Pervasive and Smart Technologies for Healthcare Ubiquitous Methodologies and Tools First Edition Antonio Coronato 2025 scribd download
1. Visit https://ebookfinal.com to download the full version and
explore more ebooks
Pervasive and Smart Technologies for Healthcare
Ubiquitous Methodologies and Tools First Edition
Antonio Coronato
_____ Click the link below to download _____
https://ebookfinal.com/download/pervasive-and-smart-
technologies-for-healthcare-ubiquitous-methodologies-
and-tools-first-edition-antonio-coronato/
Explore and download more ebooks at ebookfinal.com
2. Here are some suggested products you might be interested in.
Click the link to download
Information Communication Technologies Concepts
Methodologies Tools and Applications Craig Van Slyke
https://ebookfinal.com/download/information-communication-
technologies-concepts-methodologies-tools-and-applications-craig-van-
slyke/
New Materials and Technologies For Healthcare 1st Edition
Larry L Hench
https://ebookfinal.com/download/new-materials-and-technologies-for-
healthcare-1st-edition-larry-l-hench/
New Technologies for Advancing Healthcare and Clinical
Practices 1st Edition Joseph Tan
https://ebookfinal.com/download/new-technologies-for-advancing-
healthcare-and-clinical-practices-1st-edition-joseph-tan/
Designing Solutions Based Ubiquitous and Pervasive
Computing New Issues and Trends Premier Reference Source
1st Edition Francisco Milton Mendes Neto
https://ebookfinal.com/download/designing-solutions-based-ubiquitous-
and-pervasive-computing-new-issues-and-trends-premier-reference-
source-1st-edition-francisco-milton-mendes-neto/
3. Frameworks Methodologies and Tools for Developing Rich
Internet Applications 1st Edition Giner Alor-Hernández
https://ebookfinal.com/download/frameworks-methodologies-and-tools-
for-developing-rich-internet-applications-1st-edition-giner-alor-
hernandez/
Social Computing Concepts Methodologies Tools and
Applications 1st Edition Subhasish Dasgupta
https://ebookfinal.com/download/social-computing-concepts-
methodologies-tools-and-applications-1st-edition-subhasish-dasgupta/
Tools and Methods for Estimating Populations at Risk from
Natural Disasters and Complex Humanitarian Crises 1st
Edition Methodologies
https://ebookfinal.com/download/tools-and-methods-for-estimating-
populations-at-risk-from-natural-disasters-and-complex-humanitarian-
crises-1st-edition-methodologies/
End user Computing Concepts Methodologies Tools and
Applications 1st Edition Steve Clarke
https://ebookfinal.com/download/end-user-computing-concepts-
methodologies-tools-and-applications-1st-edition-steve-clarke/
Health Information Systems Concepts Methodologies Tools
and Applications 1st Edition Joel Rodrigues
https://ebookfinal.com/download/health-information-systems-concepts-
methodologies-tools-and-applications-1st-edition-joel-rodrigues/
5. Pervasive and Smart Technologies for Healthcare
Ubiquitous Methodologies and Tools First Edition
Antonio Coronato Digital Instant Download
Author(s): Antonio Coronato
ISBN(s): 9781615207657, 1615207651
Edition: First
File Details: PDF, 7.86 MB
Year: 2010
Language: english
7. Pervasive and Smart
Technologies for
Healthcare:
Ubiquitous Methodologies and
Tools
Antonio Coronato
CNR, Italy
Giuseppe De Pietro
CNR, Italy
Hershey • New York
Medical inforMation science reference
9. Editorial Advisory Board
Alex Mihailidis, University of Toronto, Canada
Anand Ranaghatan, IBM T.J. Watson Research Center, USA
Hisao-Hwa Chen, National Sun Yat-Sen University, Taiwan
Jong-Hyuk Park, Kyungnam University, Korea
Luigi Romano, Università “Parthenope”, Italy
Majid Sarrafzadeh, University of California at Los Angeles, USA
Qian Zhang, Hong Kong University of Science and Technology, China
Thanos Vasilakos, University of Western Macedonia, Greece
List of Reviewers
Ivana Marra, ICAR-CNR, Italy
Raffaele Zuccaro, ICAR-CNR, Italy
Mario Ciampi, ICAR-CNR, Italy
Luigi Gallo, ICAR-CNR, Italy
Aniello Minutolo, ICAR-CNR, Italy
Massimo Esposito, ICAR-CNR, Italy
Giovanna Sannino, ICAR-CNR, Italy
Eliezer Geisler, Illinois Institute of Technology, USA
Victor Gonzales, University of Manchester, UK
Miguel Angel Santiago, Telefónica Investigación y Desarrollo, Spain
Dorothy Curtis, Massachusetts Institute of Technology, USA
Vassiliki Koufi, University of Piraeus, Greece
Yang Xiao, The University of Alabama, USA
Philippe Pucheral, INRIA, France
Demosthenes Vouyioukas, University of the Aegean, Greece
Ioannis Krontiris, University of Mannheim, Germany
Leroy Chan, The University of New South Wales, Australia
Werner Kurschl, Upper Austria University of Applied Sciences, Austria
Nilmini Wickramasinghe, University of Melbourne, Australia
Tiziana Guzzo, IRPPS-CNR, Italy
Matti Linnavuo, Helsinki University of Technology, Finland
10. Preface ................................................................................................................................................xiv
Acknowledgment................................................................................................................................xvi
Section 1
Technologies and Applications
Chapter 1
Pervasive Networks and Ubiquitous Monitoring for Wellness Monitoring
in Residential Aged Care ........................................................................................................................ 1
Leroy Lai Yu Chan, The University of New South Wales, Australia
Branko George Celler, The University of New South Wales, Australia
James Zhaonan Zhang, The University of New South Wales, Australia
Nigel Hamilton Lovell, The University of New South Wales, Australia
Chapter 2
Smart Homes to Support Elderly People: Innovative Technologies and Social Impacts ..................... 25
Arianna D’Ulizia, CNR - Istituto di Ricerche sulla Popolazione e le Politiche Sociali, Italy
Fernando Ferri, CNR - Istituto di Ricerche sulla Popolazione e le Politiche Sociali, Italy
Patrizia Grifoni, CNR - Istituto di Ricerche sulla Popolazione e le Politiche Sociali, Italy
Tiziana Guzzo, CNR - Istituto di Ricerche sulla Popolazione e le Politiche Sociali, Italy
Chapter 3
Nursing Home....................................................................................................................................... 39
Shuyan Xie, The University of Alabama, USA
Yang Xiao, The University of Alabama, USA
Hsiao-Hwa Chen, National Cheng Kung University, Taiwan
Chapter 4
Localization and Monitoring of People with a Near-Field Imaging System:
Boosting the Elderly Care..................................................................................................................... 78
Matti Linnavuo, Aalto University, Finland
Henry Rimminen, Aalto University, Finland
Table of Contents
11. Chapter 5
SMART: Mobile Patient Monitoring in an Emergency Department .................................................... 97
Esteban Pino, Universidad de Concepción, Concepción, Chile
Dorothy Curtis, Massachusetts Institute of Technology, USA
Thomas Stair, Harvard Medical School, USA
Lucila Ohno-Machado, University of California San Diego, USA
Chapter 6
An Investigation into the Use of Pervasive Wireless Technologies
to Support Diabetes Self-Care ............................................................................................................ 114
Nilmini Wickramasinghe, RMIT University, Australia
Indrit Troshani, University of Adelaide Business School, Australia
Steve Goldberg, INET International Inc., Canada
Chapter 7
Pervasive Process-Based Healthcare Systems on a Grid Environment.............................................. 130
Vassiliki Koufi, University of Piraeus, Greece
Flora Malamateniou, University of Piraeus, Greece
George Vassilacopoulos, University of Piraeus, Greece
Section 2
Security, Dependability, and Performability
Chapter 8
Sensor Networks Security for Pervasive Healthcare .......................................................................... 155
Ioannis Krontiris, University of Mannheim, Germany
Chapter 9
Trustworthiness of Pervasive Healthcare Folders............................................................................... 172
Tristan Allard, University of Versailles, France
Nicolas Anciaux, INRIA Rocquencourt, France
Luc Bouganim, INRIA Rocquencourt, France
Philippe Pucheral, University of Versailles & INRIA Rocquencourt, France
Romuald Thion, INRIA Grenoble, France
Chapter 10
Communication Issues in Pervasive Healthcare Systems and Applications....................................... 197
Demosthenes Vouyioukas, University of the Aegean, Greece
Ilias Maglogiannis, University of Central Greece, Greece
12. Chapter 11
Lessons from Evaluating Ubiquitous Applications in Support of Hospital Work .............................. 228
Monica Tentori, UABC, México
Victor M. González, University of Manchester, UK
Jesus Favela, CICESE, México
Section 3
Methodologies and Frameworks
Chapter 12
Model-Driven Prototyping Support for Pervasive Healthcare Applications ...................................... 251
Werner Kurschl, Upper Austria University of Applied Sciences, Austria
Stefan Mitsch, Johannes Kepler University, Austria
Johannes Schoenboeck, Vienna University of Technology, Austria
Chapter 13
Designing Pervasive Healthcare Applications in the Home ............................................................... 282
Toshiyo Tamura, Chiba University, Japan
Isao Mizukura, Chiba University, Japan
Yutaka Kimura, Kansai Medical Univeristy, Japan
Haruyuki Tatsumi, Sapporo Medical University, Japan
Chapter 14
TUM-AgeTech: A New Framework for Pervasive Medical Devices ................................................. 295
Tim C. Lueth, Technical University Munich, Germany
Lorenzo T. D’Angelo, Technical University Munich, Germany
Axel Czabke, Technical University Munich, Germany
Chapter 15
Economic and Organizational Factors in the Future of Telemedicine and Home Care...................... 322
Giuseppe Turchetti, Scuola Superiore Sant’Anna, Italy
Elie Geisler, Illinois Institute of Technology, USA
Compilation of References ............................................................................................................... 336
About the Contributors.................................................................................................................... 370
Index................................................................................................................................................... 380
13. Preface ................................................................................................................................................xiv
Acknowledgment................................................................................................................................xvi
Section 1
Technologies and Applications
Chapter 1
Pervasive Networks and Ubiquitous Monitoring for Wellness Monitoring
in Residential Aged Care ........................................................................................................................ 1
Leroy Lai Yu Chan, The University of New South Wales, Australia
Branko George Celler, The University of New South Wales, Australia
James Zhaonan Zhang, The University of New South Wales, Australia
Nigel Hamilton Lovell, The University of New South Wales, Australia
It is becoming more critical for developed countries to deliver long-term and financially sustainable
healthcare services to an expanding ageing population, especially in the area of residential aged care.
There is a general consensus that innovations in the area of Wireless Sensor Networks (WSNs) are
key enabling technologies for reaching this goal. The major focus of this chapter is on WSN design
considerations for ubiquitous wellness monitoring systems in residential aged care facilities. The major
enabling technologies for building a pervasive WSN will be explored, including details on sensor design,
wireless communication protocols and network topologies. Also examined are various data processing
methods and knowledge management tools to support the collection of sensor data and their subsequent
analysis for health assessment. Future systems that incorporate the two aspects of wellness monitoring,
vital signs and activities of daily living (ADL) monitoring, will also be introduced.
