SlideShare a Scribd company logo
Number Systems

         Eng. Mustafa H. Salah
       Mechatronics Engineering
   University for Electronic Technology
Common Number Systems
                               Used by   Used in
  System    Base Symbols
                               humans?   computers?
  Decimal    10   0, 1, … 9      Yes         No
  Binary     2    0, 1           No          Yes
  Octal      8    0, 1, … 7      No          No
  Hexa-      16   0, 1, … 9,     No          No
  decimal         A, B, … F
Quantities/Counting (1 of 3)
                                 Hexa-
       Decimal   Binary   Octal decimal

         0            0    0       0
         1            1    1       1
         2           10    2       2
         3           11    3       3
         4          100    4       4
         5          101    5       5
         6          110    6       6
         7          111    7       7
Quantities/Counting (2 of 3)
                                 Hexa-
       Decimal   Binary   Octal decimal

         8         1000    10      8
         9         1001    11      9
         10        1010    12     A
         11        1011    13     B
         12        1100    14     C
         13        1101    15     D
         14        1110    16     E
         15        1111    17     F
Quantities/Counting (3 of 3)
                                 Hexa-
       Decimal   Binary   Octal decimal

         16      10000     20     10
         17      10001     21     11
         18      10010     22     12
         19      10011     23     13
         20      10100     24     14
         21      10101     25     15
         22      10110     26     16
         23      10111     27     17
Conversion Among Bases
• The possibilities:


           Decimal        Octal




            Binary     Hexadecimal
Quick Example



  2510 = 110012 = 318 = 1916

       Base
Decimal to Decimal (just for fun)


      Decimal             Octal




      Binary           Hexadecimal
Weight


12510 =>   5 x 100      =   5
           2 x 101      = 20
           1 x 102      = 100
                          125


           Base
Binary to Decimal

     Decimal           Octal




      Binary        Hexadecimal
Binary to Decimal
• Technique
  • Multiply each bit by 2n, where n is the “weight” of the bit
  • The weight is the position of the bit, starting from 0 on the right
  • Add the results
Example
      Bit “0”


    1010112 =>   1   x   20   =    1
                 1   x   21   =    2
                 0   x   22   =    0
                 1   x   23   =    8
                 0   x   24   =    0
                 1   x   25   =   32
                                  4310
Octal to Decimal

     Decimal          Octal




      Binary       Hexadecimal
Octal to Decimal
• Technique
  • Multiply each bit by 8n, where n is the “weight” of the bit
  • The weight is the position of the bit, starting from 0 on the right
  • Add the results
Example


    7248 =>   4 x 80 =     4
              2 x 81 =    16
              7 x 82 =   448
                         46810
Hexadecimal to Decimal

     Decimal           Octal




     Binary         Hexadecimal
Hexadecimal to Decimal
• Technique
  • Multiply each bit by 16n, where n is the “weight” of the bit
  • The weight is the position of the bit, starting from 0 on the right
  • Add the results
Example


  ABC16 =>   C x 160 = 12 x   1 =   12
             B x 161 = 11 x 16 = 176
             A x 162 = 10 x 256 = 2560
                                  274810
Decimal to Binary

     Decimal           Octal




      Binary        Hexadecimal
Decimal to Binary
• Technique
  •   Divide by two, keep track of the remainder
  •   First remainder is bit 0 (LSB, least-significant bit)
  •   Second remainder is bit 1
  •   Etc.
Example
12510 = ?2   2 125
             2 62    1
             2 31    0
             2 15    1
             2   7   1
             2   3   1
             2   1   1
                 0   1


                         12510 = 11111012
Octal to Binary

     Decimal         Octal




      Binary      Hexadecimal
Octal to Binary
• Technique
  • Convert each octal digit to a 3-bit equivalent binary
    representation
Example
7058 = ?2



            7   0   5


            111 000 101



                 7058 = 1110001012
Hexadecimal to Binary

     Decimal            Octal




     Binary         Hexadecimal
Hexadecimal to Binary
• Technique
  • Convert each hexadecimal digit to a 4-bit equivalent binary
    representation
Example
10AF16 = ?2



