SlideShare a Scribd company logo
5.2 NUMBERING SYSTEMS
Many number systems are in use in digital
technology.
The most common are :
• Decimal
• Binary
• Octal
• Hexadecimal
DECIMAL SYSTEM
• Composed of 10 numerals or symbols
• Using these symbols as digits of a number, can
  express any quantity.
• Called the base-10 system because it has 10
  digits.
• 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
DECIMAL EXAMPLE
•   3.1410
•   53210
•   1082410
•   64900010
BINARY SYSTEM
• There are only two symbols or possible digit
  values, 0 and 1.
• This base-2 system can be used to represent
  any quantity that can be represented in
  decimal or other base system
BINARY EXAMPLE
•   1110
•   1011110
•   1111011100
•   10000101111011
OCTAL SYSTEM
• The octal number system has a base of eight
• Eight possible digits: 0,1,2,3,4,5,6,7
OCTAL EXAMPLE
•   Octal Example
•   5410
•   765421
•   1047664
•   4123170137
HEXADECIMAL SYSTEM
• The hexadecimal system uses base 16.
• It uses the digits 0 through 9 plus the letters A,
  B, C, D, E, and F as the 16 digit symbols.
• 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
HEXADECIMAL EXAMPLE
•   BD
•   452EA
•   E451B2CD3
•   35412BABE
NUMBERING CONVERSION

             OCTAL




DECIMAL     BINARY




          HEXADECIMAL
DECIMAL TO BINARY CONVERSION
Reverse of Binary-To-Decimal Method :
      20   21   22   23   24   25   26    27  28  29
      1    2    4    8    16   32   64   128 256 512


• 2710 = 16+8+0+2+1
       = 11011
• 18110 = 128+0+32+16+0+4+0+1
       = 10110101
DECIMAL TO BINARY CONVERSION
Repeat Division Method :
                           EG : 18110
                           181/2 = 90 balance 1
EG : 2710
                           90/2 = 45 balance 0
27/2 = 13 balance 1
                           45/2 = 22 balance 1
13/2 = 6 balance 1
                           22/2 = 11 balance 0
6/2 = 3 balance 0
                           11/2 = 5 balance 1
3/2 = 1 balance 1
                           5/2 = 2 balance 1
1/2 = 0 balance 1
                           2/2 = 1 balance 0
                           1/2 = 0 balance 1
Result : 2710= 110112
                           Result : 18110=
                           101101012
DECIMAL TO OCTAL CONVERSION
Ex : 17710             Ex : 398510
177/8 = 22 balance 1   3985/8 = 498 balance 1
22/8 = 2 balance 6     498/8 = 62 balance 2
2/8 = 0 balance 2      62/8 = 7 balance 6
Result 17710 = 2618    7/8 = 0 balance 7
                       Result 398510 = 76218
DECIMAL TO HEXADECIMAL

Ex : 37810
378/16 = 23 balance 10 = (A)
23/16 = 1 balance 7
1/16 = 0 balance 1
Result 37810 = 17A16
DECIMAL TO HEXADECIMAL
Ex : 694210
6942/16 = 433 balance 14 = (E)
433/16 = 27 balance 1
27/16 = 1 balance 11 = (B)
1/16 = 0 balance 1

Result 37810 = 1B1E16
BINARY TO DECIMAL CONVERSION
   20   21   22   23   24   25   26    27  28  29
   1    2    4    8    16   32   64   128 256 512

 110112
 = 24+23+02+21+20
 = 16+8+0+2+1
 = 2710
 101101012
 = 27+06+25+24+03+22+01+20
 = 128+0+32+16+0+4+0+1
 = 18110
BINARY TO OCTAL CONVERSION
      0    1     2     3     4     5     6     7

     000   001   010   011   100   101   110   111

• Example:
• 100 111 0102 = (100) (111) (010)2 = 4 7 28
• 1 101 0102 = (001) (101) (010)2 = 1 5 28
BINARY TO HEXADECIMAL
0   0000
1   0001
2   0010
3   0011
4   0100     EXAMPLE :
5   0101
6   0110
7   0111     101 11012 = (101) (1101)2 = 5 D16
8   1000
9   1001
A   1010     11 1001 10112 = (11) (1001) (1011)2 = 3 9 B16
B   1011
C   1100
D   1101     1011 0010 11112 = (1011) (0010) (1111)2 = B 2 F16
E   1110
F   1111
OCTAL TO DECIMAL CONVERSION
• Example :
• 2378 = 2(82)+ 3(81)+ 2(80) = 15910
• 95348 = 9(83)+ 5(82)+ 3(81)+ 4(80) = 495610
OCTAL TO BINARY CONVERSION
      0    1     2     3     4     5     6     7

