SlideShare a Scribd company logo
§1.1 Introduction




     .                “          ”                                                  15
                                                                                .
 1993
                                     .


         crude functional approximation.


                                                                          .


 (MCMC)                                                       MCMC        .

            §1.2 Bayesian Inference in Hidden Markov Models

§1.2.1    Hidden Markov Models and Inference Aims

                  X                         {Xn }n≥1

          X1 ∼ µ(x1 )      and   Xn |(Xn−1 = xn−1 ) ∼ f (xn |xn−1 )             (1.2.1)

    ∼                     µ(x)                         f (x|x )       x             x
              .                                  Y       {Yn }n≥1             {Xn }n≥1 .
                      {Xn }n≥1             {Yn }n≥1


                             Yn |(Xn = xn ) ∼ g(yn |xn )                        (1.2.2)



                                         · 1 ·
2


            n     .                                                                      .
                            .
                  (1.2.1)          (1.2.2)                                                       (HMM)
                                    .                                                .
        .
            1.2.1.                          HMM             X = {1, . . . , K}

                      Pr(X1 = k) = µ(k), Pr(Xn = k|Xn−1 = l) = f (k|l)

                                     (1.2.2)                   .

            1.2.2.                           X = Rnx Y = Rny X1 ∼ N (0, Σ)

                                           Xn = AXn−1 + BVn ,
                                           Yn = CXn + DWn

            Vn ∼ N (0, Inv ) Wn ∼ N (0, Inw ) A B C D
    .                           µ(x) = N (x; 0, Σ) f (x |x = N (x ; Ax, BB T ))                         g(y|x =
                      T
N (y ; Cx, DD )).                                                                                .
                                             .

                (1.2.1)          (1.2.2)                                                      (1.2.1)
    {Xn }n≥1              prior distribution                 (1.2.2)             likelihood function.
                                                               n
                                        p(x1:n ) = µ(x1 )          f (xk |xk−1 )                         (1.2.3)
                                                             k=2


                                                               n
                                          p(y1:n |x1:n ) =          g(yk |xk )                           (1.2.4)
                                                              k=1

                                                                                         Y1:n = y1:n       X1:n
                      posterior distribution
                                                        unnormalised posterior distribution
                           posterior distribution
                                                                   p(x1:n , y1:n )
                                p(x1:n |y1:n )      =                                                    (1.2.5)
                                                                     p(y1:n )
                                                               marginal likelihoods




                                    p(x1:n , y1:n ) = p(x1:n )p(y1:n |x1:n )                             (1.2.6)

                                           p(y1:n ) =        p(x1:n , y1:n )dx1:n                        (1.2.7)
§1.2 Bayesian Inference in Hidden Markov Models                                    3


                         (1.2.5)                                              (1.2.6)
   (          (1.2.3)          (1.2.4)).                      (1.2.7)                                  .
                     1.2.1                                                                   (1.2.7)
                                                                 (1.2.5)
         .                  1.2.2                                                                   p(x1:n |y1:n )
                                                                                         .
                                                                                                                 .


p(x1:n |y1:n )                                           p(y1:n ).
                 .



  • Filtering and Marginal likelihood computation
                       posterior distribution {p(x1:n |y1:n )}n≥1                      marginal likelihoods
       {p(y1:n )}n≥1 .                                                         p(x1 |y1 )       p(y1 )
                              p(x1:2 |y1:2 )     p(y1:2 )                 .
                        .                                                        marginal distributions
       {p(xn |y1:n )}n≥1                               {p(x1:n |y1:n )}n≥1 .

  • Smoothing:                                          p(x1:T |y1:T )
             {p(xn |y1:T )}              n = 1, . . . , T .


§1.2.2         Filtering and Marginal Likelihood




                 .
                                                                 .
       {Y1:n = y1:n }                     X1:n                       Xn            .
       posterior distribution p(x1:n |y1:n )                         (1.2.5)             prior distribution
p(x1:n )               (1.2.3)             likelihood function                 (1.2.4)          .          (1.2.5)
                      unnormalised posterior distribution p(x1:n , y1:n )

               p(x1:n , y1:n ) = p(x1:n−1 , y1:n−1 )p(xn , yn |x1:n−1 , y1:n−1 )
                                    = p(x1:n−1 , y1:n−1 )p(xn |xn−1 )p(yn |xn )                            (1.2.8)
                                    = p(x1:n−1 , y1:n−1 )f (xn |xn−1 )g(yn |xn )
4


       posterior p(x1:n |y1:n )
                                   p(x1:n , y1:n )
                  p(x1:n |y1:n ) =
                                       p1:n
                                   p(x1:n−1 , y1:n−1 )f (xn |xn−1 )g(yn |xn )
                                 =                                                              (1.2.9)
                                             p(y1:n−1 )p(yn |yn−1 )
                                                      f (xn |xn−1 )g(yn |xn )
                                 = p(x1:n−1 |y1:n−1 )
                                                          p(yn |y1:n−1 )



       p(yn |y1:n−1 ) =     p(yn , xn−1:n |y1:n−1 )dxn−1:n

                        =   p(xn−1 |y1:n−1 )p(yn , xn |xn−1 , y1:n−1 )dxn−1:n                  (1.2.10)

                        =   p(xn−1 |y1:n−1 )f (xn |xn−1 )g(yn |xn )dxn−1:n

                                                  (1.2.10)                      .
                                                          .
              (1.2.9)             x1:n−1                          marginal distribution p(xn |y1:n )
                                              g(yn |xn )p(xn |y1:n−1 )
                            p(xn |y1:n ) =                                                     (1.2.11)
                                                  p(yn |y1:n−1 )


              p(xn |y1:n−1 ) =       f (xn |xn−1 )p(xn−1 |y1:n−1 )dxn−1                        (1.2.12)

       (1.2.12)                            (1.2.11)                      .
                  (1.2.9)                                         (1.2.11)     (1.2.12).
                              {p(x1:n |y1:n )}                                      {p(xn |y1:n )}
    marginal likelihood p(y1:n )
                                                      n
                              p(y1:n ) = p(y1 )               p(yk |y1:k−1 )                   (1.2.13)
                                                     k=2

       p(yk |y1:k−1 )             (1.2.10)                .