              1      0    A    F


              0001 0000 1010 1111




                  10AF16 = 00010000101011112
Decimal to Octal

     Decimal          Octal




      Binary       Hexadecimal
Decimal to Octal
• Technique
  • Divide by 8
  • Keep track of the remainder
Example
123410 = ?8


              8   1234
              8    154   2
              8     19   2
              8      2   3
                     0   2


                         123410 = 23228
Decimal to Hexadecimal

     Decimal           Octal




     Binary         Hexadecimal
Decimal to Hexadecimal
• Technique
  • Divide by 16
  • Keep track of the remainder
Example
123410 = ?16


               16   1234
               16     77   2
               16      4   13 = D
                       0   4




                            123410 = 4D216
Binary to Octal

     Decimal         Octal




      Binary      Hexadecimal
Binary to Octal
• Technique
  • Group bits in threes, starting on right
  • Convert to octal digits
Example
 10110101112 = ?8



               1 011 010 111


               1    3    2   7




                        10110101112 = 13278
Binary to Hexadecimal

     Decimal            Octal




     Binary         Hexadecimal
Binary to Hexadecimal
• Technique
  • Group bits in fours, starting on right
  • Convert to hexadecimal digits
Example
 10101110112 = ?16



               10 1011 1011


               2     B    B




                     10101110112 = 2BB16
Octal to Hexadecimal

     Decimal              Octal




      Binary           Hexadecimal
Octal to Hexadecimal
• Technique
  • Use binary as an intermediary
Example
   10768 = ?16

             1        0         7         6


            001      000       111     110

                 2         3          E




                                    10768 = 23E16
Hexadecimal to Octal

     Decimal              Octal




      Binary           Hexadecimal
Hexadecimal to Octal
• Technique
  • Use binary as an intermediary
Example
   1F0C16 = ?8

                 1       F          0        C


            0001     1111         0000      1100

                 1   7       4          1     4




                                 1F0C16 = 174148
Exercise – Convert ...
                                   Hexa-
 Decimal   Binary         Octal   decimal
   33
           1110101
                          703
                                   1AF

                 Answer
Exercise – Convert…
                                Hexa-
 Decimal    Binary     Octal   decimal
   33       100001      41       21
  117      1110101     165       75
  451      111000011   703      1C3
  431      110101111   657      1AF
Common Powers (1 of 2)
• Base 10

       Power   Preface   Symbol       Value
       10-12    pico       p      .000000000001

        10-9    nano       n       .000000001

        10-6   micro                .000001

        10-3    milli      m          .001

        103     kilo       k          1000

        106     mega       M        1000000

        109     giga       G       1000000000
        1012    tera       T      1000000000000
Common Powers (2 of 2)
• Base 2

           Power   Preface   Symbol     Value
            210     kilo       k         1024

            220     mega       M       1048576

            230     Giga       G      1073741824



• What is the value of “k”, “M”, and “G”?
Example
          In the lab…
          1. Double click on My Computer
          2. Right click on C:
          3. Click on Properties




                      / 230 =
Review – multiplying powers
• For common bases, add powers



                      ab  ac = ab+c


                26  210 = 216 = 65,536
                           or…
               26  210 = 64  210 = 64k
Binary Addition (1 of 2)
• Two 1-bit values


                     A   B   A+B
                     0   0     0
                     0   1     1
                     1   0     1
                     1   1    10
                                   “two”
Binary Addition (2 of 2)
• Two n-bit values
  • Add individual bits
  • Propagate carries
  • E.g.,


                      1   1
                       10101     21
                     + 11001   + 25
                      101110     46
Multiplication (1 of 3)
• Decimal (just for fun)


                              35
                           x 105
                             175
                            000
                            35
                            3675
Multiplication (2 of 3)
• Binary, two 1-bit values