Chapter 2
Smart Homes to Support Elderly People: Innovative Technologies and Social Impacts ..................... 25
Arianna D’Ulizia, CNR - Istituto di Ricerche sulla Popolazione e le Politiche Sociali, Italy
Fernando Ferri, CNR - Istituto di Ricerche sulla Popolazione e le Politiche Sociali, Italy
Patrizia Grifoni, CNR - Istituto di Ricerche sulla Popolazione e le Politiche Sociali, Italy
Tiziana Guzzo, CNR - Istituto di Ricerche sulla Popolazione e le Politiche Sociali, Italy
Detailed Table of Contents
14. Today the biggest challenge of our aging society is to enable people with impairments to have a better
quality of life maintaining their independence. The chapter explores how technology can support elderly
and disabled people in their home. Firstly, a classification of Smart Home Systems in Safety systems,
Environmental control systems, Energy-control-systems, Reminder systems, Medication Dispensing sys-
tems, Communication and Entertainment systems is presented. For each of these systems some examples
of different technological solutions presented in the literature are described. Moreover, an analysis of
social and economic impacts of the use of these technologies on the society is presented. Finally, some
studies about the perception and acceptance of these technologies by user are given.
Chapter 3
Nursing Home....................................................................................................................................... 39
Shuyan Xie, The University of Alabama, USA
Yang Xiao, The University of Alabama, USA
Hsiao-Hwa Chen, National Cheng Kung University, Taiwan
A nursing home is an entity that provides skilled nursing care and rehabilitation services to people
with illnesses, injuries or functional disabilities, but most facilities serve the elderly. There are vari-
ous services that nursing homes provide for different residents’ needs, including daily necessity care,
mentally disabled, and drug rehabilitation. The levels of care and the care quality provided by nursing
homes have increased significantly over the past decade. The trend nowadays is the continuous quality
development towards to residents’ satisfaction; therefore healthcare technology plays a significant role
in nursing home operations. This chapter points out the general information about current nursing home
conditions and functioning systems in the United States, which indicates the way that technology and
e-health help improve the nursing home development based on the present needs and demanding trends.
We also provide a visiting report about Thomasville Nursing Home with the depth of the consideration
to how to catch the trends by implementing the technologies.
Chapter 4
Localization and Monitoring of People with a Near-Field Imaging System:
Boosting the Elderly Care..................................................................................................................... 78
Matti Linnavuo, Aalto University, Finland
Henry Rimminen, Aalto University, Finland
The chapter describes the state of the art and potentialities of near-field imaging (NFI) technology, ap-
plications, and nursing tools in health care. First, principles of NFI are discussed. Various uses of NFI
sensor data are presented. The data can be used for indoor tracking, automatic fall detection, activity
monitoring, bed exit detection, passage control, vital functions monitoring, household automation and
other applications. Special attention is given to the techniques and problems in localization, posture
recognition, vital functions recording and additional functions for people identification. Examples of
statistical analysis of person behavior are given. Three cases of realized applications of NFI technique
are discussed.
15. Chapter 5
SMART: Mobile Patient Monitoring in an Emergency Department .................................................... 97
Esteban Pino, Universidad de Concepción, Concepción, Chile
Dorothy Curtis, Massachusetts Institute of Technology, USA
Thomas Stair, Harvard Medical School, USA
Lucila Ohno-Machado, University of California San Diego, USA
Patient monitoring is important in many contexts: at mass-casualty disaster sites, in improvised emer-
gency wards, and in emergency room waiting areas. Given the positive history of use of monitoring
systems in the hospital during surgery, in the recovery room, or in an intensive care unit, we sought to
use recent technological advances to enable patient monitoring in more diverse circumstances: at home,
while traveling, and in some less well-monitored areas of a hospital. This chapter presents the authors’
experiences in designing, implementing and deploying a wireless disaster management system proto-
type in a real hospital environment. In addition to a review of related systems, the sensors, algorithms
and infrastructure used in our implementation are presented. Finally, general guidelines for ubiquitous
methodologies and tools are shared based on the lessons learned from the actual implementation.
Chapter 6
An Investigation into the Use of Pervasive Wireless Technologies
to Support Diabetes Self-Care ............................................................................................................ 114
Nilmini Wickramasinghe, RMIT University, Australia
Indrit Troshani, University of Adelaide Business School, Australia
Steve Goldberg, INET International Inc., Canada
Diabetes is one of the leading chronic diseases affectingAustralians and its prevalence continues to rise.
The goal of this study is to investigate the application of a pervasive technology solution developed by
INET in the form of a wireless enabled mobile phone to facilitate superior diabetes self-care.
Chapter 7
Pervasive Process-Based Healthcare Systems on a Grid Environment.............................................. 130
Vassiliki Koufi, University of Piraeus, Greece
Flora Malamateniou, University of Piraeus, Greece
George Vassilacopoulos, University of Piraeus, Greece
Healthcare is an increasingly collaborative enterprise involving many individuals and organizations that
coordinate their efforts toward promoting quality and efficient delivery of healthcare through the use
of pervasive healthcare information systems. The latter can provide seamless access to well-informed,
high-quality healthcare services anywhere, anytime by removing temporal, spatial and other constraints
imposed by the technological heterogeneity of existing healthcare information systems. In such en-
vironments, concerns over the privacy and security of health information arise. Hence, it is essential
to provide an effective access control mechanism that meets the requirements imposed by the least
privilege principle by adjusting user permissions continuously in order to adapt to the current situation.
16. This chapter presents a pervasive grid-based healthcare information system architecture that facilitates
authorized access to healthcare processes via wireless devices. Context-aware technologies are used to
both automate healthcare processes and regulate access to services and data via a fine-grained access
control mechanism.
Section 2
Security, Dependability, and Performability
Chapter 8
Sensor Networks Security for Pervasive Healthcare .......................................................................... 155
Ioannis Krontiris, University of Mannheim, Germany
Body-worn sensors and wireless interconnection of distributed embedded devices facilitate the use of
lightweight systems for monitoring vital health parameters like heart rate, respiration rate and blood
pressure. Patients can simply wear monitoring systems without restricting their mobility and everyday
life. This is particularly beneficial in the context of world’s ageing society with many people suffering
chronic ailments. However, wireless transmission of sensitive patient data through distributed embedded
devices presents several privacy and security implications. In this book chapter we first highlight the
security threats in a biomedical sensor networks and identify the requirements that a security solution
has to offer. Then we review some popular architectures proposed in the bibliography over the last few
years and we discuss the methods that they employ in order to offer security. Finally we discuss some
open research questions that have not been addressed so far and which we believe offer promising direc-
tions towards making these kinds of networks more secure.
Chapter 9
Trustworthiness of Pervasive Healthcare Folders............................................................................... 172
Tristan Allard, University of Versailles, France
Nicolas Anciaux, INRIA Rocquencourt, France
Luc Bouganim, INRIA Rocquencourt, France
Philippe Pucheral, University of Versailles & INRIA Rocquencourt, France
Romuald Thion, INRIA Grenoble, France
During the last decade, many countries launched ambitious Electronic Health Record (EHR) programs
with the objective to increase the quality of care while decreasing its cost. Pervasive healthcare aims
itself at making healthcare information securely available anywhere and anytime, even in disconnected
environments (e.g., at patient home). Current server-based EHR solutions badly tackle disconnected
situations and fail in providing ultimate security guarantees for the patients. The solution proposed in
this chapter capitalizes on a new hardware device combining a secure microcontroller (similar to a smart
card chip) with a large external Flash memory on a USB key form factor. Embedding the patient folder
as well as a database system and a web server in such a device gives the opportunity to manage securely
a healthcare folder in complete autonomy. This chapter proposes also a new way of personalizing ac-
cess control policies to meet patient’s privacy concerns with minimal assistance of practitioners. While
both proposals are orthogonal, their integration in the same infrastructure allows building trustworthy
pervasive healthcare folders.
17. Chapter 10
Communication Issues in Pervasive Healthcare Systems and Applications....................................... 197
Demosthenes Vouyioukas, University of the Aegean, Greece
Ilias Maglogiannis, University of Central Greece, Greece
This book chapter provides a systematic analysis of the communication technologies used in healthcare
and homecare, their applications and the utilization of the mobile technologies in the healthcare sector
by using in addition case studies to highlight the successes and concerns of homecare projects. There are
several software applications, appliances, and communication technologies emerging in the homecare
arena, which can be combined in order to create a pervasive mobile health system. This study highlights
the key areas of concern and describes various types of applications in terms of communications’ per-
formance. A comprehensive overview of some of these homecare, healthcare applications and research
are presented. The technologies regarding the provision of these systems are described and categorised
in two main groups: synchronous and asynchronous communications’ systems and technologies. The
recent advances in homecare using wireless body sensors and on/off-body networks technologies are
discussed along with the provision of future trends for pervasive healthcare delivery. Finally, this book
chapter ends with a brief discussion and concluding remarks in succession to the future trends.
Chapter 11
Lessons from Evaluating Ubiquitous Applications in Support of Hospital Work .............................. 228
Monica Tentori, UABC, México
Victor M. González, University of Manchester, UK
Jesus Favela, CICESE, México
The evaluation of ubiquitous computing (Ubicomp) applications presents a number of challenges rang-
ing from the optimal recreation of the contextual conditions where technologies will be implemented,
to the definition of tasks which often go well beyond the model of human-computer interaction that
people are used to interact with. Many contexts, such as hospitals and healthcare which are frequently
explored for the deployment of Ubicomp raise additional challenges as a result of the nature of the work
where human life can be in risk, privacy of personal records is paramount, and labor is highly distributed
across space and time. For the last six years we have been creating and pilot-testing numerous Ubicomp
applications in support of hospital work and healthcare (Ubihealth). In this chapter, we discuss the les-
sons learned from evaluating these applications and organize them as a frame of techniques that assists
researchers in selecting the proper method and type of evaluation to be conducted. Based on that frame
we discuss a set of principles that designers must consider during evaluation. These principles include
maintaining consistency of the activities and techniques used during the evaluation, give proper credit
of individual benefits, promote replication of the environment, balance constraints and consider the level
of pervasiveness and complexity.
18. Section 3
Methodologies and Frameworks
Chapter 12
Model-Driven Prototyping Support for Pervasive Healthcare Applications ...................................... 251
Werner Kurschl, Upper Austria University of Applied Sciences, Austria
Stefan Mitsch, Johannes Kepler University, Austria
Johannes Schoenboeck, Vienna University of Technology, Austria
Pervasive healthcare applications aim at improving habitability by assisting individuals in living autono-
mously. To achieve this goal, data on an individual’s behavior and his or her environment (often collected
with wireless sensors) is interpreted by machine learning algorithms; their decision finally leads to the
initiation of appropriate actions, e.g., turning on the light. Developers of pervasive healthcare applications
therefore face complexity stemming, amongst others, from different types of environmental and vital
parameters, heterogeneous sensor platforms, unreliable network connections, as well as from different
programming languages. Moreover, developing such applications often includes extensive prototyp-
ing work to collect large amounts of training data to optimize the machine learning algorithms. In this
chapter we present a model-driven prototyping approach for the development of pervasive healthcare
applications to leverage the complexity incurred in developing prototypes and applications. We support
the approach with a development environment that simplifies application development with graphical
editors, code generators, and pre-defined components.