§1.2.3      Summary

                                                                                                      .
                            1.2.1      1.2.2                                               .
                                       .
       N                                              .
                                                 (                N →∞         ).
§1.3 Sequential Monte Carlo Methods                                         5




                             §1.3 Sequential Monte Carlo Methods

                15                                                                                SMC
                      .                                                                  SMC
  .                          SMC                                      . SMC
                                                   {πn (x1:n )}                 .                 πn (x1:n )
                         n
                     X          .
                                                             γn (x1:n )
                                             πn (x1:n ) =                                                 (1.3.1)
                                                                Zn
                     γn : X n → R+

                                            Zn =        γn (x1:n )dx1:n                                   (1.3.2)

                  . SMC                           1       π1 (x1 )                          Z1
            2                π2 (x1:2 )                      Z2                                   .
                                    γn (x1:n ) = p(x1:n , y1:n ) Zn = p(y1:n )                        πn (x1:n ) =
p(x1:n |y1:n ).

§1.3.1      Basics of Monte Carlo Methods

                                              n                                     πn (x1:n ).
                                       i
   N                                  X1:n   ∼ πn (x1:n )                                               πn (x1:n )
                                                            N
                                                        1
                                       πn (x1:n ) =
                                       ˆ                          δX1:n (x1:n )
                                                                    i
                                                        N   i=1

       δx0 (x)                 x0           Dirac delta mass.
                                                         +∞, x = x0
                                          δx0 (x) =
                                                         0,  x = x0

                                                  +∞
                                                       δx0 (x)dx = 1.
                                               −∞

                                                                     πn (xk )
                                                             N
                                                        1
                                           πn (xk ) =
                                           ˆ                      δXk (xk )
                                                                    i
                                                        N   i=1

            ϕn : X n → R

                                    In (ϕn ) =        ϕn (x1:n )πn (x1:n )dx1:n
6




                                                                                N
                        MC                                                1                i
                       In (ϕn )   =      ϕn (x1:n )πn (x1:n )dx1:n      =             ϕn (X1:n )
                                                                          N     i=1

                        MC
                       In (ϕn )


                      MC                 1
                   V In (ϕn ) =                    ϕ2 (x1:n )πn (x1:n )dx1:n − In (ϕn ) .
                                                    n
                                                                                2
                                         N

                                                                           N
                                                                                                    .
                                                                                                n
                                                                                            X
                 O(1/N )                  .

    •             1:        πn (x1:n )
             .

    •             2:                                  πn (x1:n )                                         n
                        .                πn (x1:n )                                        n              .


§1.3.2            Importance Sampling

        IS                                    1
    qn (x1:n )
                                      πn (x1:n ) > 0 ⇒ qn (x1:n ) > 0

                                   (1.3.1)        (1.3.2)          IS

                                                  wn (x1:n )qn (x1:n )
                                  πn (x1:n ) =                                                      (1.3.3)
                                                         Zn
                                         Zn =         wn (x1:n )qn (x1:n )dx1:n                     (1.3.4)

        wn (x1:n )

                                                             γn (x1:n )
                                              wn (x1:n ) =
                                                             qn (x1:n )

                                                                   qn (x1:n )                             .
                                                   i
                            N                     X1:n   ∼ qn (x1:n )                  qn (x1:n )
§1.3 Sequential Monte Carlo Methods                                       7


                  (1.3.3)       (1.3.4)
                                                 n
                                                       i
                              πn (x1:n ) =            Wn δX1:n (x1:n )
                                                           i                                   (1.3.5)
                                             i=1
                                                      N
                                         1                          i
                                    Zn =                       wn (X1:n )                      (1.3.6)
                                         N           i=1


                                                        i
                                  i               wn (X1:n )
                                 Wn =            n          j                                  (1.3.7)
                                                 j=1 wn (X1:n )

                      In (ϕn )
                                                                        N
               IS                                                             i      i
              In (ϕn ) =      ϕn (x1:n )πn (x1:n )dx1:n =                    Wn ϕn (X1:n )
                                                                       i=1



§1.3.3   Sequential Importance Sampling

                     2                                                            n
          .

                       qn (x1:n ) = qn−1 (x1:n−1 )qn (xn |x1:n−1 )
                                                     n
                                   = q1 (x1 )              qk (xk |x1:k−1 )                    (1.3.8)
                                                     k=2

                                                                        i
                                             n                         X1:n ∼ qn (x1:n )
           i                                                                      i            i
1         X1 ∼ q1 (x1 )                   k = 2, . . . , n                       Xk ∼ qk (xk |X1:k−1 ).


                              γn (x1:n )
               wn (x1:n ) =
                              qn (x1:n )
                              γn−1 (x1:n−1 )           γn (x1:n )
                            =                                                                  (1.3.9)
                              qn−1 (x1:n−1 ) γn−1 (x1:n−1 )qn (xn |x1:n−1 )



                         wn (x1:n ) = wn−1 (x1:n−1 ) · αn (x1:n )
                                                           n
                                     = w1 (x1 )                 αk (x1:k )                    (1.3.10)
                                                         k=2

    incremental importance weight                              αn (x1:n )
                                               γn (x1:n )
                      αn (x1:n ) =                                  .                         (1.3.11)
                                     γn−1 (x1:n−1 )qn (xn |x1:n−1 )
8


SIS                   :
    Algorithm 1: Sequential Importance Sampling
     1          n=1
     2   for i = 1 to N do
                    i
     3            X1 ∼ q1 (x1 )
                            i        i       i
     4                 w1 (X1 )    W1 ∝ w1 (X1 )
     5   end
     6   for n = 2 to T do
     7      for i = 1 to N do
                        i           i
     8                Xn ∼ qn (xn |X1:n−1 )
     9

                                                    i              i              i
                                               wn (X1:n ) = wn−1 (X1:n−1 ) · αn (X1:n ),
                                                          i        i
                                                         Wn ∝ wn (X1:n ).

    10     end
    11   end
                              n                           πn (x1:n )         Zn             πn (x1:n ) (1.3.5)     Zn
(1.3.6).                                                    Zn /Zn−1
                                                            N
                                                Zn                   i       i
                                                    =               Wn−1 αn X1:n .
                                               Zn−1         i=1

    SIS                                  n                                        qn (xn |x1:n−1 ).
                 wn (x1:n )                          .