                   A         B   A B
                   0         0    0
                   0         1    0
                   1         0    0
                   1         1    1
Multiplication (3 of 3)
• Binary, two n-bit values
  • As with decimal values
  • E.g.,

                            1110
                          x 1011
                            1110
                           1110
                          0000
                         1110
                        10011010
Fractions
• Decimal to decimal (just for fun)



            3.14 =>        4 x 10-2 = 0.04
                           1 x 10-1 = 0.1
                           3 x 100 = 3
                                       3.14
Fractions
• Binary to decimal

       10.1011 =>     1   x   2-4   =   0.0625
                      1   x   2-3   =   0.125
                      0   x   2-2   =   0.0
                      1   x   2-1   =   0.5
                      0   x   20    =   0.0
                      1   x   21    =   2.0
                                        2.6875
Fractions
• Decimal to binary
                       .14579
                      x     2
    3.14579           0.29158
                      x     2
                      0.58316
                      x     2
                      1.16632
                      x     2
                      0.33264
                      x     2
                      0.66528
                      x     2
                      1.33056
   11.001001...       etc.
Exercise – Convert ...
                                   Hexa-
Decimal     Binary        Octal   decimal
 29.8
           101.1101
                          3.07
                                   C.82


                 Answer
Exercise – Convert …
                                       Hexa-
 Decimal         Binary     Octal     decimal
  29.8       11101.110011… 35.63…     1D.CC…
  5.8125       101.1101       5.64     5.D
 3.109375      11.000111      3.07     3.1C
12.5078125   1100.10000010   14.404    C.82
Thank you

More Related Content

PPTX
Decimal number system
PPT
Number system
PDF
Data representation
PPTX
Number+system (1)
PPTX
Ascii and Unicode (Character Codes)
PPTX
Binary, Decimal and Hexadecimal
PPT
Number System
PDF
Data representation in computers
Decimal number system
Number system
Data representation
Number+system (1)
Ascii and Unicode (Character Codes)
Binary, Decimal and Hexadecimal
Number System
Data representation in computers

What's hot (20)

PPTX
Number System (Binary,octal,Decimal,Hexadecimal)
PPT
Number system
PPTX
Multiplication algorithm, hardware and flowchart
PPTX
Computer number systems
PPTX
Binary Multiplication & Division.pptx
PPT
Conversion of number system
PPTX
Number system conversion
PPTX
Binary Arithmetic
PPTX
Combinational circuit
PDF
Binary Arithmetic Operations
PDF
Chapter-04.pdf
PPT
Binary system ppt
PPTX
Number system....
PPT
01.number systems
PPTX
How computers represent data
PPTX
06 floating point
PPTX
11 octal number system
PPTX
PPTX
Modified booths algorithm part 1
PPTX
Number system
Number System (Binary,octal,Decimal,Hexadecimal)
Number system
Multiplication algorithm, hardware and flowchart
Computer number systems
Binary Multiplication & Division.pptx
Conversion of number system
Number system conversion
Binary Arithmetic
Combinational circuit
Binary Arithmetic Operations
Chapter-04.pdf
Binary system ppt
Number system....
01.number systems
How computers represent data
06 floating point
11 octal number system
Modified booths algorithm part 1
Number system
Ad

Similar to Number systems (20)

PPTX
Number systems presentation
PPT
Number Systems
PPT
Number Systems
PDF
Number systems ii
PPT
01.number systems
PPT
01.Number Systems
PPTX
Number system de (2131004) - 160920107003
PPT
Number systems r002
PPTX
Week9.pptx
PPT
Number Systems for class 11 computer science
PPT
Number systems
PPTX
Number system by ammar nawab
PPTX
ITC lecture 3.pptx
PPTX
number system 1.pptx
PPTX
EASA Part 66 Module 5.2 : Numbering System
PPT
Computer Number System
PPT
digital logic circuits, digital component floting and fixed point
PPT
Mca i-u-1.1 digital logic circuits, digital component floting and fixed point
PPT
Bca 2nd sem u-1.1 digital logic circuits, digital component floting and fixed...
PPTX
chapter 3 number systems register transfer
Number systems presentation
Number Systems
Number Systems
Number systems ii
01.number systems
01.Number Systems
Number system de (2131004) - 160920107003
Number systems r002
Week9.pptx
Number Systems for class 11 computer science
Number systems
Number system by ammar nawab
ITC lecture 3.pptx
number system 1.pptx
EASA Part 66 Module 5.2 : Numbering System
Computer Number System
digital logic circuits, digital component floting and fixed point
Mca i-u-1.1 digital logic circuits, digital component floting and fixed point
Bca 2nd sem u-1.1 digital logic circuits, digital component floting and fixed...
chapter 3 number systems register transfer
Ad