Chapter 13
Designing Pervasive Healthcare Applications in the Home ............................................................... 282
Toshiyo Tamura, Chiba University, Japan
Isao Mizukura, Chiba University, Japan
Yutaka Kimura, Kansai Medical Univeristy, Japan
Haruyuki Tatsumi, Sapporo Medical University, Japan
We propose a new home health care system for the acquisition and transmission of data from ordinary
home health care appliances, such as blood pressure monitors and weight balances. In this chapter, we
briefly explain a standard protocol for data collection and a simple interface to accommodate different
monitoring systems that make use of different data protocols. The system provides for one-way data
transmission, thus saving power and extending to CCITT. Our standardized protocol was verified dur-
ing a 1-year field test involving 20 households in Japan. Data transmission errors between home health
care devices and the home gateway were 4.21/day with our newly developed standard protocol. Over
a 1 year period, we collected and analyzed data from 241,000 separate sources associated with both
healthy, home-based patients and chronically ill, clinic-based patients, the latter with physician interven-
tion. We evaluated some possible applications for collecting daily health care data and introduce some
of our findings, relating primarily to body weight and blood pressure monitoring for elderly subjects in
their own homes.
19. Chapter 14
TUM-AgeTech: A New Framework for Pervasive Medical Devices ................................................. 295
Tim C. Lueth, Technical University Munich, Germany
Lorenzo T. D’Angelo, Technical University Munich, Germany
Axel Czabke, Technical University Munich, Germany
In this chapter, the program of the Technical University Munich regarding implementation of technolo-
gies for an aging society is introduced. Various departments from the faculties of both technology and
medicine are working jointly to actualize a technological basis for the development of assistance devices.
Industrialized countries such as Japan and Germany will be facing an extreme demographic shift over
the next 15 years. More than half of the population will be over 50 years of age. Belief in technologi-
cal progress – initiated by the innovations of computer and the Internet – harbors the risk that the time
required for necessary technological advancements is being significantly underestimated. This article
describes the motivation and the concept of hardware architecture for implementation of assistance
devices and for integration of pre-existing (or concurrently developed) sensors and concepts.
Chapter 15
Economic and Organizational Factors in the Future of Telemedicine and Home Care...................... 322
Giuseppe Turchetti, Scuola Superiore Sant’Anna, Italy
Elie Geisler, Illinois Institute of Technology, USA
The chapter reviews the state of the art of telemedicine and remote care in the home and the economic
and organizational factors that impinge on its future success. Because of the constraints of distance, costs,
and availability of providers (doctors and nurses) in specific areas of medical specialties, the model of
treating patients in the general hospital is losing its luster in favor of dedicated clinics dispersed in the
community and remote care in the home. Such a trend of decentralization of medical services has been in
existence for some time. Yet, although technologies are quickly evolving and the need for telemedicine
and home care is increasing, the progress of this mode of delivery of medical services has not kept up
with the demand. The chapter attempts to review the economic and organizational factors which act as
facilitators and barriers to the rapid diffusion of telemedicine and home care. In particular, the chapter
explores the case of chronic diseases, and also offers a valuable comparison between two systems of
national healthcare: the Italian and the American.
Compilation of References ............................................................................................................... 336
About the Contributors.................................................................................................................... 370
Index................................................................................................................................................... 380
20. xiv
The increasing aging of population and the growing number of chronically ill people require that na-
tional healthcare systems be prepared, in the next future, and equipped to face such issues and avoid
collapses.
The shift to a more consumer driven healthcare market is impacting consumer expectations regarding
the quality and consistency of the care they seek. Moreover, patients facing a potentially life threatening
disease are seeking the rapid responses from healthcare systems and operators and, possibly, better plans
for treatments. On the other hand, the wide diffusion of wireless technologies along with the emerging
of new devices and sensors are opening a new market of better and cheaper healthcare applications.
Pervasive healthcare is the emerging discipline about the application of wireless, mobile and intel-
ligent technologies to healthcare. It is related to the development and application of pervasive computing
technologies -ubiquitous computing, context-aware computing, ambient intelligence, etc- for healthcare,
health and wellness management.
It definitively aims at making healthcare available to anyone, anytime, and anywhere according to
the original vision of the pervasive computing paradigm.
Pervasive healthcare, thus, seeks to respond to a variety of pressures on healthcare systems, including
the increased incidence of life-style related and chronic diseases, emerging consumerism in healthcare,
need for empowering patients and relatives for self-care and management of their own health, and need
to provide seamless access to health care services, independent of time and place.
Pervasive healthcare s opening a wide range of innovative applications, from remote monitoring of
elder people or ill patients, to new environments like advanced surgery rooms, smart spaces for doctor
consulting, assisted living homes, smart hospitals, etc.
Research Community has been producing a remarkable effort with the aim of developing methodolo-
gies, techniques, technologies, tools, and applications of pervasive healthcare. Such an effort has been
principally pushed by national governs and international organizations (e.g. European Commission)
that have studied the benefits of adopting such technologies in healthcare and then funded myriad of
projects.
This book reports several experiences concerning the application of pervasive computing technolo-
gies, methodologies and tools in healthcare.
It has received the contribution of members of prestigious universities, research institutes and in-
dustries, all working, day by day, for identifying solutions to decentralize patient care from hospital to
home, to improve disease prevention and self-care, to provide seamless and pervasive access to health
care services, etc.
This book is oriented both at ICT community members, who are willing to design and develop ad-
vanced pervasive healthcare application, and at healthcare managers and operators, who want to reor-
ganize business processes into hospitals and in the healthcare system in general, as well as procedures
for treating ill and/or old people.
Preface
21. xv
The reader can easily figure out the potentialities of pervasive computing in healthcare. In particular,
by means of the set of new applications described, as well as the methodologies, technologies and tools
presented, the reader can catch the state of the art and future trends.
The book is organized in three main sections: “Technologies and Applications,” “Security, Depend-
ability, and Performability,” and “Methodologies and Frameworks.”
Technologies and Applications consists of seven chapters, which present different technologies, like
body sensor networks, and relevant applications. Security, Dependability, and Performability is focused
on critical issues like the reliability of pervasive healthcare solutions, the privacy of clinic information,
the ability of remote monitoring services to perform correctly in real environments, etc. Methodolo-
gies and Frameworks presents methodological approaches to the design, implementation and business
management of pervasive healthcare systems along with some enabling frameworks.
To conclude, we sincerely hope that you enjoy the experience of this state of the art book, and get
excited by potentialities of new technologies in a crucial field of application like healthcare.
22. xvi
Acknowledgment
Aside from our authors, to whom we are very grateful, many people contributed in different ways to
this book. Obviously, we are very grateful to all reviewers and members of the editorial board who sup-
ported us during different steps of the development process. By the way, other people have contributed
in background, to them our special thanks.
Antonio Coronato
CNR, Italy
Giuseppe De Pietro
CNR, Italy
26. 2
Pervasive Networks and Ubiquitous Monitoring for Wellness Monitoring in Residential Aged Care
INTRODUCTION
In developed countries the lifespan of the popu-
lation is lengthening and the elderly group con-
stitutes an increasingly significant portion of the
world population. In 2007, statistics from Aus-
tralia, the European Union, Japan and the United
Statesshowedthatpeopleaged65yearsandabove
made up from 13% to 21% of the population in
theseareas(AustralianBureauofStatistics,2008;
Eurostat/US Bureau of the Census, 2008; Japan
Statistics Bureau & Statistics Center, 2008; US
Census Bureau, 2008). Assuming the current
trends of fertility and mortality rates, the popu-
lation in this age bracket is expected to grow to
between 20% and 36% by 2050. TakingAustralia
as an example, the number of people aged 65 and
over totals 2.75 million (or 13%). However, the
more alarming statistic is that more than half the
peopleinthisgroupsufferfromatleastonechronic
disease(AustralianBureauofStatistics,2006)and
as a result about one quarter of the annual govern-
ment spending on healthcare services are used to
provide corresponding treatment. Over the next
30 years, the estimated government healthcare
expenditurewillincreaseby127%,amongstwhich
spending on residential aged care is expected to
experiencethestrongestgrowth(AustralianInsti-
tuteofHealthandWelfare,2008).Thisprediction
coincides with Golant’s (2008) view that “a large
increase in the numbers of older persons at risk of
needingthesupportiveservicesofferedinassisted
living residences is relatively certain” (p.12) as
he assessed the growth demographic factors af-
fecting the future of residential aged care in the
United States (Golant, 2008). All these statistics
and trends lead to the conclusion that provision
of long-term support for the healthcare needs of
the elderly, especially in terms of residential aged
care services, is needed but burgeoning costs also
mean that such services must be provided in a
more financially sustainable way.
Recent innovations in the areas of sensor
devices, wireless communication protocols and
knowledge management are potential enabling
information technologies for delivering future
residential aged care services in an economic
way. In fact the Commonwealth Government of
Australia has recognized the promising benefits
of these rising information technologies by pilot-
ing several key trial projects related to telehealth.
These projects targeted the application areas of
medication management (Australian Govern-
ment, 2007a) and clinical well-being monitoring
(AustralianGovernment,2007b;BrankoG.Celler,
Basilakis, Budge, & Lovell, 2006).
Insimpleterms,telehealthreferstothedelivery
ofhealthcareoverdistance.Itcoversawiderange
of medical applications from remote surgery in
a hospital to chronic disease management that
takes place in a residential setting. This chapter,
iscenteredonadiscussionofhowwirelesssensor
networks(WSNs)canbedeployedpervasivelyina
residentialagedcarefacilitytoachieveubiquitous
monitoring so that the functional health status of
the residents can be assessed. It is organized into
several inter-related sections. In the background
section, existing models of residential aged care
arepresented,aswellashowtheresearcheffortin
wellnessmonitoringcanpotentiallyrevolutionize
care approaches. This is followed by a systems
architecture description of WSN technologies
and a discussion on how these technologies can
change the way residential aged care is delivered.
Future trends in this area will then be illustrated
through analysis of data taken from a simulated
residential aged care environment conducted
within the authors’ laboratories.
BACKGROUND
In the past, healthcare systems were dominated
by the so called “medical” model. In this model,
the healthcare providers took the primary role in
deciding what the patients’ needs were and what
clinical interventions would be undertaken. El-
derly people with chronic conditions were either
27. 3
Pervasive Networks and Ubiquitous Monitoring for Wellness Monitoring in Residential Aged Care
looked after by their families and carers in their
own homes or in nursing homes. In the latter case
there have been many reported incidents in which
patients were deprived of choice, autonomy and
even dignity.
More recently a “social healthcare” model has
emerged as a result of changes in societal values,
increased demand in the quality and choice of
aged care services and a generally more educated
public. In contrast to the medical model, the so-
cial healthcare model places its emphasis on the
person receiving healthcare services, incorporat-
ing the “person’s medical, psychological, social,
and personal needs, as well as strengths, abilities,
interests, and preferences – thereby recognizing
a person’s distinctive life history and set of ex-
periences” (Hyde, Perez, & Reed, 2008)(p.48).
In the context of residential aged care, the social
healthcare model encourages the patients, if still
capable, to make appropriate choices about how
they live and the type of services they require.
It also fosters an environment in which social
interactions with other patients, visiting families
and friends are seen to have positive therapeutic
values.