                                              opt
                                             qn (xn |x1:n−1 ) = πn (xn |x1:n−1 )

             x1:n−1                            wn (x1:n )                                      incremental weight

                                     opt                 γn (x1:n−1 )    γn (x1:n )dxn
                                    αn (x1:n ) =                      =                .
                                                         γn−1 (xn−1 )   γn−1 (x1:n−1 )
                                                                                               opt
                                      πn (xn |x1:n−1 )                                        αn (x1:n ).
                    opt
                   qn (xn |x1:n−1 )                             .
                                    qn                                                                qn (xn |x1:n−1 )
                      αn (x1:n )                                     n                                2.         SIS
                          .                                 IS                                             n
             .                SIS               IS
(1.3.8)                                  SIS                             .
         .
§1.3 Sequential Monte Carlo Methods                                                       9


            1.3.1.                            X =R
                                                    n                      n
                               πn (x1:n ) =              πn (xk ) =                 N (xk ; 0, 1),                (1.3.12)
                                                 k=1                       k=1
                                                  n
                                                                      x2
                                                                       k
                                γn (x1:n ) =             exp −                  ,
                                                 k=1
                                                                      2
                                         Zn = (2π)n/2 .


                                                    n                      n
                               qn (x1:n ) =             qk (xk ) =              N (xk ; 0, σ 2 ).
                                                k=1                     k=1

             1
   σ2 >      2
                       VIS Zn < ∞                         relative variance

                                 VIS Zn           1                    σ4
                                                                                     n/2
                                                =                                          −1 .
                                        2
                                       Zn         N                 2σ 2 − 1
                                                1                                σ4
                                   σ            2
                                                    < σ2 = 1                   2σ 2 −1
                                                                                           >1         relative variance
        n               .                                     σ = 1.2
                                                VIS [Zn ]                                                        VIS [Zn ]
        qk (xk ) ≈ πn (xk )                 N        2
                                                    Zn
                                                              ≈ (1.103)n/2 .                 n = 1000        N      2
                                                                                                                   Zn
                                                                                                                             ≈
             21                                                            23
1.9 × 10                                                N ≈ 2 × 10                                    relative variance
VIS [Zn ]
  Z2
          = 0.01                                          .
    n



§1.3.4        Resampling

                                       IS       SIS                                                   n
                 SMC                                                                            .
                                                         .                                      πn (x1:n )            IS
   πn (x1:n )                                                 qn (x1:n )
                            πn (x1:n )              .                                  πn (x1:n )
                                                                                            i          i
                 IS          πn (x1:n )                                                    Wn         X1:n
        resampling                                                                                               πn (x1:n )
                  .                         πn (x1:n )                 N
                                                                                       i              i
   πn (x1:n )                  N                                                      X1:n           Nn
                       1:N   1            N                                                          1:N
                      Nn = (Nn , . . . , Nn )                                                   (N, Wn )
                                            1/N .                     resampled empirical measure
πn (x1:n )
                                                              N      i
                                                                    Nn
                                         π n (x1:n ) =                 δX i (x1:n )                               (1.3.13)
                                                              i=1
                                                                    N 1:n
10

              i   1:N      i
          E [Nn |Wn ] = N Wn .                         π n (x1:n )         πn (x1:n )                           .



                                                                          1
     • Systematic Resampling                                    U1 ∼ U 0, N                              i = 2, . . . , N
                                      i−1                   i                     i−1    k                  i        k
                 Ui = U1 +             N
                                                           Nn   =        Uj :     k=1   Wn    ≤ Uj ≤        k=1     Wn
                                0
                                k=1   = 0.


                                                        i       i                                                       1:N
     • Residual Resampling                             Nn = N W n                                               N, W n
                        1:N                     i                                                           i
                       Nn                   W n ∝ Wn − N −1 Nn
                                                   i         i                           i    i
                                                                                        Nn = Nn + N n .


                                                                                          1:N                        1:N
     • Multinomial Resampling                                                        (N, Wn )                       Nn .


         O(N )                                                                                   .          systematic
resampling
                                                                     .
                                                            πn (x1:n )
                                        In (ϕn )                 πn (x1:n )
π n (x1:n )                                            .
     .


                                                                                             .
                        n                                                n+1
                                            .
                            .                                                                                           .
§1.3.5           A Generic Sequential Monte Carlo Algorithm

          SMC                                       SIS                               .              1
                                                                                  i    i
π1 (x1 )          IS             π1 (x1 )                                       {W1 , X1 }.
                                                                                                                .
  1     i                                                                                                            i
{ N , X 1}                                                                 .                                        X1
   i                                    i                                                                 j1            j2
N1                                     N1                         j1 = j2 = · · · = jN1
                                                                                      i                  X1     = X1 =
                jN i                                                                                                i
                          i                                                                    i
· · · = X1        1
                       = X1 .                                            SIS                  X2 ∼ q2 (x2 |X 1 ).
            i    i
         (X 1 , X2 )                                π1 (x1 )q2 (x2 |x1 ).
incremental weights α2 (x1:2 ).
§1.3 Sequential Monte Carlo Methods                                                  11


.                      :
Algorithm 2: Sequential Monte Carlo
 1          n=1
 2   for i = 1 to N do
                i
 3           X1 ∼ q1 (x1 )
                       i              i        i
 4                w1 (X1 )           W1 ∝ w1 (X1 )
                     i    i                                                         1       i
 5                 {W1 , X1 }                 N                                   { N , X 1}
 6   end
 7   for n = 2 to T do
 8      for i = 1 to N do
                     i                    i                              i              i i
 9                  Xn ∼ qn (xn |X 1:n−1 )                              X1:n ← X 1:n−1 , Xn
                                i                      i        i
10                         αn (X1:n )                 Wn ∝ αn (X1:n )
                        i    i                                                           1      i
11                    {Wn , X1:n }                    N                                { N , X 1:n }
12     end
13   end
               n                πn (x1:n )                              .                       :
                                                          N
                                                                i
                                πn (x1:n ) =                   Wn δX1:n (x1:n )
                                                                    i                                       (1.3.14)
                                                      i=1



                                                              N
                                                      1            i
                             π n (x1:n ) =                        Wn δX i (x1:n )                           (1.3.15)
                                                      N   i=1
                                                                            1:n



     (1.3.14)              (1.3.15)               .                         Zn /Zn−1
                                                              N
                                     Zn    1                            i
                                         =                          αn X1:n
                                    Zn−1   N                  i=1



                                      .
                                                                    .
                                                                                                    .
     Effective Sample Size (ESS)
           .            n       ESS
                                                          N                  −1
                                                                     i
                                    ESS =                           Wn            .
                                                          i=1