Recently uploaded (20)

PPTX
Benefits of Physical activity for teenagers.pptx
PDF
Five Habits of High-Impact Board Members
PDF
DP Operators-handbook-extract for the Mautical Institute
PPT
Module 1.ppt Iot fundamentals and Architecture
PDF
NewMind AI Weekly Chronicles – August ’25 Week III
PDF
ENT215_Completing-a-large-scale-migration-and-modernization-with-AWS.pdf
PDF
Getting started with AI Agents and Multi-Agent Systems
PPTX
The various Industrial Revolutions .pptx
PPT
What is a Computer? Input Devices /output devices
PDF
A Late Bloomer's Guide to GenAI: Ethics, Bias, and Effective Prompting - Boha...
PDF
Microsoft Solutions Partner Drive Digital Transformation with D365.pdf
PDF
Getting Started with Data Integration: FME Form 101
PDF
Hybrid model detection and classification of lung cancer
PDF
August Patch Tuesday
PDF
How ambidextrous entrepreneurial leaders react to the artificial intelligence...
PPT
Geologic Time for studying geology for geologist
PDF
A contest of sentiment analysis: k-nearest neighbor versus neural network
PDF
1 - Historical Antecedents, Social Consideration.pdf
PPTX
O2C Customer Invoices to Receipt V15A.pptx
PDF
Zenith AI: Advanced Artificial Intelligence
Benefits of Physical activity for teenagers.pptx
Five Habits of High-Impact Board Members
DP Operators-handbook-extract for the Mautical Institute
Module 1.ppt Iot fundamentals and Architecture
NewMind AI Weekly Chronicles – August ’25 Week III
ENT215_Completing-a-large-scale-migration-and-modernization-with-AWS.pdf
Getting started with AI Agents and Multi-Agent Systems
The various Industrial Revolutions .pptx
What is a Computer? Input Devices /output devices
A Late Bloomer's Guide to GenAI: Ethics, Bias, and Effective Prompting - Boha...
Microsoft Solutions Partner Drive Digital Transformation with D365.pdf
Getting Started with Data Integration: FME Form 101
Hybrid model detection and classification of lung cancer
August Patch Tuesday
How ambidextrous entrepreneurial leaders react to the artificial intelligence...
Geologic Time for studying geology for geologist
A contest of sentiment analysis: k-nearest neighbor versus neural network
1 - Historical Antecedents, Social Consideration.pdf
O2C Customer Invoices to Receipt V15A.pptx
Zenith AI: Advanced Artificial Intelligence