As a result, modern residential aged care
facilities need to change, both in terms of their
environment and the services they provide, to
cope with these new demands. The rate by which
the residential aged care facilities can respond is
largely dependent on overcoming some of the
existing challenges. These include current, pos-
sibly out-of-date, government regulations and
policies that restrict the growth of facilities such
as those leading to funding deficiencies outlined
in a report assessing the Australian market (Ho-
gan, 2007). Staffing issues also contribute to the
deliveryofmodernresidentialagedcareservices.
For instance, the shortage of nursing staff is a
major issue faced by the American healthcare
system and the contributing factors are increased
demand, retiring work force, inadequate trainers
and alternative career options. Another major
concern of the work force is the lack of appro-
priate training that empowers staff to respond to
changing care demands (Hyde et al., 2008)(p.71,
p.74).Anotherimportantchallengetoberesolved
is the reluctance of the elderly and nursing staff
in adopting and using new technologies in the
healthcare delivery process, largely due to fear
and misunderstanding that machines will gradu-
ally outcast human interactions.
“Technologies are likely to help enhance the
quality of the living environment and improve
service delivery in the coming years” (Wylde,
2008)(p.179).Technologyadoptioninresidential
aged care must proceed with caution. The aim
of implementing new technologies in aged care
facilities should focus on how to assist staff to
providebetterandmorecost-effectivecareinstead
of replacing personal relationships with robotic
tools that simply perform a set task faster and
cheaper.Assistivetechnologiesshowcaseadiverse
spectrum of devices ranging from low-end items
suchaswheelchairsandwalking-aids,tohigh-end
sophisticated electro-mechanical devices such
as robotic bathtubs (Popular Mechanics, 2004).
New types of devices – for example, sensors that
detect falls, or computers that monitor adherence
to medication regimens – are continually being
introduced (Wolf & Jenkins, 2008)(p.207).
Broadly speaking, assistive technologies can
bedividedintocategoriesaccordingtotheirfunc-
tional applications: (1) computer-based rehabili-
tation, cognitive stimulation, entertainment, and
interpersonalcommunicationsystems;(2)resident
assessment,data,andmedicalrecordsoftware;(3)
traditionalemergencycallsystems;(4)passively-
activated call systems; (5) wandering prevention
and tracking systems; (6) vital signs monitoring;
(7) fall detectors; and (8) more comprehensive
activity monitoring systems (Kutzik, Glascock,
Lundberg, & York, 2008)(p.224). In this chapter,
the specific research area of wellness monitor-
ing as a tool for functional health assessment in
residential aged care settings using assisted tech-
nologies will be examined. Essentially, wellness
monitoringdrawsonthecollaborationoftwoofthe
28. 4
Pervasive Networks and Ubiquitous Monitoring for Wellness Monitoring in Residential Aged Care
aforementioned assistive technology categories,
namelyvitalsignsmonitoringandcomprehensive
activity monitoring.
Theobjectivesofwellnessmonitoringisthree-
fold; to discover the onset of certain conditions
beforeobvioussymptomsdevelopinanotherwise
reasonably healthy person (Srovnal & Penhaker,
2007);toprovidethetoolsandtrainingtopromote
selfcare;andtoensureearlyhospitaladmissionof
chronicallyillpatientswhentheconditionrequires
immediate treatment. The first two objectives
focus on the growing importance of prevention
or early detection of a medical condition while
the latter focuses on the urgency in providing
necessarytherapiestominimizepatientmorbidity
crises and medical costs.
Vital signs monitoring, whether real time or
periodic,provideaninsightintoessentialstatistics
about the patient including heart rate and rhythm
disturbances, blood oxygen content, respiratory
rate,bloodpressure,bodytemperature,etc..Taken
collectively these clinical measurements can be
skillfully combined by an experienced caregiver
to infer the well-being of the patient.An elevated
body temperature in a normally healthy subject
may signal the onset of influenza or gradual
weight gain in a congestive heart failure patient
may indicate edema related to a failing heart. For
a diabetic patient, a steady and uncontrollable
increase in blood glucose level above the target
range warrants immediate treatment. A conven-
tional vital signs recording session involves the
health worker who manually measures a patient’s
body temperature, records the result and enters
the data into the patient health record database.
Drawbacks of this approach are numerous and
include errors and delays in data entry, lost data
records, and clinicians being unable to concur-
rently access the latest patient health data.
Due to the importance of physiological mea-
surements, vital signs monitoring technology
researchhasproliferatedoverthepastdecade.One
approach for collecting a patient’s physiological
data is by means of a home clinical workstation
located in a common area, such as the lounge,
withinanagedcarefacility.Residentscan,andare
encouragedto,visittheworkstationperiodicallyto
have their vital signs checked. Collected data can
bestoredlocally,transferredtoanon-sitedatabase
to be reviewed by staff later, or even transmitted
to a remote clinician’s site for assessment. The
communication protocols that can be used vary
fromwiredplatformssuchasEthernet,traditional
phone line or Asymmetric Digital Subscriber
Line (ADSL) to wireless technologies that are
becoming more commonplace such as Wireless
Local Area Network (WLAN), Bluetooth, Zig-
Bee, Global System for Mobile communications
(GSM), General Packet Radio Service (GPRS) or
Universal Mobile Telecommunications System
(UMTS). The major advantage of using such a
shared system is the reduction in cost since there
is no need for an individual monitoring system
for each patient. However, as with all other types
of shared computers, data security and privacy is
an issue not to be overlooked.
One successful example of such a system
is the TeleMedCare Home Monitoring System
(TeleMedCare, Sydney, Australia) (Figure 1)
developed at the University of New South Wales,
Sydney Australia (Branko G. Celler et al., 2006;
Lovell et al., 2002). The system has features to
measure a single lead electrocardiogram (ECG),
arterial blood oxygen saturation, body tempera-
ture, body weight and spirometry. It also provides
an interface for medication management, patient
educationandsecurestaffaccessforpatientmedi-
cal records and service provision history. Other
systems that have been in clinical use throughout
the world include the HomMed system (Honey-
well,Milwaukee,USA)anddoc@Home(Docobo
Ltd., Bookham, UK).
Unfortunatelyinaresidentialagedcaresetting,
itisofteninfeasiblefortheelderlytoself-perform
routinevitalsignsmonitoringduetotheirimmobil-
ity and the lack of necessary motor and cognitive
skills to interact with the devices. Therefore, in
contrast with the shared workstation method for
29. 5
Pervasive Networks and Ubiquitous Monitoring for Wellness Monitoring in Residential Aged Care
vital signs monitoring, recently there has been
significant progress into using pervasive and
ubiquitous networks of sensors for physiological
parameter measurements. For example, sensors
can be located within the environment - such as
load sensors installed to the bed frame for weight
measurement (Elite Care, 2008). Others can be
attached to the patient when required (Leroy L.
Chan, Celler, & Lovell, 2006; Warren, Yao, &
Barnes,2002;Wilsonetal.,2001)whileothersare
designed to integrate into a wearable garment for
long term and continuous monitoring (Pentland,
2004) of a diverse array of body parameters. So
far, vital signs monitoring using this distributed
computingapproachisrestrictedtodevelopmentin
thelaboratoryandlargescaleclinicaldeployments
are yet to occur. Data privacy, mobility and con-
tinuous monitoring are characteristic features of
this approach. With the remaining technical chal-
lenges such as data transfer security, sensor link
reliability, system cost and sensor battery life all
expectedto be resolved or containedin the future,
thissensornetworkapproachisexpectedtoprevail
as the dominant choice for vital sign monitoring
due to the benefits it potentially offers.
Comprehensive activity monitoring is often
referred to as activities of daily living (ADL)
monitoring in the literature. ADL monitoring
systems contribute to wellness monitoring by
building and profiling the daily activity pattern of
a subject and using it as a baseline for comparison
againstirregularpatterns.Suchsystemsareuseful
in detecting the onset of problems that are only
revealedoveralongerperiodoftime.Forinstance,
gradualandunintentionalchangesinappetiteinan
otherwisehealthypatientmaysuggestadigestive
disease, while increased episodes of wandering
can be signs of the onset of dementia.
AccordingtoKutzik,Glascock,Lundbergand
York (2008), ADL monitoring systems can take
on two distinct design approaches: maximalist
and minimalist.The maximalist approach aims to
Figure 1. The TeleMedCare Home Monitoring System is capable of recording multiple clinical mea-
surements, including single lead ECG, blood pressure, spirometry and pulse oximetry. A touch screen
interface allows recent results to be viewed as longitudinal graphs as well as medication and measure-
ment alerts to be delivered via a remote scheduler
30. 6
Pervasive Networks and Ubiquitous Monitoring for Wellness Monitoring in Residential Aged Care
build an infrastructure which supports a diverse
networkofhardwaredevicessuchassensors,data
repeaters, network coordinators and data sinks.
This extensive network of devices is designed to
collect as complete a data set as possible related
to the daily activities of patients. These data are
then processed by algorithms and translated into
usefulinformationforcaregiverssuchassleeping
patterns, usage of toilet and bathroom facilities,
eatingpatterns,socialinteraction,timespentwith
care-givers, activity level, etc.. Most often these
can be combined with the vital sign monitoring
results in order to design the best care plan tai-
lored for the individual patient. The minimalist
approach, on the other hand, employs hardware
andsoftwarethataredesignedtomonitorspecific
tasks and/or disease conditions.
ResearchinthisareaintermsofimpactofADL
monitoring on health status remains embryonic.
One of the first technology demonstrators of
remote monitoring of the free-living elderly oc-
curred in the early 1990’s in Australia as a result
of research at UNSW (Celler et al., 1995). More
recently a single-subject study was conducted in
Japan (Suzuki et al., 2004) to first build up the
daily living pattern of the subject by a network
of wired sensors that measured movement, hu-
man presence, door and window openings, stove
usage, television and washing machine usage
and sleep occurrence. Subsequent daily patterns
were compared with a normal template and any
dramaticchangeinbehaviorcouldbeascertained.
Similarly, the PlaceLab at the Massachusetts In-
stitute of Technology (Massachusetts Institute of
Technology, 2003) is an apartment-style research
facility hosting a rich sensing infrastructure of
over 300 sensor types and is another typical ex-
ample of the maximalist approach. ADL-related
parameters that can be detected include light,
air quality, ambient temperature and humidity,
sound, motion, identity, use of appliances, door
movements, etc.. Some of these parameters may
not immediately find their place in providing care
to patients but the philosophy of the maximalist
approach is to perform excessive measurements.
Another study (Philipose et al., 2004) tested the
detection of fourteen different ADL by placing
over 100 radio frequency identification (RFID)
tags in a test house. The subjects were made to
wear a specifically designed glove containing
an RFID reader and a radio front-end for data
transmission to a data sink. When an activity was
performed, the subject interacted by touching
different RFID-tagged objects, thus providing
a record of the time and sequence of the objects
used. A probabilistic inference engine was used
to estimate the different ADLs performed.
Perhapstheprojectlargestinscalethatapplied
ADLmonitoring technologies to residential aged
carewastheOatfieldEstatesprojectbyEliteCare
(Stanford, 2002). Each resident and staff on the
estate wore an identification badge that could
be tracked by embedded readers throughout the
buildings. In other words, location tracking and
wandering prevention became part of the ADL
monitoringsystem.Residentswerealsomonitored
for weight and sleeping pattern changes by spe-
cially designed load cells placed under each bed
leg. The system also allowed staff and residents
to manually enter other activity information into
the database.