                                N                                                                       (
     )                                        ESS                                           . ESS           1    N
12


                                                NT                                  .           NT = N/2.
                                                                                i       1                 i
                                                                      .        Wn   =   N
                                                                                                        {Wn }
         .                                                    .
     Algorithm 3: Sequential Monte Carlo with Adaptive Resampling
     1          n=1
     2   for i = 1 to N do
                    i
     3           X1 ∼ q1 (x1 )
                             i     i        i
     4                w1 (X1 )    W1 ∝ w1 (X1 )
     5      if           then
                           i   i                                                          1      i
     6                 {W1 , X1 }      N                                                { N , X 1}
                         i       i    1           i
     7               {W 1 , X 1 } ← { N , X 1 }
     8       else
                         i       i    i    i
     9               {W 1 , X 1 } ← {W1 , X1 }
 10         end
 11      end
 12      for n = 2 to T do
 13         for i = 1 to N do
                       i           i                                       i                ii
 14                 Xn ∼ qn (xn |X 1:n−1 )                                X1:n ← (X 1:n−1 , Xn
                                    i                  i              i   i
 15                          αn (X1:n )               Wn ∝ W n−1 αn (X1:n )
 16             if             then
                                  i    i                                                          1     i
 17                           {Wn , X1:n }                        N                             { N , X 1:n }
                             i       i   1                i
 18                     {W n , X n } ← { N , X n }
 19             else
                             i       i   i    i
 20                     {W 1 , X 1 } ← {Wn , Xn }
 21          end
 22        end
 23      end
              πn (x1:n )                    .

                                                          N
                                                                   i
                                     πn (x1:n ) =                 Wn δX1:n (x1:n ),
                                                                       i                                        (1.3.16)
                                                      i=1
                                                          N
                                                                      i
                                     π n (x1:n ) =                W n δX i (x1:n )                              (1.3.17)
                                                                              1:n
                                                      i=1


                 n                                                                  .                  Zn /Zn−1

                                                      N
                                          Zn                      i i
                                              =           W n−1 αn X1:n
                                         Zn−1     i=1
§1.4 Particle Filter                                                              13

                                         1
                   1.3.1          σ2 >   2
                                                          asymptotic variance

                              VSMC Zn             n                σ4
                                                                                 1/2
                                             =                                         −1
                                   2
                                  Zn              N             2σ 2 − 1



                              VIS Zn             1           σ4
                                                                              n/2
                                             =                                       −1 .
                                   2
                                  Zn             N        2σ 2 − 1

               SMC                                    n                             IS                           n
                              2
   .                        σ = 1.2                                                                 qk (xk ) ≈ πn (xk ).
                           n = 1000              IS                              N ≈ 2 × 1023
VIS [Zn ]                                                           VSMC [Zn ]
  Zn 2      = 10−2 .                                                    2
                                                                       Zn
                                                                                 = 10−2 SMC
N ≈ 104                            19                 .
§1.3.6        Summary

                                  SMC                                               {πn (x1:n )}             {Zn }.

   •                                                                n                  qn (xn |x1:n−1 )
                 αn (x1:n )                                                   n                          .


   •                k              n > k                                                                      πn (x1:k )
       SMC                                                      .                n
            {πn (x1:n )}                     SMC                .                           ,                         πn (x1 )
                                                                          .


                                        §1.4 Particle Filter

                   SMC                                SIS
                                                                                                .
                                                  {p(x1:n |y1:n )}n≥1                                .


ESS                                                         .
§1.4.1        SMC for Filtering

               SMC                                                                       {p(x1:n |y1:n )}n≥1
14




                              πn (x1:n ) = p(x1:n |y1:n )
                               γ( x1:n ) = p(x1:n , y1:n )
                                    Zn = p(y1:n )                                     (1.4.1)
                            nonumber                                                  (1.4.2)


                                   qn (x1:n )                     qn (xn |x1:n−1 ).
           IS                                       qn (x1:n )                        SIS
                                   qn (xn |x1:n−1 )                         .
     n


                     opt
                    qn (xn |x1:n−1 ) = πn (xn |x1:n−1Z )
                                       = p(xn |yn , xn−1 )
                                         g(yn |xn )f (xn |xn−1 )
                                       =                                              (1.4.3)
                                              p(yn |xn−1 )


     incremental importance weight


                             αn (x1:n ) = p(yn |xn−1 )


                     opt
                    qn (xn |x1:n−1 )




                        qn (xn |x1:n−1 ) = q(xn |yn , xn−1 )                          (1.4.4)



         (1.3.9) (1.3.11)    (1.4.4)                  incremental weight


                                                g(yn |xn )f (xn |xn−1 )
                αn (x1:n ) = αn (xn−1:n ) =                             .
                                                   q(xn |yn , xn−1 )
§1.4 Particle Filter                                        15


Algorithm 4: SMC for Filtering
 1          n=1
 2   for i = 1 to N do
                i
 3           X1 ∼ q1 (x1 |y1 )
                       i         µ(xi )g(y1 |X1 )
                                              i
                                                      i        i
 4                w1 (X1 ) =        1
                                        i
                                   q(Xi |y1 )
                                                     W1 ∝ w1 (X1 )
                  i    i                                          1    i
 5              {W1 , X1 }            N                         { N , X 1}
 6   end
 7   for n = 2 to T do
 8      for i = 1 to N do
                   i                i                      i           i     i
 9              Xn ∼ qn (xn |yn , X n−1 )                 X1:n ← (X 1:n−1 , Xn )
                                                  i      i   i
                           i               g(yn |Xn )f (Xn |Xn−1 )          i        i
10                    αn (Xn−1:n ) =              i       i
                                              q(Xn |yn ,Xn−1 )
                                                                           Wn ∝ αn (Xn−1:n )
                      i    i                                           1      i
11                  {Wn , X1:n }             N                       { N , X 1:n }
12     end
13   end




[1] A.D. and A. Johansen, Particle filtering and smoothing: Fifteen years later, in Hand-
    book of Nonlinear Filtering (eds. D. Crisan et B. Rozovsky), Oxford University Press,
    2009. See http://www.cs.ubc.ca/~arnaud

More Related Content

PDF
The multilayer perceptron
PDF
SSA slides
PDF
ANISOTROPIC SURFACES DETECTION USING INTENSITY MAPS ACQUIRED BY AN AIRBORNE L...
PDF
Welcome to International Journal of Engineering Research and Development (IJERD)
PDF
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
PDF
Presentation cm2011
PDF
2018 MUMS Fall Course - Mathematical surrogate and reduced-order models - Ral...
PPT
The multilayer perceptron
SSA slides
ANISOTROPIC SURFACES DETECTION USING INTENSITY MAPS ACQUIRED BY AN AIRBORNE L...
Welcome to International Journal of Engineering Research and Development (IJERD)
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Presentation cm2011
2018 MUMS Fall Course - Mathematical surrogate and reduced-order models - Ral...