     000   001   010   011   100   101   110   111


• Example:
• 4 7 28 = (100) (111) (010)2 = 100 111 0102
• 1 5 28 = (001) (101) (010)2 = 1 101 0102
HEXADECIMAL TO DECIMAL
• Example :
• 2E16 = 2(161) + 14 (160) = 4610

• 9BC316 = 9(163) + 11 (162) +12 (161) +3 (160) =
           3987510
HEXADECIMAL TO BINARY
0   0000
1   0001
2   0010
3   0011   • 5 D16 = (101) (1101)2 =101 11012
4   0100
5   0101
6   0110   • 3 9 B16 = (11) (1001) (1011)2 =11 1001 10112
7   0111
8   1000
9   1001   • B 2 F16 = (1011) (0010) (1111)2 =1011 0010 11112
A   1010
B   1011
C   1100
D   1101
E   1110
F   1111
NUMBERING CONVERSION
                       OCTAL




                      Table (div 3 )
                                       Table (div 3)
           X/2
DECIMAL               BINARY
          (+2 x )




                      Table (div 4)
                                       Table (div 4)
                    HEXADECIMAL
CONVERSION VALUE
                              Binary - Hexa
  Power 2
                                 0   0000
20      1                        1   0001     Binary - Octal
                   Power 8
21      2                        2   0010       0    000
22      4     80          1      3   0011       1    001
23      8     81          8      4   0100
                                                2    010
24     16     82         64      5   0101
                                 6   0110       3    011
25     32     83        512
                                 7   0111       4    100
26     64     84       4096
                                 8   1000       5    101
27     128    85      32768      9   1001
                                                6    110
28     256    86     262144      A   1010
                                                7    111
29     512    87    2097152      B   1011
210   1024                       C   1100
                                 D   1101
                                 E   1110
                                 F   1111

More Related Content

PPTX
EASA PART-66 MODULE 5.3 : DATA CONVERSION
PPTX
EASA PART-66 MODULE 5.4 : DATA BUSES
PPTX
EASA PART-66 MODULE 5.12 : ELECTRONICS SENSITIVE DEVICES
PPTX
EASA PART-66 MODULE 5.14 : ELECTROMAGNETIC ENVIRONMENT
PPTX
EASA PART-66 MODULE 5.11 : ELECTRONIC DISPLAYS
PPTX
EASA Part-66 Module 5.6 : Basic Computer Structure
PPTX
EASA Part 66 Module 5.13 : Software Management Control
PPTX
EASA Part 66 Module 5.5 : Logic Circuit
EASA PART-66 MODULE 5.3 : DATA CONVERSION
EASA PART-66 MODULE 5.4 : DATA BUSES
EASA PART-66 MODULE 5.12 : ELECTRONICS SENSITIVE DEVICES
EASA PART-66 MODULE 5.14 : ELECTROMAGNETIC ENVIRONMENT
EASA PART-66 MODULE 5.11 : ELECTRONIC DISPLAYS
EASA Part-66 Module 5.6 : Basic Computer Structure
EASA Part 66 Module 5.13 : Software Management Control
EASA Part 66 Module 5.5 : Logic Circuit

What's hot (20)