It can be seen that the main challenge of
ADL monitoring systems is the appropriate use
of collected data to produce useful information.
Technologies and approaches related to this area
include data mining, machine learning, artificial
intelligence and knowledge management. It may
also be obvious to the reader that ADL monitor-
ing systems share similar infrastructure to smart
home systems. Research has shown that there are
a many positives in blending the two systems.
This will be addressed in the section on future
research directions.
31. 7
Pervasive Networks and Ubiquitous Monitoring for Wellness Monitoring in Residential Aged Care
WIRELESS SENSOR NETWORKS
FOR WELLNESS MONITORING
Wireless sensor technologies provide a ubiq-
uitous, non-invasive and cost effective way to
continuously and autonomously monitor one’s
physiological parameters as well as ADL. While
these systems may not replace every aspect of the
conventionalwellnessmonitoringapproach,they
allow data to be collected from areas previously
inaccessible such as location information with
room-levelgranularity.Therearethreemajorsub-
systems in a wireless sensor, technology-based,
wellness monitoring system:
• WSNs: collects relevant data from the sub-
ject and the subject’s interaction with their
environment. These data are wirelessly
transmitted in either raw or processed
format back to a central server for further
conditioning, classification and knowledge
inference.
Data conditioning, feature extraction and
•
data fusion: Continuous data streaming
from multiple sensors over the network
means there is flood of information. Data
cleaning and noise reduction is critical to
ensure only data with an acceptable level
of noise and quality is processed to extract
waveform features. This sub-system acts
on individual data channels to extract rel-
evant information. It also applies data fu-
sion techniques across multiple channels
to identify signal interactions. For exam-
ple, with RFID locator technology, signal
interaction can be used to infer the length
of time spent toileting, the time spent dis-
pensing medications to a particular subject,
etc.
• Data fusion, knowledge management and
decision support: This sub-system is heav-
ily based on advanced software modeling
of the subject data. Based on a normal pat-
tern of ADL for a particular subject, the
system will be able to identify consistent
discrepancies from this template and from
these deviations infer changes in functional
health state.
This section will focus on describing the first
sub-system, the architectural design ofWSNs.As
described in the previous section, this is the most
advanced area in terms of research and develop-
ment.Thelattertwoareasarerelativelyembryonic
due to the lack of appropriate hardware systems
to acquire the necessary signals and build the
necessary knowledge bases.
Sensor and Wireless Network Design
Asensornetworksystemiscomprisedofwireless
sensor nodes, which contain one or more sensor
types used to collect data from either a person
or the surrounding environment. The collected
data is firstly processed locally, such as digital
filtering, formatting, noise cleaning, etc.. Data is
then transmitted via the RF section of the sensor.
Therearetwomainfeaturestobeconsideredwhen
implementing the wireless network, namely, the
network topology and protocol. For the network
protocol, pros and cons of WLAN (IEEE 802.11
b/g), Bluetooth (IEEE 802.15.1) and ZigBee
(based on IEEE 802.15.4) will be discussed; in
terms of network topology, two typical designs
will be evaluated - star and mesh network topolo-
gies.
Design and deployment of multiple types of
low-cost sensors heavily impacts the utility of
the monitoring system. In the next section we
introducearangeofsensortypes,discussingusage
implications, size, power, cost and longevity.
Types of Sensors
In one common classification approach, sensors
can be categorized into three groupings; ambient
environmentalsensors,bodyareanetwork(BAN)
sensors, and location and usage sensors.Ambient
32. 8
Pervasive Networks and Ubiquitous Monitoring for Wellness Monitoring in Residential Aged Care
environmental sensors are used to monitor the
ambientconditionofagivengeographicalenviron-
ment. Some of the widely used sensors are:
Passive Infrared (
• PIR) sensors are used
commonly to detect the presence of mov-
ing infrared emitters. They are very reli-
able in terms of detecting heat sources
(therefore human presence) but cannot rec-
ognize the identity of the subject present
in the environment, nor are they accurate
enough to detect the presence of multiple
persons (Ohta, Nakamoto, Shinagawa, &
Tanikawa, 2002).
• Ambient light sensors can be used to cor-
relate the sleeping behavior of the subject
in reference to circadian rhythms.
• Ambient temperature sensors provide a
reference reading of the current tempera-
ture settings. Room temperatures could be
used for example to build up the tempera-
ture preference for an individual subject
over a period of time.
The second category of sensors are BAN
sensors. These sensors include various types of
monitoring transducers with wireless communi-
cation capability. The main differentiating point
of these sensors is that they must be worn by the
subject. They include:
• Triaxial-accelerometry: a sensor that
measures the acceleration of the body in
three-dimensions. Performing continuous
acceleration measurements can be used
to determine the ambulation and activity-
level of a subject, as well as falls propen-
sity and falls risk. It has been demonstrated
that such technologies can classify postural
orientation (sitting, standing, lying) with
a reasonable accuracy (Mathie, Coster,
Lovell, & Celler, 2004; Mathie, Coster,
Lovell, Celler et al., 2004). Also the signal
magnitude area of the acceleration signals
can be used as an estimate of energy ex-
penditure (activity level) (Voon, Celler, &
Lovell, 2008).. Determining activity level
of the monitored subject provides an indi-
cation of both physical and cognitive health
status (Virone et al., 2008). Moreover, we
have demonstrated that such algorithms
can be effectively coded in real-time, thus
relieving the need to transmit large contin-
uous streams of data over a WSN for fur-
ther processing (Karantonis, Narayanan,
Mathie, Lovell, & Celler, 2006).
• ECG sensing: it is commonly accepted
that in order to accurately diagnose cardiac
disease that a 12-lead ECG recording is
mandated. However this is only possible in
a clinical setting. As a compromise, ECG
systems used in the WSN environment are
normally single lead recordings using 2 or 3
attached electrodes. By applying advanced
signal processing techniques, various types
of arrhythmias and conduction abnormali-
ties can be determined (Tsipouras, Fotiadis,
& Sideris, 2005) even from a single lead
recording.
• Body temperature: continual monitor-
ing of the body temperature of an elderly
patient can provide timely and accurate
information that reflects the onset of infec-
tion and/or disease. In hospital wards and
nursing homes this manual task is both
repetitive and time consuming, so a WSN
approach is beneficial.
Thethirdcategoryofsensorsrelatetolocation
detection. These types of sensors are developed
to track the location and specific movements of
a subject, including their interaction with other
objects, people or resources:
• Location sensor: Location tracking is one
of the most important sensor types as it
generates useful data for assessing func-
tional health. An example is the social
33. 9
Pervasive Networks and Ubiquitous Monitoring for Wellness Monitoring in Residential Aged Care
activity level, where the times of interac-
tion between subject, health professionals
and care givers can be tracked. One com-
mon technique adapted by wireless sensor
networks is to implement a set of reference
nodes around the target area, for example
a nursing home environment. These nodes
form a reference grid and a mobile loca-
tion sensor determines the Received Signal
Strength Indicator (RSSI) value from the
reference nodes. It is assumed by the mo-
bile sensor that the strongest signal it re-
ceives from the reference node is the clos-
est therefore approximating its location
within the reference grid via triangulation
(Adamodt, 2006). In this instance the sub-
ject must wear the mobile sensor and in a
similar way, health care professionals and
other important objects (medication and
meal trolleys) must also have mobile sen-
sors attached. Another way of monitoring
location is to implement a grid of pres-
sure sensors on the floor. The advantage is
that a very accurate movement path of the
subject can be determined. Disadvantages
include cost, difficulty of installation and
handling the presence of multiple persons
in the same area (Mori, Noguchi, Takada,
& Sato, 2004).
• Usage sensors: Many of these devices are
ON/OFF switches or passive RFID tags.
They are installed on major objects such
as the toilet, shower, fridge, stove, cabin
doors, etc. and directly monitor the use of
various facilities.
Sensor Design Considerations
Space:
• one of the most important con-
straints on sensor design is space limita-
tion, especially for wearable sensors. A
fully functional wireless sensor must ac-
commodate A/D conversion, digital pro-
cessing, wireless transceiver and power
management within a small space, typical-
ly 40mm x 40mm x 20mm (L x W x H).
Power Consumption:
• while the ambient
environmental sensors are fixed on the wall
and may possibly run from mains power, it
is often not desirable as it will be an extra
burden for installation. For the body area
sensors, they have to be wireless and last as
long as possible. Weeks-long is the mini-
mum requirement where months-long is
preferable. The ZigBee protocol has well
defined power profiles, with transmission
power less than 1 mW (0 dBm). It is com-
mon for many ZigBee-based sensors to
last years-long because sensors like smoke
alarms are in sleep mode for more than
99.9% of the time and only wake up on an
alert condition.
Longevity is another key element in the
•
WSN environment. Due to the large num-
ber of sensors, the network may not be
functional if the failure rate is high. In
theory, sensors should last for years with-
out human intervention. For active mobile
sensors, the rechargeable battery is one of
the failure points because the battery per-
formance tends to degrade after multiple
recharges.
Cost is usually not considered as a main
•
design constraint, however a balance be-
tween performance and cost should met,
for example, temperature sensors will not
require a high precision analogue to digi-
tal conversion (ADC) nor fast processing
speed, therefore choosing a cheaper micro-
controller may be more suitable.
Sensor Design Architecture
The block diagram in figure 2 illustrates a typical
architectureofawirelesssensor.Asanillustrative
example, a wireless single-lead ECG wireless
sensor will be presented.
34. 10
Pervasive Networks and Ubiquitous Monitoring for Wellness Monitoring in Residential Aged Care
• Power Regulation / Battery: In a wireless
patient monitoring environment, power
regulation has to be as efficient as pos-
sible to avoid undue power wastage. The
voltage regulator has to provide either 5V
and / or 3.3V to the different integrated
circuits. Also because most of the current-
generation wireless sensors use single cell
Lithium-ion rechargeable batteries, over-
charge and over-discharge protection cir-
cuitry has to be implemented to ensure op-
timal battery life.
Transducer: The
• transducer acts as the
interface between the environment and
the sensor. Possibly the biggest barrier to
adoption and usage of physiological mea-
surement devices involves the usability
and compliance issues associated with at-
taching sensor to the body to transducer the
biological phenomena into electrical sig-
nals that can then be further processed. In
the case of an ECG, ionic currents (carried
by ions in solution) in physiological me-
dia (tissues and organs of the body) must
be converted into electronic currents (car-
ried by electrons) in metallic conductor.
Conventional biopotential electrodes in
use today consist of a metallic conductor
in contact with the tissue of interest (e.g.,
the skin, when recording body surface po-
tentials such as the ECG) via an electrolyte
solution. Due to the presence of the elec-
trolyte solution, such electrodes are some-
times referred to as “wet electrodes” to dis-
tinguish them from the less conventional
“dry electrodes” which make contact with
the tissue without the aid of an electrolyte
solution. In nearly all cases of ambulatory
ECG monitoring, these conventional or
wet electrodes are used, with a pre-gelled
disposable Ag/AgCl pellet attached by an
adhesive pad.