What's hot (19)

PDF
Mapping Ash Tree Colonization in an Agricultural Moutain Landscape_ Investiga...
PDF
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
PDF
4831603 physics-formula-list-form-4
PDF
Physics formula list
PPSX
short course on Subsurface stochastic modelling and geostatistics
PPT
Digital fiiter
PDF
Extending Preconditioned GMRES to Nonlinear Optimization
PDF
Lesson 13: Related Rates Problems
PDF
2007 u2 lisachem
PDF
The partial derivative of the binary Cross-entropy loss function
PPTX
State description of digital processors,sampled continous systems,system with...
PDF
17.04.2012 m.petrov
PPT
Randomness conductors
PDF
Chester Nov08 Terry Lynch
PDF
Signal Processing Course : Sparse Regularization of Inverse Problems
PDF
Catalogue of Models for Electricity Prices Part 2
PDF
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
PDF
626 pages
PDF
Different Quantum Spectra For The Same Classical System
Mapping Ash Tree Colonization in an Agricultural Moutain Landscape_ Investiga...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
4831603 physics-formula-list-form-4
Physics formula list
short course on Subsurface stochastic modelling and geostatistics
Digital fiiter
Extending Preconditioned GMRES to Nonlinear Optimization
Lesson 13: Related Rates Problems
2007 u2 lisachem
The partial derivative of the binary Cross-entropy loss function
State description of digital processors,sampled continous systems,system with...
17.04.2012 m.petrov
Randomness conductors
Chester Nov08 Terry Lynch
Signal Processing Course : Sparse Regularization of Inverse Problems
Catalogue of Models for Electricity Prices Part 2
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
626 pages
Different Quantum Spectra For The Same Classical System
Ad

Viewers also liked (7)

PPT
Actio
PPT
стартовая презентация учителя
PPT
Presentation (2003)
PDF
16739828 cia-de-destrezas-english-content-standards-and-grade-level-expectations
PDF
Presentation
PDF
Lightning Talk #9: How UX and Data Storytelling Can Shape Policy by Mika Aldaba
PDF
Succession “Losers”: What Happens to Executives Passed Over for the CEO Job?
Actio
стартовая презентация учителя
Presentation (2003)
16739828 cia-de-destrezas-english-content-standards-and-grade-level-expectations
Presentation
Lightning Talk #9: How UX and Data Storytelling Can Shape Policy by Mika Aldaba
Succession “Losers”: What Happens to Executives Passed Over for the CEO Job?
Ad

Similar to Particle filter (20)

PDF
02 2d systems matrix
PDF
Bp31457463
PPTX
study Accelerating Spatially Varying Gaussian Filters
PPTX
Mathematical physics group 16
PDF
Varian, microeconomic analysis, solution book
DOCX
ฟังก์ชัน(function)
PPT
Chapter 9 computation of the dft
DOCX
ฟังก์ชัน(function)
KEY
0708 ch 7 day 8
PDF
Doubly Accelerated Stochastic Variance Reduced Gradient Methods for Regulariz...
DOC
Question bank unit ii engineering mathematics ii
PDF
Admissions in India 2015
PDF
Section5 stochastic
PPTX
Artificial neural network
PDF
Research Inventy : International Journal of Engineering and Science
PDF
iTute Notes MM
PPTX
PDF
Least squares support Vector Machine Classifier
PPT
8-5 Adding and Subtracting Rational Expressions
PDF
02 2d systems matrix
Bp31457463
study Accelerating Spatially Varying Gaussian Filters
Mathematical physics group 16
Varian, microeconomic analysis, solution book
ฟังก์ชัน(function)
Chapter 9 computation of the dft
ฟังก์ชัน(function)
0708 ch 7 day 8
Doubly Accelerated Stochastic Variance Reduced Gradient Methods for Regulariz...
Question bank unit ii engineering mathematics ii
Admissions in India 2015
Section5 stochastic
Artificial neural network
Research Inventy : International Journal of Engineering and Science
iTute Notes MM
Least squares support Vector Machine Classifier
8-5 Adding and Subtracting Rational Expressions

Recently uploaded (20)

PPTX
Big Data Technologies - Introduction.pptx
PPTX
SOPHOS-XG Firewall Administrator PPT.pptx
PPTX
Programs and apps: productivity, graphics, security and other tools
PDF
Mobile App Security Testing_ A Comprehensive Guide.pdf
PDF
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
PDF
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
PDF
Empathic Computing: Creating Shared Understanding
PDF
Advanced methodologies resolving dimensionality complications for autism neur...
PDF
A comparative analysis of optical character recognition models for extracting...
PDF
Spectral efficient network and resource selection model in 5G networks
PDF
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
PDF
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
PDF
Accuracy of neural networks in brain wave diagnosis of schizophrenia
PDF
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
PPTX
Machine Learning_overview_presentation.pptx
PDF
Getting Started with Data Integration: FME Form 101
PDF
Per capita expenditure prediction using model stacking based on satellite ima...
PDF
Encapsulation theory and applications.pdf
PDF
Machine learning based COVID-19 study performance prediction
PPTX
MYSQL Presentation for SQL database connectivity
Big Data Technologies - Introduction.pptx
SOPHOS-XG Firewall Administrator PPT.pptx
Programs and apps: productivity, graphics, security and other tools
Mobile App Security Testing_ A Comprehensive Guide.pdf
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
Empathic Computing: Creating Shared Understanding
Advanced methodologies resolving dimensionality complications for autism neur...
A comparative analysis of optical character recognition models for extracting...
Spectral efficient network and resource selection model in 5G networks
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
Accuracy of neural networks in brain wave diagnosis of schizophrenia
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
Machine Learning_overview_presentation.pptx
Getting Started with Data Integration: FME Form 101
Per capita expenditure prediction using model stacking based on satellite ima...
Encapsulation theory and applications.pdf
Machine learning based COVID-19 study performance prediction
MYSQL Presentation for SQL database connectivity