PPTX
5.3 Data conversion
PPTX
5.15 Typical electronic digital aircraft systems
PPTX
EASA Part 66 Module 5.10 : Fibre Optic
PPTX
EASA PART 66 MODULE 5.1 : ELECTRONIC INSTRUMENT SYSTEMS
PPTX
EASA PART-66 MODULE 5.15 : TYPICAL AIRCRAFT INSTRUMENT SYSTEMS
PPTX
EASA Part 66 Module 4 diode
PDF
NAv Topic 4 vhf communication system
PPTX
EASA Module 4 atomic structure
PPTX
B737NG Aircraft general
PDF
How to Fly a Boeing 737 - Quick & Easy Basics
PPTX
A320 auto flight
PDF
1 -efis
PDF
Nav Topic 5 selcal and data link system
PPS
Fc744 Flightcontrol
PPTX
5.6 Basic computer structure microprocessors
PPS
B747 Electrical Power
PPTX
757 EICAS
PPT
Instrument landing system
PPTX
15 Minutes 737 warning-lights-presentation
PPT
Engine starting & starters
5.3 Data conversion
5.15 Typical electronic digital aircraft systems
EASA Part 66 Module 5.10 : Fibre Optic
EASA PART 66 MODULE 5.1 : ELECTRONIC INSTRUMENT SYSTEMS
EASA PART-66 MODULE 5.15 : TYPICAL AIRCRAFT INSTRUMENT SYSTEMS
EASA Part 66 Module 4 diode
NAv Topic 4 vhf communication system
EASA Module 4 atomic structure
B737NG Aircraft general
How to Fly a Boeing 737 - Quick & Easy Basics
A320 auto flight
1 -efis
Nav Topic 5 selcal and data link system
Fc744 Flightcontrol
5.6 Basic computer structure microprocessors
B747 Electrical Power
757 EICAS
Instrument landing system
15 Minutes 737 warning-lights-presentation
Engine starting & starters
Ad

Similar to EASA Part 66 Module 5.2 : Numbering System (20)

PPTX
Number systems presentation
PDF
Binary octal
PPTX
Number systems
PPTX
Computer number systems
PDF
Number system
PDF
The 8051 microcontroller and embedded systems using assembly and c 2nd-ed
PPT
Sistem bilangan
PDF
INTRODUCTION TO NUMBER SYSTEMS 2024-25.pdf
PDF
Number systems ii
PPTX
De presantation
PDF
Number systems
PPTX
2.1 data represent on cpu
PPT
01.Number Systems
PPT
Ch3
PPTX
Number system
PPTX
NUMBER BASE SYSTEM.pptx
PPTX
Cse
PPT
Introduction to Information Technology Lecture 2
PPTX
Lecture4 binary-numbers-logic-operations
PPT
01.number systems
Number systems presentation
Binary octal
Number systems
Computer number systems
Number system
The 8051 microcontroller and embedded systems using assembly and c 2nd-ed
Sistem bilangan
INTRODUCTION TO NUMBER SYSTEMS 2024-25.pdf
Number systems ii
De presantation
Number systems
2.1 data represent on cpu
01.Number Systems
Ch3
Number system
NUMBER BASE SYSTEM.pptx
Cse
Introduction to Information Technology Lecture 2
Lecture4 binary-numbers-logic-operations
01.number systems
Ad

More from soulstalker (14)

PPTX
EASA PART 66 Module 15.10 : Lubrication Systems
PPTX
EASA Part 66 Module 15.8 : Bearings and Seals
PPTX
EASA Part 66 Module 15.7 : Exhausts
PPTX
EASA Part 66 Module 15.6 : Turbine
PPTX
EASA Part 66 Module 15.5 : Combustion Chamber
PPTX
EASA Part 66 Module 15.4 : Compressors
PPTX
EASA Part 66 Module 15.3 : Inlet
PPTX
EASA Part 66 Module 15.2 : Engine Performance
PPTX
EASA Part 66 Module 15.1 : Fundamental
PPTX
EASA PART-66 MODULE 8.4 : FLIGHT STABILITY AND DYNAMICS
PPTX
EASA PART-66 MODULE 8.3 : THEORY OF FLIGHT
PPTX
EASA PART-66 MODULE 8.2 : AERODYNAMICS
PPTX
EASA PART-66 MODULE 8.1 : PHYSICS OF ATMOSPHERE
PPTX
EASA PART 66 Module 2 : Physics
EASA PART 66 Module 15.10 : Lubrication Systems
EASA Part 66 Module 15.8 : Bearings and Seals
EASA Part 66 Module 15.7 : Exhausts
EASA Part 66 Module 15.6 : Turbine
EASA Part 66 Module 15.5 : Combustion Chamber
EASA Part 66 Module 15.4 : Compressors
EASA Part 66 Module 15.3 : Inlet
EASA Part 66 Module 15.2 : Engine Performance
EASA Part 66 Module 15.1 : Fundamental
EASA PART-66 MODULE 8.4 : FLIGHT STABILITY AND DYNAMICS
EASA PART-66 MODULE 8.3 : THEORY OF FLIGHT
EASA PART-66 MODULE 8.2 : AERODYNAMICS
EASA PART-66 MODULE 8.1 : PHYSICS OF ATMOSPHERE
EASA PART 66 Module 2 : Physics

Recently uploaded (20)