Signal Conditioning: This module is used
•
amplify, filter and perform feature extrac-
tion and artifact rejection on the signal. For
a single-lead ECG in an ambulatory sub-
ject, it is expected that the recorded signal
will be severely compromised by artefacts
introduced by muscle activity, movement
and electrical noise (Redmond, Lovell,
Basilakis, & Celler, 2008). Typically the
QRS events within the ECG will be de-
tected using a real-time algorithm in or-
der to derive the heart rate. One common
Figure 2. A generic sensor block diagram illustrates the major sub-systems used in a wireless sensor
35. 11
Pervasive Networks and Ubiquitous Monitoring for Wellness Monitoring in Residential Aged Care
approach in the literature is to use a slid-
ing window technique based to derive the
heart rate and hence classify the heart ar-
rhythmia status (Raju, 2007; Tsipouras et
al., 2005).
Wireless Transmission: This module con-
•
tains the wireless RF transceiver (proces-
sor) and antenna. The wireless transceiver
handles lower level RF packet formation
and transmission. The microcontroller
typically communicates with the RF trans-
ceiver via an I2C or SPI protocol and trans-
mits data via a program interface provided
by the chip vendor.
Wireless Protocols
There are three major wireless communication
protocolscurrentlyutilizedbyWSNprojects.They
are WLAN, Bluetooth, ZigBee. They all exist in
the 2.4 GHz frequency band. This section will
briefly described their features, characteristics,
advantages and disadvantages in different ap-
plications. This information derived from com-
mercial product specifications is summarized in
Table 1.
WLAN (IEEE 802.11 b/g)
WLAN has the highest bandwidth and longest
transmission distance among the three wireless
protocols and because it is widely used by com-
puter related products, the implementation cost
is relative cheap. Just based on these features,
WLAN seems to be the best choice to be adapted
by WSNs. However, in RF transmission given a
particular RF frequency band, the bandwidth and
transmission range is directly proportional to the
transmission power. Generally, the transmission
power at a WLAN antenna is of the order of 10
to 30 mW (10 to 15 dBm). In general this level is
toohightobeimplementedbysmallrechargeable
wireless sensors. Moreover, individual sensors
will never require the large bandwidth provided
by WLAN.
WhileWLANisnotasuitablechoiceforwire-
less sensors, it is certainly more ideal for higher
level gateways and servers. As the gateways in
a star network topology (see below) collect data
streamed from multiple sensors and transmit
it higher level machines therefore have higher
demands in terms of network bandwidth and
transmissionrange.AnotherplusforWLANisits
dominant implementation in the computer world.
As such it is well supported by operating systems
fromMicrosoftWindowstoembeddedLinuxsys-
tems, with a consequently low development and
manufacturing cost due to its wide adoption.
Bluetooth (IEEE 802.15.1)
Bluetooth is a mature Personal Area Network
(PAN) protocol commonly found in hand-held
devices.Ithasgoodpowerconsumptioncompared
to WLAN and excellent bandwidth given its low
power consumption profile.
ThenetworkarchitectureofBluetoothisastar
network topology, which means the slave nodes
cannotcommunicatewitheachotherdirectly.Even
thoughBluetoothsupports“scatternet”formation
Table 1. A comparison of various wireless protocols
WLAN (IEEE 802.11g) Bluetooth (2.0 with EDR, Class 2) ZigBee (2006)
Battery life Hours Days Years
Range 32m* 10m 10m
Bandwidth 50Mbps 3Mbps 250kbps
Scalability (nodes) Moderate Poor Excellent
* Typical home router with stock antenna in indoor environment
36. 12
Pervasive Networks and Ubiquitous Monitoring for Wellness Monitoring in Residential Aged Care
to create a mesh-like network topology (Figure
3) the routing algorithm is not well implemented
(and subsequently solved by ZigBee) (Labiod,
Afifi, & De Santis, 2007).
There are two major drawbacks for Bluetooth
to be implemented as the WSN transmission
protocol. Firstly, Bluetooth devices have to per-
form the “Discovery andAssociation” process in
order to establish connection with the super node.
This process can take up to ten seconds (Sandhu,
Agogino, & Agogino, 2004). This is acceptable
for WSNs comprised of static sensors that do not
require substantial or real-time re-association.
However this is certainly not suitable for mobile
patientmonitoringsensors,asthesesensorscould
move within and out of the RF coverage within
the association period, degrading the system
performance. Another problem is a super node
can only associate with up to 7 slave nodes at the
same time, which will cause scalability problems
if a large number of leaf nodes are present within
a small area. Apart from these limitations, Blu-
etooth is an inexpensive and mature technology.
It is certainly suitable as the protocol for small,
ad hoc sensor networks.
ZigBee (Based on IEEE 802.15.4)
TheZigBeeprotocolisanupperlayerarchitecture
based on top of the IEEE 802.15.4 stack. Strictly
speaking, ZigBee is not IEEE 802.15.4 rather it is
a network layer application of the IEEE 802.15.4
protocol. It provides sufficient transmission
distance and data rate for sensor networks while
consumes relatively extremely low energy.
ZigBeesupportsbothstarandmeshtopologies,
which enables a versatile design of the network
architecture. It is developed for home automation
and has many inherent advantages compared to
BluetoothandWLAN.Forexample,well-defined
routing protocols enable ZigBee sensors to form
a reliable mesh network with redundancy. Also
the 16 bit short address and 64 bit MAC address
means there is essentially no node limit for a par-
ticular wireless sensor network (up to 64000 for a
coordinator). Because the WSN can take full ad-
vantage of ZigBee’s low power consumption and
welldefinednetworklayerstack,ZigBeeiswidely
implemented by sensor network projects.
Figure 3. Bluetooth scatternet topology
37. 13
Pervasive Networks and Ubiquitous Monitoring for Wellness Monitoring in Residential Aged Care
Wireless Network Implementation
There are two major topologies utilized in WSN
design, namely mesh network and star network
topologies.
Mesh Network
A wireless mesh network (WMN) is a common
topologyadaptedbyWSNs(Figure4).Thereisno
centralgatewayintheWMN,eachnodewithinthe
network connects to other nodes residing within
each others’ RF coverage (Groth & Skandier,
2005). In a WSN environment, each node in the
networkisresponsibletonotonlycollectandsend
out data but also responsible to relay data sent by
others.Suchamodelofdatatransmissioniscalled
multi-hop routing. The advantage of the WMN
is it provides a degree of network redundancy
because data is routed dynamically. Failure of
a node will not cause a systematic failure of the
network; instead data will be routed through the
next possible path. However in the case of large
data traffic, it is possible for a particular node
to receive a large influx of data and because the
limited bandwidth of Bluetooth and ZigBee,
the network may congest and data may be lost.
Therefore WMNs are more suitable for a relative
static WSN that does not have burst data traffic,
for example a static ambient environmental con-
dition (temperature, light, humidity) monitoring
sensor network.
The CodeBlue project by Harvard University
is an example of WSNs for medical care. It uti-
lizes motes (mobile sensors) with mesh network
topology and the ZigBee wireless protocol. It has
a wide range of sensors including pulse oximetry
and wireless two-lead ECG (Shnayder, Chen,
Lorincz, Fulford-Jones, & Welsh, 2005). Code-
Blue also defines a framework of packet routing,
sensorcommunicationandsoftwareimplementa-
tion protocols.
Star Network
A star network (Figure 5) is a simple network
topology with a central (super) node responsible
to receive and transmit data to and from each leaf
node.Hencecomplicatedroutingmethodsarenot
needed. In the wireless sensor environment there
is no communication between sensors nodes and
the network performance is increased because
data packets are not passing through other nodes.
Instead it is always the super node and a leaf node
involved in communications. The star network
also eliminates the possible network congestion
in a mesh network as the super node could be
designed to have a higher output bandwidth than
the leaf node. For example, in the SensorNet@
BSLprojectattheUniversityofNewSouthWales,
Australia a gateway was designed that had both
ZigBee and WLAN interfaces. ZigBee was used
by the gateway to communicate with the sensors
while the collected data could be transmitted to
a higher level server via WLAN (L. L. Chan,
Zhang, Narayanan, Celler, & Lovell, 2008). The
drawback of such topology is it suffers single
point of failure, namely if the super node fails,
the entire network is out of service.
Figure 4. Mesh network topology
38. 14
Pervasive Networks and Ubiquitous Monitoring for Wellness Monitoring in Residential Aged Care
Hybrid Network Topology
Sometimes it is practical to combine different
types of network topologies in order to improve
the scalability and stability, manageability and
bandwidthofthenetwork.Forexample,inamesh
/ star network hybrid, sensors can communicate
to the super node directly while it is within the
coverage of the super node. While the sensor is
out of range, it should be able to communicate
with other leaf-node sensors and ultimately send
data to the super node via multi-hop routing.
In a large geographical area like a hospital,
tree (hierarchal) topology could be implemented
(Figure 6). A star / mesh network hybrid sensor
network could be considered as a leaf-node of the
tree network. Each leaf-node monitors a small
area such as a single or several rooms. Higher-
level hierarchies may include a hospital ward or a
level of a building. Data is processed and merged
at each lower level then transmitted to the next
upperhierarchyviaafastnetworkprotocol,wired
(Ethernet) or wireless (WLAN). Eventually data
from different sections of the site converge at the
central server.
FUTURE RESEARCH DIRECTIONS
Based on the current literature, nearly all well-
ness monitoring systems, whether commercial or
research, focus on either vital signs monitoring
or ADL monitoring. It is becoming clear that to
adequately support the needs of health monitor-
ing in residential aged care both elements need
to be integrated.
A continuous wellness monitoring system
(SensorNet@BSL) currently under further de-
velopment at University of New South Wales is
built with this goal in mind. The initial version of
the system operates on a three-layer architecture,
consisting of a central server controlling multiple
WLANs with each WLAN coordinating multiple
Zigbee-basedWSNs.Thethree-layerarchitecture
systemdesignoffersflexibilityintermsofexpand-
ing the sensor network almost indefinitely to suit
thefacilityareaandneed.Itcanbeappliedequally
efficiently to a single household and a well-estab-
lished, multi-storey residential aged care facility.
Itscompletewirelessnaturemeansthatthesystem
canbeinstalledintoplaceswithminimalbuilding
structural change and with maximal ease. Vital
signs monitoring is performed via the collection
of physiological parameters such as ECG, heart
rate, postural orientation, energy expenditure and
body temperature. ADL information is obtained
by analyzing unobtrusive data such as the resi-
dent’s interaction with the environment, usage of
facilities, interaction with caregivers, time spent
on certain activities, etc. Currently, the system is
undergoing additional technology modifications
toprepareformajorclinicalevaluationsinseveral
commercialresidentialagedcarefacilitiesaround
Australia.Figure7illustratesatypicaldeployment
of the SensorNet@BSL project. Figure 8 shows
hardwarelayoutsofthevariousWSNcomponents
while figure 9 shows sample data collected from
this deployment.
Similar wellness monitoring systems de-
veloped around the world over the last decade
include the House_n Group project (Intille, 2002;
Figure 5. Star network topology
39. 15
Pervasive Networks and Ubiquitous Monitoring for Wellness Monitoring in Residential Aged Care
Tapia, Intille, & Larson, 2004) which studied the
qualitativeandquantitativerelationshipsbetween
usersandsurroundingobjects.Basedoncollected
data the system was trained to build a Bayesian
network model for residential monitoring. The
WelfareTechno-HousesprojectinJapan(Tamura,
Togawa, Ogawa, & Yoda, 1998; Yamaguchi,
Ogawa, Tamura, & Togawa, 1998) consisted of
thirteenhousesequippedwithinfraredsensorsand
magnetic switches on the doors to monitor both
physicalactivityandphysiologicalsignalswiththe
goal of improving the quality of life for both the
elderly and their caregivers. The CareNet project
in the United Kingdom (Williams, Doughty, &
Bradley, 1998) provided the “Hospital at Home”
service by collecting the patient’s physiological
dataaswellasanalyzingthelifestyleofthepatient
by sensors embedded in their environment.