Particle filter

  • 1. §1.1 Introduction . “ ” 15 . 1993 . crude functional approximation. . (MCMC) MCMC . §1.2 Bayesian Inference in Hidden Markov Models §1.2.1 Hidden Markov Models and Inference Aims X {Xn }n≥1 X1 ∼ µ(x1 ) and Xn |(Xn−1 = xn−1 ) ∼ f (xn |xn−1 ) (1.2.1) ∼ µ(x) f (x|x ) x x . Y {Yn }n≥1 {Xn }n≥1 . {Xn }n≥1 {Yn }n≥1 Yn |(Xn = xn ) ∼ g(yn |xn ) (1.2.2) · 1 ·
  • 2. 2 n . . . (1.2.1) (1.2.2) (HMM) . . . 1.2.1. HMM X = {1, . . . , K} Pr(X1 = k) = µ(k), Pr(Xn = k|Xn−1 = l) = f (k|l) (1.2.2) . 1.2.2. X = Rnx Y = Rny X1 ∼ N (0, Σ) Xn = AXn−1 + BVn , Yn = CXn + DWn Vn ∼ N (0, Inv ) Wn ∼ N (0, Inw ) A B C D . µ(x) = N (x; 0, Σ) f (x |x = N (x ; Ax, BB T )) g(y|x = T N (y ; Cx, DD )). . . (1.2.1) (1.2.2) (1.2.1) {Xn }n≥1 prior distribution (1.2.2) likelihood function. n p(x1:n ) = µ(x1 ) f (xk |xk−1 ) (1.2.3) k=2 n p(y1:n |x1:n ) = g(yk |xk ) (1.2.4) k=1 Y1:n = y1:n X1:n posterior distribution unnormalised posterior distribution posterior distribution p(x1:n , y1:n ) p(x1:n |y1:n ) = (1.2.5) p(y1:n ) marginal likelihoods p(x1:n , y1:n ) = p(x1:n )p(y1:n |x1:n ) (1.2.6) p(y1:n ) = p(x1:n , y1:n )dx1:n (1.2.7)
  • 3. §1.2 Bayesian Inference in Hidden Markov Models 3 (1.2.5) (1.2.6) ( (1.2.3) (1.2.4)). (1.2.7) . 1.2.1 (1.2.7) (1.2.5) . 1.2.2 p(x1:n |y1:n ) . . p(x1:n |y1:n ) p(y1:n ). . • Filtering and Marginal likelihood computation posterior distribution {p(x1:n |y1:n )}n≥1 marginal likelihoods {p(y1:n )}n≥1 . p(x1 |y1 ) p(y1 ) p(x1:2 |y1:2 ) p(y1:2 ) . . marginal distributions {p(xn |y1:n )}n≥1 {p(x1:n |y1:n )}n≥1 . • Smoothing: p(x1:T |y1:T ) {p(xn |y1:T )} n = 1, . . . , T . §1.2.2 Filtering and Marginal Likelihood . . {Y1:n = y1:n } X1:n Xn . posterior distribution p(x1:n |y1:n ) (1.2.5) prior distribution p(x1:n ) (1.2.3) likelihood function (1.2.4) . (1.2.5) unnormalised posterior distribution p(x1:n , y1:n ) p(x1:n , y1:n ) = p(x1:n−1 , y1:n−1 )p(xn , yn |x1:n−1 , y1:n−1 ) = p(x1:n−1 , y1:n−1 )p(xn |xn−1 )p(yn |xn ) (1.2.8) = p(x1:n−1 , y1:n−1 )f (xn |xn−1 )g(yn |xn )
  • 4. 4 posterior p(x1:n |y1:n ) p(x1:n , y1:n ) p(x1:n |y1:n ) = p1:n p(x1:n−1 , y1:n−1 )f (xn |xn−1 )g(yn |xn ) = (1.2.9) p(y1:n−1 )p(yn |yn−1 ) f (xn |xn−1 )g(yn |xn ) = p(x1:n−1 |y1:n−1 ) p(yn |y1:n−1 ) p(yn |y1:n−1 ) = p(yn , xn−1:n |y1:n−1 )dxn−1:n = p(xn−1 |y1:n−1 )p(yn , xn |xn−1 , y1:n−1 )dxn−1:n (1.2.10) = p(xn−1 |y1:n−1 )f (xn |xn−1 )g(yn |xn )dxn−1:n (1.2.10) . . (1.2.9) x1:n−1 marginal distribution p(xn |y1:n ) g(yn |xn )p(xn |y1:n−1 ) p(xn |y1:n ) = (1.2.11) p(yn |y1:n−1 ) p(xn |y1:n−1 ) = f (xn |xn−1 )p(xn−1 |y1:n−1 )dxn−1 (1.2.12) (1.2.12) (1.2.11) . (1.2.9) (1.2.11) (1.2.12). {p(x1:n |y1:n )} {p(xn |y1:n )} marginal likelihood p(y1:n ) n p(y1:n ) = p(y1 ) p(yk |y1:k−1 ) (1.2.13) k=2 p(yk |y1:k−1 ) (1.2.10) . §1.2.3 Summary . 1.2.1 1.2.2 . . N . ( N →∞ ).
  • 5. §1.3 Sequential Monte Carlo Methods 5 §1.3 Sequential Monte Carlo Methods 15 SMC . SMC . SMC . SMC {πn (x1:n )} . πn (x1:n ) n X . γn (x1:n ) πn (x1:n ) = (1.3.1) Zn γn : X n → R+ Zn = γn (x1:n )dx1:n (1.3.2) . SMC 1 π1 (x1 ) Z1 2 π2 (x1:2 ) Z2 . γn (x1:n ) = p(x1:n , y1:n ) Zn = p(y1:n ) πn (x1:n ) = p(x1:n |y1:n ). §1.3.1 Basics of Monte Carlo Methods n πn (x1:n ). i N X1:n ∼ πn (x1:n ) πn (x1:n ) N 1 πn (x1:n ) = ˆ δX1:n (x1:n ) i N i=1 δx0 (x) x0 Dirac delta mass. +∞, x = x0 δx0 (x) = 0, x = x0 +∞ δx0 (x)dx = 1. −∞ πn (xk ) N 1 πn (xk ) = ˆ δXk (xk ) i N i=1 ϕn : X n → R In (ϕn ) = ϕn (x1:n )πn (x1:n )dx1:n