Number systems

  • 1. Number Systems Eng. Mustafa H. Salah Mechatronics Engineering University for Electronic Technology
  • 2. Common Number Systems Used by Used in System Base Symbols humans? computers? Decimal 10 0, 1, … 9 Yes No Binary 2 0, 1 No Yes Octal 8 0, 1, … 7 No No Hexa- 16 0, 1, … 9, No No decimal A, B, … F
  • 3. Quantities/Counting (1 of 3) Hexa- Decimal Binary Octal decimal 0 0 0 0 1 1 1 1 2 10 2 2 3 11 3 3 4 100 4 4 5 101 5 5 6 110 6 6 7 111 7 7
  • 4. Quantities/Counting (2 of 3) Hexa- Decimal Binary Octal decimal 8 1000 10 8 9 1001 11 9 10 1010 12 A 11 1011 13 B 12 1100 14 C 13 1101 15 D 14 1110 16 E 15 1111 17 F
  • 5. Quantities/Counting (3 of 3) Hexa- Decimal Binary Octal decimal 16 10000 20 10 17 10001 21 11 18 10010 22 12 19 10011 23 13 20 10100 24 14 21 10101 25 15 22 10110 26 16 23 10111 27 17
  • 6. Conversion Among Bases • The possibilities: Decimal Octal Binary Hexadecimal
  • 7. Quick Example 2510 = 110012 = 318 = 1916 Base
  • 8. Decimal to Decimal (just for fun) Decimal Octal Binary Hexadecimal
  • 9. Weight 12510 => 5 x 100 = 5 2 x 101 = 20 1 x 102 = 100 125 Base
  • 10. Binary to Decimal Decimal Octal Binary Hexadecimal
  • 11. Binary to Decimal • Technique • Multiply each bit by 2n, where n is the “weight” of the bit • The weight is the position of the bit, starting from 0 on the right • Add the results
  • 12. Example Bit “0” 1010112 => 1 x 20 = 1 1 x 21 = 2 0 x 22 = 0 1 x 23 = 8 0 x 24 = 0 1 x 25 = 32 4310
  • 13. Octal to Decimal Decimal Octal Binary Hexadecimal
  • 14. Octal to Decimal • Technique • Multiply each bit by 8n, where n is the “weight” of the bit • The weight is the position of the bit, starting from 0 on the right • Add the results
  • 15. Example 7248 => 4 x 80 = 4 2 x 81 = 16 7 x 82 = 448 46810
  • 16. Hexadecimal to Decimal Decimal Octal Binary Hexadecimal
  • 17. Hexadecimal to Decimal • Technique • Multiply each bit by 16n, where n is the “weight” of the bit • The weight is the position of the bit, starting from 0 on the right • Add the results
  • 18. Example ABC16 => C x 160 = 12 x 1 = 12 B x 161 = 11 x 16 = 176 A x 162 = 10 x 256 = 2560 274810
  • 19. Decimal to Binary Decimal Octal Binary Hexadecimal
  • 20. Decimal to Binary • Technique • Divide by two, keep track of the remainder • First remainder is bit 0 (LSB, least-significant bit) • Second remainder is bit 1 • Etc.
  • 21. Example 12510 = ?2 2 125 2 62 1 2 31 0 2 15 1 2 7 1 2 3 1 2 1 1 0 1 12510 = 11111012
  • 22. Octal to Binary Decimal Octal Binary Hexadecimal
  • 23. Octal to Binary • Technique • Convert each octal digit to a 3-bit equivalent binary representation
  • 24. Example 7058 = ?2 7 0 5 111 000 101 7058 = 1110001012
  • 25. Hexadecimal to Binary Decimal Octal Binary Hexadecimal
  • 26. Hexadecimal to Binary • Technique • Convert each hexadecimal digit to a 4-bit equivalent binary representation
  • 27. Example 10AF16 = ?2 1 0 A F 0001 0000 1010 1111 10AF16 = 00010000101011112
  • 28. Decimal to Octal Decimal Octal Binary Hexadecimal
  • 29. Decimal to Octal • Technique • Divide by 8 • Keep track of the remainder
  • 30. Example 123410 = ?8 8 1234 8 154 2 8 19 2 8 2 3 0 2 123410 = 23228