Another anticipated trend of wellness moni-
toring systems for residential aged care is the
possible integration with smart home systems.
Both systems can leverage on the data collected
by a single sensor network to achieve separate
outcomes. For instance, a light sensor detecting
the light intensity of a room can be used by the
smart home system to decide if lighting in a par-
ticular area should be adjusted.The same piece of
informationcanbeusedbyawellnessmonitoring
system to record the number of times a patient
wakes up at night to use the bathroom and infer
the health status of the patient.
A limited number of larger scale smart home
projects implemented in North America and Eu-
rope over the past decade have factored in their
design a wellness monitoring component. An
example of such is the Aware Home Research
Figure 6. Possible network topology for coverage of large areas
40. 16
Pervasive Networks and Ubiquitous Monitoring for Wellness Monitoring in Residential Aged Care
Figure 7.Amock living environment of anAustralian aged care facility and the operation of SensorNet@
BSL. The end server, the bridge units and the sensor units form the three-level architecture. The end
server communicates with the bridge units via WLAN while the WSN connections between the bridge
units and sensor units are ZigBee-based. Sensor units are either placed in the environment (static) or
can be carried around (mobile). As a mobile sensor unit moves to a new geographical area served by a
different bridge unit, the control of the sensor unit is handed over to the new bridge unit such that the
room-level location of the mobile unit at any time is known to the end server
Figure8.TheSensorNet@BSLhardwareplatform.Left:themodulardesignoftheuniversalsensormother
board to which different sensor daughter boards can be attached to modify functionality. Middle: the
middle layer ZigBee / WLAN bridge acts as the super node. Right: a sensor daughter board attached to
the mother board. The illustrated daughter board has a PIR, a temperature and a light intensity sensor
incorporated into the printed circuit board
41. 17
Pervasive Networks and Ubiquitous Monitoring for Wellness Monitoring in Residential Aged Care
Initiative at the Georgia Institute of Technology
(Kidd et al., 1999) which involved a three-storey
smart home to support elderly occupants with
contextawarenessandubiquitoussensing,location
tracking and lost object tracking capabilities.The
Millennium House project pioneered by British
Telecom and the Anchor Trust (Perry, Dowdall,
Lines, & Hone, 2004) used infrared sensors and
magnetic switches on doors to study the behavior
pattern of the occupant and alert the caregiver
shouldanabnormalitybedetected.Thisintelligent
system also supported independent living of the
elderly by warning them about dangerous events,
or checking if they need external assistance.
CONCLUSION
Statistics highlight the fact that the world popula-
tion is aging, and this phenomenon is becoming
an issue for developed countries. To maintain
and improve quality and continuity of care, ex-
tra resources must be allocated for maintaining
elderly health. The rise of information technolo-
gies carries the promise of providing ubiquitous
wellness monitoring for functional health assess-
mentinresidentialagedcarefacilitieswithhigher
quality and at a reduced cost. Among these, the
technologies involved in constructing pervasive
WSNs have been shown to improve the diversity
of the parameters that can be measured in vital
signs monitoring and enhance data availability to
Figure 9. Sample data from tri-accelerometry sensor with derived energy expenditure level
42. 18
Pervasive Networks and Ubiquitous Monitoring for Wellness Monitoring in Residential Aged Care
authorized healthcare personnel. WSNs are also
proved to be beneficial in ADL management by
monitoring residents’ interaction with their en-
vironment and alert caregivers when abnormal
living patterns are detected.
Whendesigning aWSN for wellness monitor-
ingpurposes,manyfactorsneedtobeconsidered.
Eachsensortypehasitsspecificareaofapplication
such as ambient environmental monitoring, body
signal measurement or location tracking. Sensors
must be chosen to fit the type and environment of
use while at the same time satisfy requirements
such as size, power consumption, cost and lon-
gevity for a particular application. In general, a
wireless sensor node consists of a transducer unit
managed by a microprocessor which provides
signal preconditioning capability and acts as an
interface to the wireless transceiver front-end.
The whole sensor node is most likely powered by
a rechargeable battery that enhances mobility of
the node. The wireless communication protocol
and network topology must also be chosen care-
fully to optimize battery life, transmission range,
throughput and scalability.
Raw data collected by the sensors are often
pre-processed, either by the sensor node or the
datasink,beforefurthertransmissionstooptimize
limited bandwidth usage and enhance network
availability.Datamustalsobeprocessedtodetect
and alert for corruption and artifact.
Perhaps the biggest future challenge that has
only started to be addressed is the need for data
fusion from multiple sensors. These data must
feed into knowledge management systems that
by way of machine learning and other inference
methods can compare changes against normal
templates for particular subjects and thus identify
a decline in functional health status. The current
state of research is that WSN are only now being
deployed to provide the necessary baseline data
from which the knowledge management systems
can be developed.
Itisenvisionedthatfuturewellnessmonitoring
systems will not only incorporate capabilities to
monitorbothvitalsignsandADLbutalsointegrate
seamlessly with smart home systems to provide
a truly intelligent environment to cater for all
aspects of daily living.
REFERENCES
Adamodt,K.(2006).[LocationEngine].Applica-
tion Note, AN042, CC2431.
Australian Bureau of Statistics. (2006). 4102.0 -
Australian Social Trends, 2006. Retrieved from
http://www.abs.gov.au/ausstats/abs@.nsf/Latestp
roducts/6F443192D27B9360CA2571B00013D9
54?opendocument
Australian Bureau of Statistics. (2008). 3222.0 -
Population Projections, Australia, 2006 to 2101.
Retrieved from http://www.abs.gov.au/ausstats/
abs@.nsf/mf/3222.0
Australian Government. (2007a). Clinical IT in
Aged Care Product Trial - Trial of a Medica-
tion Management System - Report. Retrieved
from http://www.health.gov.au/internet/main/
publishing.nsf/Content/aging-rescare-econnect-
med-mgt-trial.htm
Australian Government. (2007b). Clinical IT in
Aged Care Product Trial - Trial of a System for
Monitoring Clinical Well-Being - Report. Re-
trieved from http://www.health.gov.au/internet/
main/publishing.nsf/Content/1E896B258E583
DF8CA2573B5007C788D/$File/Clinical%20
Monitoring.pdf
Australian Institute of Health and Welfare.
(2008). Australia’s health 2008. Retrieved from
http://www.aihw.gov.au/publications/index.cfm/
title/10585
Celler, B. G., Basilakis, J., Budge, M., & Lovell,
N.H.(2006).AClinicalMonitoringandManage-
mentSystemforResidentialAgedCareFacilities.
In Proceedings of the 28th IEEE EMBS Annual
International Conference, (pp. 3301).
43. 19
Pervasive Networks and Ubiquitous Monitoring for Wellness Monitoring in Residential Aged Care
Celler,B.G.,Earnshaw,W.,Ilsar,E.D.,Betbeder-
Matibet,L.,Harris,M.,&Clark,R.(1995).Remote
monitoring of the elderly at home. A multidisci-
plinary project on aging at the University of New
SouthWales.InternationalJournalofBio-Medical
Computing, 40, 147–155. doi:10.1016/0020-
7101(95)01139-6
Chan, L. L., Celler, B. G., & Lovell, N. H. (2006).
Development of a Smart Health Monitoring and
Evaluation System. Paper presented at the TEN-
CON 2006, IEEE Region 10 Conference.
Chan,L.L.,Zhang,J.Z.,Narayanan,M.R.,Celler,
B. G., & Lovell, N. H. (2008, February 13-15).
A Health Monitoring and Evaluation System for
Assessing Care Needs of Residents in Aged-Care
Facilities.PaperpresentedattheIASTEDBiomed.
Eng., Innsbruck, Austria.
Elite Care. (2008). Elite Care. Retrieved 2009,
2008, from http://www.elitecare.com/
Eurostat/US Bureau of the Census. (2008,
03/09/2008). People by age classes. Retrieved
28/01/2009, from http://epp.eurostat.ec.europa.
eu/portal/page?_pageid=1996,39140985&_
dad=portal&_schema=PORTAL&screen=d
etailref&language=en&product=REF_TB_
population&root=REF_TB_population/t_
popula/t_pop/t_demo_pop/tps00010
Golant, S. M. (2008). The Future of Assisted
Living Residences. In Golant, S. M., & Hyde, J.
(Eds.), The Assisted Living Residence (pp. 3–45).
Baltimore: The John Hopkins University Press.
Groth,D.,&Skandier,T.(2005).Network+Study
Guild. Indianapolis: Wiley Publishing Inc.
Hogan,W.(2007).TheOrganisationofResidential
Aged Care for an Aging Population. The Centre
of Independent Studies Limitedo.
Hyde, J., Perez, R., & Reed, P. S. (2008). The
Old Road Is Rapidly Aging. In Golant, S. M., &
Hyde, J. (Eds.), The Assisted Living Residence
(pp. 46–85). Baltimore: The Johns Hopkins
University Press.
Intille, S. S. (2002). Designing a Home of the Fu-
ture.IEEEPervasiveComputing/IEEEComputer
Society[and]IEEECommunicationsSociety,1(2),
76–82. doi:10.1109/MPRV.2002.1012340
JapanStatisticsBureau&StatisticsCenter.(2008,
April 15). Population by Age (Single Year), Sex
and Sex ratio - Total population, Japanese popu-
lation, October 1, 2007. Retrieved 28/01/2009,
from http://www.e-stat.go.jp/SG1/estat/ListE.
do?lid=000001026128
Karantonis,D.M.,Narayanan,M.R.,Mathie,M.,
Lovell,N.H.,&Celler,B.G.(2006).Implementa-
tion of a Real-Time Human Movement Classifier
Using a Triaxial Accelerometer for Ambulatory
Monitoring. Information Technology in Biomedi-
cine. IEEE Transactions on, 10(1), 156–167.
Kidd, C. D., Orr, R., Abowd, G. D., Atkeson, C.
G., Essa, I. A., MacIntyre, B., et al. (1999). The
AwareHome:ALivingLaboratoryforUbiquitous
Computing Research. Paper presented at the Pro-
ceedingsoftheSecondInternationalWorkshopon
Cooperative Buildings, Integrating Information,
Organization, and Architecture.
Kutzik, D. M., Glascock, A. P., Lundberg, L., &
York,J.(2008).TechnologicalToolsoftheFuture.
In Golant, S. M., & Hyde, J. (Eds.), The Assisted
Living Residence. Baltimore: The Johns Hopkins
University Press.
Labiod, H., Afifi, H., & De Santis, C. (2007).
Wi-Fi Bluetooth Zigbee and WiMax. Dordrecht:
Springer. doi:10.1007/978-1-4020-5397-9
44. 20
Pervasive Networks and Ubiquitous Monitoring for Wellness Monitoring in Residential Aged Care
Lovell,N.H.,Celler,B.G.,Basilakis,J.,Magrabi,
F., Huynh, K., & Mathie, M. (2002). Managing
chronic disease with home telecare: a system ar-
chitecture and case study. Paper presented at the
Proceedings of the Second Joint EMBS/BMES
Conference..