PDF
RMMM.pdf make it easy to upload and study
PDF
IGGE1 Understanding the Self1234567891011
PDF
LDMMIA Reiki Yoga Finals Review Spring Summer
PPTX
UNIT III MENTAL HEALTH NURSING ASSESSMENT
PDF
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
PDF
Supply Chain Operations Speaking Notes -ICLT Program
PDF
Hazard Identification & Risk Assessment .pdf
PDF
LNK 2025 (2).pdf MWEHEHEHEHEHEHEHEHEHEHE
PPTX
Orientation - ARALprogram of Deped to the Parents.pptx
PPTX
Chinmaya Tiranga Azadi Quiz (Class 7-8 )
PPTX
CHAPTER IV. MAN AND BIOSPHERE AND ITS TOTALITY.pptx
PPTX
Digestion and Absorption of Carbohydrates, Proteina and Fats
DOC
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
PPTX
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx
PPTX
Onco Emergencies - Spinal cord compression Superior vena cava syndrome Febr...
PDF
Indian roads congress 037 - 2012 Flexible pavement
PDF
A systematic review of self-coping strategies used by university students to ...
PDF
Paper A Mock Exam 9_ Attempt review.pdf.
PPTX
202450812 BayCHI UCSC-SV 20250812 v17.pptx
PDF
Classroom Observation Tools for Teachers
RMMM.pdf make it easy to upload and study
IGGE1 Understanding the Self1234567891011
LDMMIA Reiki Yoga Finals Review Spring Summer
UNIT III MENTAL HEALTH NURSING ASSESSMENT
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
Supply Chain Operations Speaking Notes -ICLT Program
Hazard Identification & Risk Assessment .pdf
LNK 2025 (2).pdf MWEHEHEHEHEHEHEHEHEHEHE
Orientation - ARALprogram of Deped to the Parents.pptx
Chinmaya Tiranga Azadi Quiz (Class 7-8 )
CHAPTER IV. MAN AND BIOSPHERE AND ITS TOTALITY.pptx
Digestion and Absorption of Carbohydrates, Proteina and Fats
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx
Onco Emergencies - Spinal cord compression Superior vena cava syndrome Febr...
Indian roads congress 037 - 2012 Flexible pavement
A systematic review of self-coping strategies used by university students to ...
Paper A Mock Exam 9_ Attempt review.pdf.
202450812 BayCHI UCSC-SV 20250812 v17.pptx
Classroom Observation Tools for Teachers