  • 6. 6 N MC 1 i In (ϕn ) = ϕn (x1:n )πn (x1:n )dx1:n = ϕn (X1:n ) N i=1 MC In (ϕn ) MC 1 V In (ϕn ) = ϕ2 (x1:n )πn (x1:n )dx1:n − In (ϕn ) . n 2 N N . n X O(1/N ) . • 1: πn (x1:n ) . • 2: πn (x1:n ) n . πn (x1:n ) n . §1.3.2 Importance Sampling IS 1 qn (x1:n ) πn (x1:n ) > 0 ⇒ qn (x1:n ) > 0 (1.3.1) (1.3.2) IS wn (x1:n )qn (x1:n ) πn (x1:n ) = (1.3.3) Zn Zn = wn (x1:n )qn (x1:n )dx1:n (1.3.4) wn (x1:n ) γn (x1:n ) wn (x1:n ) = qn (x1:n ) qn (x1:n ) . i N X1:n ∼ qn (x1:n ) qn (x1:n )
  • 7. §1.3 Sequential Monte Carlo Methods 7 (1.3.3) (1.3.4) n i πn (x1:n ) = Wn δX1:n (x1:n ) i (1.3.5) i=1 N 1 i Zn = wn (X1:n ) (1.3.6) N i=1 i i wn (X1:n ) Wn = n j (1.3.7) j=1 wn (X1:n ) In (ϕn ) N IS i i In (ϕn ) = ϕn (x1:n )πn (x1:n )dx1:n = Wn ϕn (X1:n ) i=1 §1.3.3 Sequential Importance Sampling 2 n . qn (x1:n ) = qn−1 (x1:n−1 )qn (xn |x1:n−1 ) n = q1 (x1 ) qk (xk |x1:k−1 ) (1.3.8) k=2 i n X1:n ∼ qn (x1:n ) i i i 1 X1 ∼ q1 (x1 ) k = 2, . . . , n Xk ∼ qk (xk |X1:k−1 ). γn (x1:n ) wn (x1:n ) = qn (x1:n ) γn−1 (x1:n−1 ) γn (x1:n ) = (1.3.9) qn−1 (x1:n−1 ) γn−1 (x1:n−1 )qn (xn |x1:n−1 ) wn (x1:n ) = wn−1 (x1:n−1 ) · αn (x1:n ) n = w1 (x1 ) αk (x1:k ) (1.3.10) k=2 incremental importance weight αn (x1:n ) γn (x1:n ) αn (x1:n ) = . (1.3.11) γn−1 (x1:n−1 )qn (xn |x1:n−1 )
  • 8. 8 SIS : Algorithm 1: Sequential Importance Sampling 1 n=1 2 for i = 1 to N do i 3 X1 ∼ q1 (x1 ) i i i 4 w1 (X1 ) W1 ∝ w1 (X1 ) 5 end 6 for n = 2 to T do 7 for i = 1 to N do i i 8 Xn ∼ qn (xn |X1:n−1 ) 9 i i i wn (X1:n ) = wn−1 (X1:n−1 ) · αn (X1:n ), i i Wn ∝ wn (X1:n ). 10 end 11 end n πn (x1:n ) Zn πn (x1:n ) (1.3.5) Zn (1.3.6). Zn /Zn−1 N Zn i i = Wn−1 αn X1:n . Zn−1 i=1 SIS n qn (xn |x1:n−1 ). wn (x1:n ) . opt qn (xn |x1:n−1 ) = πn (xn |x1:n−1 ) x1:n−1 wn (x1:n ) incremental weight opt γn (x1:n−1 ) γn (x1:n )dxn αn (x1:n ) = = . γn−1 (xn−1 ) γn−1 (x1:n−1 ) opt πn (xn |x1:n−1 ) αn (x1:n ). opt qn (xn |x1:n−1 ) . qn qn (xn |x1:n−1 ) αn (x1:n ) n 2. SIS . IS n . SIS IS (1.3.8) SIS . .
  • 9. §1.3 Sequential Monte Carlo Methods 9 1.3.1. X =R n n πn (x1:n ) = πn (xk ) = N (xk ; 0, 1), (1.3.12) k=1 k=1 n x2 k γn (x1:n ) = exp − , k=1 2 Zn = (2π)n/2 . n n qn (x1:n ) = qk (xk ) = N (xk ; 0, σ 2 ). k=1 k=1 1 σ2 > 2 VIS Zn < ∞ relative variance VIS Zn 1 σ4 n/2 = −1 . 2 Zn N 2σ 2 − 1 1 σ4 σ 2 < σ2 = 1 2σ 2 −1 >1 relative variance n . σ = 1.2 VIS [Zn ] VIS [Zn ] qk (xk ) ≈ πn (xk ) N 2 Zn ≈ (1.103)n/2 . n = 1000 N 2 Zn ≈ 21 23 1.9 × 10 N ≈ 2 × 10 relative variance VIS [Zn ] Z2 = 0.01 . n §1.3.4 Resampling IS SIS n SMC . . πn (x1:n ) IS πn (x1:n ) qn (x1:n ) πn (x1:n ) . πn (x1:n ) i i IS πn (x1:n ) Wn X1:n resampling πn (x1:n ) . πn (x1:n ) N i i πn (x1:n ) N X1:n Nn 1:N 1 N 1:N Nn = (Nn , . . . , Nn ) (N, Wn ) 1/N . resampled empirical measure πn (x1:n ) N i Nn π n (x1:n ) = δX i (x1:n ) (1.3.13) i=1 N 1:n
  • 10. 10 i 1:N i E [Nn |Wn ] = N Wn . π n (x1:n ) πn (x1:n ) . 1 • Systematic Resampling U1 ∼ U 0, N i = 2, . . . , N i−1 i i−1 k i k Ui = U1 + N Nn = Uj : k=1 Wn ≤ Uj ≤ k=1 Wn 0 k=1 = 0. i i 1:N • Residual Resampling Nn = N W n N, W n 1:N i i Nn W n ∝ Wn − N −1 Nn i i i i Nn = Nn + N n . 1:N 1:N • Multinomial Resampling (N, Wn ) Nn . O(N ) . systematic resampling . πn (x1:n ) In (ϕn ) πn (x1:n ) π n (x1:n ) . . . n n+1 . . . §1.3.5 A Generic Sequential Monte Carlo Algorithm SMC SIS . 1 i i π1 (x1 ) IS π1 (x1 ) {W1 , X1 }. . 1 i i { N , X 1} . X1 i i j1 j2 N1 N1 j1 = j2 = · · · = jN1 i X1 = X1 = jN i i i i · · · = X1 1 = X1 . SIS X2 ∼ q2 (x2 |X 1 ). i i (X 1 , X2 ) π1 (x1 )q2 (x2 |x1 ). incremental weights α2 (x1:2 ).
