  • 12. The web site is only the tip of the iceberg… pymatgen FireWorks REST API custodian MPWorks MPEnv rubicon
  • 14. We’ve developed several broadly useful software packages for the community • All codes are under 3 years old – but they are already used worldwide with healthy user communities and outside contributors/testers (physics/materials science) (general workflows / supercomputers) + custodian, pymatgen-db, MPWorks, MPEnv, materialsapi
  • 15. Hierarchical design of codebases keeps infrastructure nimble to changes WORKFLOW CODE CHEMISTRY CODE
  • 16. Many types of use cases FireWorks pymatgen custodian MPWorks Crystal workflows FireWorks pymatgen custodian rubicon (private) Molecule workflows pymatgen FireWorks external MAST, MaterialsHub external Berlin ML, JGI, MoDeNa
  • 17. These codes are open-source • Whatever we develop can be used and extended by the community – http://www.github.com/materialsproject
  • 18. The infrastructure allows us to be collaborative and scale beyond ourselves Code Paper Code Paper Code Paper Code Paper Paper Paper Paper Paper Paper Paper vs. Paper
  • 19. The rest of this workshop • Explains the software tools in more detail • Workshop enough to get you started, but will not make you an expert • The only way to learn is to try it, read the manuals, and ask questions, e.g.: – https://groups.google.com/forum/#!forum/matproj-develop – https://groups.google.com/forum/#!forum/pymatgen • And finally …
  • 20. Have faith that investing in learning is a good use of your time! (unless you plan to rePre in the next year, think of your long-­‐term goals)
  • 21. Thanks! Berkeley Lab (Univ of California) Mail - [Matgen] Pourbaix Di... https://mail.google.com/mail/u/0/?ui=2&ik=19a06e26c2&view... Kristin Persson <kapersson@lbl.gov> H H He B Be C Li N Li Be B C N O F Ne 1.381 Al 1.391 Cl Mg Na P S Si Na Mg Al Si P S Cl Ar 1.657 As Br Ca Co Cr Cu Fe Ga Ge K Mn Ni Sc Se Ti V Zn K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Ag 1.809 Cd I In Mo Nb Pd Rb Rh Ru Sb Sn Sr Tc Te Y Zr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe [Matgen] Pourbaix 1.779 Diagrams on the Materials Project 4 messages Au Bi support@materialsproject.org <support@materialsproject.org> Wed, Oct 2, 2013 at 2:41 PM Reply-To: matgen@nersc.gov To: matgen@nersc.gov Hf Hg Ir Os Pb Pt Re Ta Tl W Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn 1.864 Dy Er Eu Gd Ho Lu Tb Tm Yb Pourbaix 4 Diagrams on the Materials Project Today, app. Pourbaix 2 we are excited to announce the release of the Pourbaix diagram diagrams are solid-aqueous phase diagrams as a function of pH, standard hydrogen potential and composition that can be used to E Ef (eV) 0 -2 -4 L B1|B Z X|Q F P1 Z|L P Wave Vector 1.932 Rf Db Sg Bh Hs Mt Ce Nd Np Pr Pa Sm Pu Th U 1 of 4 10/3/13 6:48 PM Ba Cs Cs Ba La La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Fr Ra Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr 2.281 2.087 2.016 1.409 1.837 1.871 2.097 1.767 1.782 1.81 2.476 1.672 2.056 2.033 2.061 1.815 1.776 2.074 1.781 0.971 1.937 1.928 2.055 1.978 2.002 1.936 2.058 2.191 1.383 1.948 1.658 1.806 1.942 1.482 1.652 1.958 2.141 1.748 2.085 1.712 2.104 2.083 1.89 2.246 1.95 2.08 2.268 1.935 1.917 1.917 1.753 1.944 1.884 1.88 1.628 2.09 1.983 1.989 1.931 2.163 1.91 1.99 2.165 1.84 2.082 2.015 2.092 1.824 1.947 2.06 1.876 1.749 1.993 Materials Project and MAVRL teams, along with worldwide collaborators!