EASA Part 66 Module 5.2 : Numbering System

  • 2. Many number systems are in use in digital technology. The most common are : • Decimal • Binary • Octal • Hexadecimal
  • 3. DECIMAL SYSTEM • Composed of 10 numerals or symbols • Using these symbols as digits of a number, can express any quantity. • Called the base-10 system because it has 10 digits. • 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
  • 4. DECIMAL EXAMPLE • 3.1410 • 53210 • 1082410 • 64900010
  • 5. BINARY SYSTEM • There are only two symbols or possible digit values, 0 and 1. • This base-2 system can be used to represent any quantity that can be represented in decimal or other base system
  • 6. BINARY EXAMPLE • 1110 • 1011110 • 1111011100 • 10000101111011
  • 7. OCTAL SYSTEM • The octal number system has a base of eight • Eight possible digits: 0,1,2,3,4,5,6,7
  • 8. OCTAL EXAMPLE • Octal Example • 5410 • 765421 • 1047664 • 4123170137
  • 9. HEXADECIMAL SYSTEM • The hexadecimal system uses base 16. • It uses the digits 0 through 9 plus the letters A, B, C, D, E, and F as the 16 digit symbols. • 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
  • 10. HEXADECIMAL EXAMPLE • BD • 452EA • E451B2CD3 • 35412BABE
  • 11. NUMBERING CONVERSION OCTAL DECIMAL BINARY HEXADECIMAL
  • 12. DECIMAL TO BINARY CONVERSION Reverse of Binary-To-Decimal Method : 20 21 22 23 24 25 26 27 28 29 1 2 4 8 16 32 64 128 256 512 • 2710 = 16+8+0+2+1 = 11011 • 18110 = 128+0+32+16+0+4+0+1 = 10110101
  • 13. DECIMAL TO BINARY CONVERSION Repeat Division Method : EG : 18110 181/2 = 90 balance 1 EG : 2710 90/2 = 45 balance 0 27/2 = 13 balance 1 45/2 = 22 balance 1 13/2 = 6 balance 1 22/2 = 11 balance 0 6/2 = 3 balance 0 11/2 = 5 balance 1 3/2 = 1 balance 1 5/2 = 2 balance 1 1/2 = 0 balance 1 2/2 = 1 balance 0 1/2 = 0 balance 1 Result : 2710= 110112 Result : 18110= 101101012
  • 14. DECIMAL TO OCTAL CONVERSION Ex : 17710 Ex : 398510 177/8 = 22 balance 1 3985/8 = 498 balance 1 22/8 = 2 balance 6 498/8 = 62 balance 2 2/8 = 0 balance 2 62/8 = 7 balance 6 Result 17710 = 2618 7/8 = 0 balance 7 Result 398510 = 76218
  • 15. DECIMAL TO HEXADECIMAL Ex : 37810 378/16 = 23 balance 10 = (A) 23/16 = 1 balance 7 1/16 = 0 balance 1 Result 37810 = 17A16
  • 16. DECIMAL TO HEXADECIMAL Ex : 694210 6942/16 = 433 balance 14 = (E) 433/16 = 27 balance 1 27/16 = 1 balance 11 = (B) 1/16 = 0 balance 1 Result 37810 = 1B1E16
  • 17. BINARY TO DECIMAL CONVERSION 20 21 22 23 24 25 26 27 28 29 1 2 4 8 16 32 64 128 256 512 110112 = 24+23+02+21+20 = 16+8+0+2+1 = 2710 101101012 = 27+06+25+24+03+22+01+20 = 128+0+32+16+0+4+0+1 = 18110
  • 18. BINARY TO OCTAL CONVERSION 0 1 2 3 4 5 6 7 000 001 010 011 100 101 110 111 • Example: • 100 111 0102 = (100) (111) (010)2 = 4 7 28 • 1 101 0102 = (001) (101) (010)2 = 1 5 28
  • 19. BINARY TO HEXADECIMAL 0 0000 1 0001 2 0010 3 0011 4 0100 EXAMPLE : 5 0101 6 0110 7 0111 101 11012 = (101) (1101)2 = 5 D16 8 1000 9 1001 A 1010 11 1001 10112 = (11) (1001) (1011)2 = 3 9 B16 B 1011 C 1100 D 1101 1011 0010 11112 = (1011) (0010) (1111)2 = B 2 F16 E 1110 F 1111
  • 20. OCTAL TO DECIMAL CONVERSION • Example : • 2378 = 2(82)+ 3(81)+ 2(80) = 15910 • 95348 = 9(83)+ 5(82)+ 3(81)+ 4(80) = 495610
  • 21. OCTAL TO BINARY CONVERSION 0 1 2 3 4 5 6 7 000 001 010 011 100 101 110 111 • Example: • 4 7 28 = (100) (111) (010)2 = 100 111 0102 • 1 5 28 = (001) (101) (010)2 = 1 101 0102
  • 22. HEXADECIMAL TO DECIMAL • Example : • 2E16 = 2(161) + 14 (160) = 4610 • 9BC316 = 9(163) + 11 (162) +12 (161) +3 (160) = 3987510
  • 23. HEXADECIMAL TO BINARY 0 0000 1 0001 2 0010 3 0011 • 5 D16 = (101) (1101)2 =101 11012 4 0100 5 0101 6 0110 • 3 9 B16 = (11) (1001) (1011)2 =11 1001 10112 7 0111 8 1000 9 1001 • B 2 F16 = (1011) (0010) (1111)2 =1011 0010 11112 A 1010 B 1011 C 1100 D 1101 E 1110 F 1111
  • 24. NUMBERING CONVERSION OCTAL Table (div 3 ) Table (div 3) X/2 DECIMAL BINARY (+2 x ) Table (div 4) Table (div 4) HEXADECIMAL
  • 25. CONVERSION VALUE Binary - Hexa Power 2 0 0000 20 1 1 0001 Binary - Octal Power 8 21 2 2 0010 0 000 22 4 80 1 3 0011 1 001 23 8 81 8 4 0100 2 010 24 16 82 64 5 0101 6 0110 3 011 25 32 83 512 7 0111 4 100 26 64 84 4096 8 1000 5 101 27 128 85 32768 9 1001 6 110 28 256 86 262144 A 1010 7 111 29 512 87 2097152 B 1011 210 1024 C 1100 D 1101 E 1110 F 1111