  • 11. §1.3 Sequential Monte Carlo Methods 11 . : Algorithm 2: Sequential Monte Carlo 1 n=1 2 for i = 1 to N do i 3 X1 ∼ q1 (x1 ) i i i 4 w1 (X1 ) W1 ∝ w1 (X1 ) i i 1 i 5 {W1 , X1 } N { N , X 1} 6 end 7 for n = 2 to T do 8 for i = 1 to N do i i i i i 9 Xn ∼ qn (xn |X 1:n−1 ) X1:n ← X 1:n−1 , Xn i i i 10 αn (X1:n ) Wn ∝ αn (X1:n ) i i 1 i 11 {Wn , X1:n } N { N , X 1:n } 12 end 13 end n πn (x1:n ) . : N i πn (x1:n ) = Wn δX1:n (x1:n ) i (1.3.14) i=1 N 1 i π n (x1:n ) = Wn δX i (x1:n ) (1.3.15) N i=1 1:n (1.3.14) (1.3.15) . Zn /Zn−1 N Zn 1 i = αn X1:n Zn−1 N i=1 . . . Effective Sample Size (ESS) . n ESS N −1 i ESS = Wn . i=1 N ( ) ESS . ESS 1 N
  • 12. 12 NT . NT = N/2. i 1 i . Wn = N {Wn } . . Algorithm 3: Sequential Monte Carlo with Adaptive Resampling 1 n=1 2 for i = 1 to N do i 3 X1 ∼ q1 (x1 ) i i i 4 w1 (X1 ) W1 ∝ w1 (X1 ) 5 if then i i 1 i 6 {W1 , X1 } N { N , X 1} i i 1 i 7 {W 1 , X 1 } ← { N , X 1 } 8 else i i i i 9 {W 1 , X 1 } ← {W1 , X1 } 10 end 11 end 12 for n = 2 to T do 13 for i = 1 to N do i i i ii 14 Xn ∼ qn (xn |X 1:n−1 ) X1:n ← (X 1:n−1 , Xn i i i i 15 αn (X1:n ) Wn ∝ W n−1 αn (X1:n ) 16 if then i i 1 i 17 {Wn , X1:n } N { N , X 1:n } i i 1 i 18 {W n , X n } ← { N , X n } 19 else i i i i 20 {W 1 , X 1 } ← {Wn , Xn } 21 end 22 end 23 end πn (x1:n ) . N i πn (x1:n ) = Wn δX1:n (x1:n ), i (1.3.16) i=1 N i π n (x1:n ) = W n δX i (x1:n ) (1.3.17) 1:n i=1 n . Zn /Zn−1 N Zn i i = W n−1 αn X1:n Zn−1 i=1
  • 13. §1.4 Particle Filter 13 1 1.3.1 σ2 > 2 asymptotic variance VSMC Zn n σ4 1/2 = −1 2 Zn N 2σ 2 − 1 VIS Zn 1 σ4 n/2 = −1 . 2 Zn N 2σ 2 − 1 SMC n IS n 2 . σ = 1.2 qk (xk ) ≈ πn (xk ). n = 1000 IS N ≈ 2 × 1023 VIS [Zn ] VSMC [Zn ] Zn 2 = 10−2 . 2 Zn = 10−2 SMC N ≈ 104 19 . §1.3.6 Summary SMC {πn (x1:n )} {Zn }. • n qn (xn |x1:n−1 ) αn (x1:n ) n . • k n > k πn (x1:k ) SMC . n {πn (x1:n )} SMC . , πn (x1 ) . §1.4 Particle Filter SMC SIS . {p(x1:n |y1:n )}n≥1 . ESS . §1.4.1 SMC for Filtering SMC {p(x1:n |y1:n )}n≥1
  • 14. 14 πn (x1:n ) = p(x1:n |y1:n ) γ( x1:n ) = p(x1:n , y1:n ) Zn = p(y1:n ) (1.4.1) nonumber (1.4.2) qn (x1:n ) qn (xn |x1:n−1 ). IS qn (x1:n ) SIS qn (xn |x1:n−1 ) . n opt qn (xn |x1:n−1 ) = πn (xn |x1:n−1Z ) = p(xn |yn , xn−1 ) g(yn |xn )f (xn |xn−1 ) = (1.4.3) p(yn |xn−1 ) incremental importance weight αn (x1:n ) = p(yn |xn−1 ) opt qn (xn |x1:n−1 ) qn (xn |x1:n−1 ) = q(xn |yn , xn−1 ) (1.4.4) (1.3.9) (1.3.11) (1.4.4) incremental weight g(yn |xn )f (xn |xn−1 ) αn (x1:n ) = αn (xn−1:n ) = . q(xn |yn , xn−1 )
  • 15. §1.4 Particle Filter 15 Algorithm 4: SMC for Filtering 1 n=1 2 for i = 1 to N do i 3 X1 ∼ q1 (x1 |y1 ) i µ(xi )g(y1 |X1 ) i i i 4 w1 (X1 ) = 1 i q(Xi |y1 ) W1 ∝ w1 (X1 ) i i 1 i 5 {W1 , X1 } N { N , X 1} 6 end 7 for n = 2 to T do 8 for i = 1 to N do i i i i i 9 Xn ∼ qn (xn |yn , X n−1 ) X1:n ← (X 1:n−1 , Xn ) i i i i g(yn |Xn )f (Xn |Xn−1 ) i i 10 αn (Xn−1:n ) = i i q(Xn |yn ,Xn−1 ) Wn ∝ αn (Xn−1:n ) i i 1 i 11 {Wn , X1:n } N { N , X 1:n } 12 end 13 end [1] A.D. and A. Johansen, Particle filtering and smoothing: Fifteen years later, in Hand- book of Nonlinear Filtering (eds. D. Crisan et B. Rozovsky), Oxford University Press, 2009. See http://www.cs.ubc.ca/~arnaud