  • 31. Decimal to Hexadecimal Decimal Octal Binary Hexadecimal
  • 32. Decimal to Hexadecimal • Technique • Divide by 16 • Keep track of the remainder
  • 33. Example 123410 = ?16 16 1234 16 77 2 16 4 13 = D 0 4 123410 = 4D216
  • 34. Binary to Octal Decimal Octal Binary Hexadecimal
  • 35. Binary to Octal • Technique • Group bits in threes, starting on right • Convert to octal digits
  • 36. Example 10110101112 = ?8 1 011 010 111 1 3 2 7 10110101112 = 13278
  • 37. Binary to Hexadecimal Decimal Octal Binary Hexadecimal
  • 38. Binary to Hexadecimal • Technique • Group bits in fours, starting on right • Convert to hexadecimal digits
  • 39. Example 10101110112 = ?16 10 1011 1011 2 B B 10101110112 = 2BB16
  • 40. Octal to Hexadecimal Decimal Octal Binary Hexadecimal
  • 41. Octal to Hexadecimal • Technique • Use binary as an intermediary
  • 42. Example 10768 = ?16 1 0 7 6 001 000 111 110 2 3 E 10768 = 23E16
  • 43. Hexadecimal to Octal Decimal Octal Binary Hexadecimal
  • 44. Hexadecimal to Octal • Technique • Use binary as an intermediary
  • 45. Example 1F0C16 = ?8 1 F 0 C 0001 1111 0000 1100 1 7 4 1 4 1F0C16 = 174148
  • 46. Exercise – Convert ... Hexa- Decimal Binary Octal decimal 33 1110101 703 1AF Answer
  • 47. Exercise – Convert… Hexa- Decimal Binary Octal decimal 33 100001 41 21 117 1110101 165 75 451 111000011 703 1C3 431 110101111 657 1AF
  • 48. Common Powers (1 of 2) • Base 10 Power Preface Symbol Value 10-12 pico p .000000000001 10-9 nano n .000000001 10-6 micro  .000001 10-3 milli m .001 103 kilo k 1000 106 mega M 1000000 109 giga G 1000000000 1012 tera T 1000000000000
  • 49. Common Powers (2 of 2) • Base 2 Power Preface Symbol Value 210 kilo k 1024 220 mega M 1048576 230 Giga G 1073741824 • What is the value of “k”, “M”, and “G”?
  • 50. Example In the lab… 1. Double click on My Computer 2. Right click on C: 3. Click on Properties / 230 =
  • 51. Review – multiplying powers • For common bases, add powers ab  ac = ab+c 26  210 = 216 = 65,536 or… 26  210 = 64  210 = 64k
  • 52. Binary Addition (1 of 2) • Two 1-bit values A B A+B 0 0 0 0 1 1 1 0 1 1 1 10 “two”
  • 53. Binary Addition (2 of 2) • Two n-bit values • Add individual bits • Propagate carries • E.g., 1 1 10101 21 + 11001 + 25 101110 46
  • 54. Multiplication (1 of 3) • Decimal (just for fun) 35 x 105 175 000 35 3675
  • 55. Multiplication (2 of 3) • Binary, two 1-bit values A B A B 0 0 0 0 1 0 1 0 0 1 1 1
  • 56. Multiplication (3 of 3) • Binary, two n-bit values • As with decimal values • E.g., 1110 x 1011 1110 1110 0000 1110 10011010
  • 57. Fractions • Decimal to decimal (just for fun) 3.14 => 4 x 10-2 = 0.04 1 x 10-1 = 0.1 3 x 100 = 3 3.14
  • 58. Fractions • Binary to decimal 10.1011 => 1 x 2-4 = 0.0625 1 x 2-3 = 0.125 0 x 2-2 = 0.0 1 x 2-1 = 0.5 0 x 20 = 0.0 1 x 21 = 2.0 2.6875
  • 59. Fractions • Decimal to binary .14579 x 2 3.14579 0.29158 x 2 0.58316 x 2 1.16632 x 2 0.33264 x 2 0.66528 x 2 1.33056 11.001001... etc.
  • 60. Exercise – Convert ... Hexa- Decimal Binary Octal decimal 29.8 101.1101 3.07 C.82 Answer
  • 61. Exercise – Convert … Hexa- Decimal Binary Octal decimal 29.8 11101.110011… 35.63… 1D.CC… 5.8125 101.1101 5.64 5.D 3.109375 11.000111 3.07 3.1C 12.5078125 1100.10000010 14.404 C.82