Massachusetts Institute of Technology. (2003).
PlaceLab: A House_n + TIAX Initiative. Cam-
bridge, MA:Author. Retrieved from http://archi-
tecture.mit.edu/house_n/placelab.html
Mathie, M. J., Coster, A. C., Lovell, N. H., &
Celler, B. G. (2004). Accelerometry: providing
an integrated, practical method for long-term,
ambulatory monitoring of human movement.
Physiological Measurement, 25(2), R1–R20.
doi:10.1088/0967-3334/25/2/R01
Mathie, M. J., Coster,A. C., Lovell, N. H., Celler,
B.G.,Lord,S.R.,&Tiedemann,A.(2004).Apilot
study of long-term monitoring of human move-
ments in the home using accelerometry. Journal
of Telemedicine and Telecare, 10(3), 144–151.
doi:10.1258/135763304323070788
Mori, T., Noguchi, H., Takada, A., & Sato, T.
(2004). Sensing Room: Distributed Sensor Envi-
ronmentforMeasurementofHumanDailyBehav-
ior.InFirstInternationalWorkshoponNetworked
Sensing Systems (INSS2004), (pp. 40-43).
Ohta, S., Nakamoto, H., Shinagawa, Y., &
Tanikawa, T. (2002). A health monitoring sys-
tem for elderly people living alone. Journal
of Telemedicine and Telecare, 8(3), 151–156.
doi:10.1258/135763302320118997
Pentland,A.(2004).Healthwear:Medicaltechnol-
ogy becomes wearable. Computer, 37(5), 42–49.
doi:10.1109/MC.2004.1297238
Perry, M., Dowdall, A., Lines, L., & Hone, K.
(2004). Multimodal and ubiquitous computing
systems: supporting independent-living older
users. Information Technology in Biomedicine.
IEEE Transactions on, 8(3), 258–270.
Philipose, M., Fishkin, K. P., Perkowitz, M.,
Patterson, D. J., Fox, D., & Kautz, H. (2004).
Inferring activities from interactions with ob-
jects. Pervasive Computing, IEEE, 3(4), 50–57.
doi:10.1109/MPRV.2004.7
PopularMechanics.(2004,06).RobotsHelpJapan
CareForItsElderly.Retrieved30/01/2009,2009,
fromhttp://www.popularmechanics.com/science/
technology_watch/1288241.html
Raju, M. (2007). Heart-Rate and EKG Monitor
Using the MSP430FG439 [Electronic Version].
Redmond, S. J., Lovell, N. H., Basilakis, J., &
Celler, B. G. (2008). ECG quality measures in
telecare monitoring. Paper presented at the Proc.
30thAnnual Int. Conf IEEE EMBC08, 20th-24th
Aug, Vancouver Canada.
Sandhu, J. S., Agogino, A. M., & Agogino, A.
K. (2004). Wireless Sensor Networks for Com-
mercial Lighting Control: Decision Making with
Multi-agent Systems.
Shnayder,V.,Chen,B.,Lorincz,K.,Fulford-Jones,
T. R. F., & Welsh, M. (2005). Sensor Networks
for Medical Care. In Proceedings of the 3rd in-
ternational conference on Embedded networked
sensor systems, (pp. 314-314).
Srovnal,V.,&Penhaker,M.(2007).HealthMain-
tenance Embedded Systems in Home Care Appli-
cations. Paper presented at the Systems, ICONS
‘07, Second International Conference on.
Stanford, V. (2002). Using Pervasive Computing
to Deliver Elder Care. IEEE Pervasive Com-
puting / IEEE Computer Society [and] IEEE
Communications Society, 10–13. doi:10.1109/
MPRV.2002.993139
45. 21
Pervasive Networks and Ubiquitous Monitoring for Wellness Monitoring in Residential Aged Care
Suzuki, R., Ogawa, M., Otake, S., Izutsu, T.,
Tobimatsu, Y., & Izumi, S. (2004). Analysis of
activities of daily living in elderly people liv-
ing alone: single-subject feasibility study. Tele-
medicine Journal and e-Health, 10(2), 260–276.
doi:10.1089/tmj.2004.10.260
Tamura, T., Togawa, T., Ogawa, M., & Yoda, M.
(1998).Fullyautomatedhealthmonitoringsystem
in the home. Medical Engineering & Physics, 20,
573–579. doi:10.1016/S1350-4533(98)00064-2
Tapia, E., Intille, S. S., & Larson, K. (2004).
Activity Recognition in the Home Using Simple
and Ubiquitous Sensors. In Pervasive Computing
(pp. 158-175).
Tsipouras, M. G., Fotiadis, D. I., & Sideris, D.
(2005).Anarrhythmiaclassificationsystembased
on the RR-interval signal. Artificial Intelligence
in Medicine, 33(3), 237–250. doi:10.1016/j.art-
med.2004.03.007
USCensusBureau.(2008,13/08/2008).Projected
Population by Single Year of Age, Sex, Race,
and Hispanic Origin for the United States: July
1, 2000 to July 1, 2050. Retrieved 27/01/2009,
from http://www.census.gov/population/www/
projections/downloadablefiles.html
Virone, G., Alwan, M., Dalal, S., Kell, S. W.,
Turner, B., & Stankovic, J. A. (2008). Behav-
ioral Patterns of OlderAdults inAssisted Living.
IEEE Transactions on Information Technol-
ogy in Biomedicine, 12(3), 12. doi:10.1109/
TITB.2007.904157
Voon, R., Celler, B. G., & Lovell, N. H. (2008).
The use of an energy monitor in the management
of diabetes: a pilot study. Diabetes Technology
and Therapeutics.
Warren, S.,Yao, J., & Barnes, G. E. (2002).Wear-
able sensors and component-based design for
home health care. Annual International Confer-
ence of the IEEE Engineering in Medicine and
Biology - Proceedings, 3, 1871-1872.
Williams, G., Doughty, K., & Bradley, D. A.
(1998).AsystemsapproachtoachievingCarerNet-
an integrated and intelligent telecare system.
Information Technology in Biomedicine. IEEE
Transactions on, 2(1), 1–9.
Wilson,L.S.,Ho,P.,Bengston,K.J.,Dadd,M.J.,
Chen, C. F., Huynh, C., et al. (2001). The CSIRO
hospitalwithoutwallshometelecaresystem.Paper
presented at the Intelligent Information Systems
Conference, The Seventh Australian and New
Zealand 2001.
Wolf, D. A., & Jenkins, C. (2008). Family Care
andAssisted Living. In Golant, S. M., & Hyde, J.
(Eds.),TheAssistedLivingResidence.Baltimore:
The Johns Hopkins University Press.
Wylde, M. A. (2008). The Future of Assisted
Living: Residents’ Perspectives 2006-2026. In
Golant, S. M., & Hyde, J. (Eds.), The Assisted
Living Residence. Baltimore: The Johns Hopkins
University Press.
Yamaguchi,A.,Ogawa,M.,Tamura,T.,&Togawa,
T. (1998). Monitoring behavior in the home us-
ing positioning sensors. Paper presented at the
Engineering in Medicine and Biology Society,
1998.Proceedingsofthe20thAnnualInternational
Conference of the IEEE.
ADDITIONAL READING
Barger, T. S., Brown, D. E., &Alwan, M. (2005).
Health-status monitoring through analysis of be-
havioral patterns. Systems, Man and Cybernetics,
Part A, IEEE Transactions on, 35(1), 22-27.
Bulusu,N.,&Jha,S.(Eds.).(2005).Wirelesssen-
sor networks. Norwood: Artech House, Inc.
Camp, J., Robinson, J., Steger, C., & Knightly,
E. (2006). Measurement driven deployment of a
two-tier urban mesh access network.
47. H E T
D O R P
AMSTELVEEN.
Zo ons werk niet van dien aart ware, dat wij geene keuze konden
doen in de veele plaatsen welken in ons Vaderland voorhanden zijn,
(want ons plan vordert dat wij die allen, van hoe grooten aanzien, of
hoe gering ook moeten beschrijven;) zo wij deeze of geene plaats ten
voorwerpe van onze beschrijving konden verkiezen, ongetwijfeld
zouden wij het dorp Amstelveen de eer van den voorrang geeven;
want in veelerleie opzichten verdient het de aandacht van elk
Nederlander: niet alleenlijk is het aangenaam en wèl gelegen; maar
ook is het op verscheidene andere wijzen aanmerkenswaardig: het is
reeds een voorwerp van de gunst der Graaven geweest, en tevens
een voorwerp der blinde woede ten tijde dat Spanje bloedmiddelen
aanwendde, om de vrije harten en halzen van de wereldberoemde
Batavieren door en onder zijn juk te knellen; en wat het in onze
laatstvoorledene beroeringen, door het verschillen over de
denkbeelden van recht, gerechtigheid en vrijheid, heeft moeten lijden,
is nog in verscher geheugenis; ’t heeft ondervonden dat de
Nederlanders, spijt alle verbastering nog niet geheel van hunne
voorvaderlijke deugd ontaart zijn.… dan, daar van zullen op de
volgende en meer andere bladzijden van dit ons werk overtuigende
bewijzen genoeg gevonden worden, om er hier van te kunnen
zwijgen; wij twijfelen niet of men zal onze beschrijving van dit dorp
met genoegen leezen.
L I G G I N G .
48. Het vermaaklijk Dorp Amstelveen, (of Amsterveen, zo als het
doorgaands genoemd wordt,) eene Ambachtsheerlijkheid van
Amsteldam, is gelegen in Amstelland, omtrent twee uuren gaans ten
Zuid-westen van Amsteldam, hebbende ten Oosten de Haarlemmer-
meir, [2]ten Westen het dorp Ouderkerk, en ten Zuiden, Tamen of
Uithoorn: deszelfs ligging is zeer aangenaam; de weg die van
Amsteldam, of wel van den Overtoom, derwaards gaat, verschaft
eene verrukkelijke wandeling tusschen twee reiën lommerijken
boomen, achter welken, op verscheidene plaatsen, ruime boerderijen,
en aanzienlijke tuinen gelegen zijn: te recht zegt de zoetvloejende
Willink, dat de gemelde aangenaame weg loopt,
Langs ijpeboomen, even glad,
En net geschoren; welker kruinen,
Zo tierig groejen bij het nat,
Dat eeuwig wenscht, dien weg te omtuinen:
Alwaar het toverend gezicht
Den zachten wandelaar verpligt.
Amstelland, dat wij boven noemden, was weleer met het steedjen, ’t
welk, na nog geen twee honderd jaaren, tot de wereldberoemde
koopstad Amsteldam aangewassen is, eene bijzondere Heerelijkheid,
niet behoorende onder de eigendommen van de Hollandsche
Graaven, maar aan het geslacht der Heeren van Amstel: toen Heer
Gijsbrecht, van dien naam, als deelgenoot van den bekenden
moord aan Graaf Floris, het Land moest ruimen, werden zijne
goederen verbeurd verklaard, en werden deezen gevolglijk een
volstrekt eigendom van den Graaf; volstrekt, zeggen wij, want
Gijsbrecht was reeds vroeger, voor zekere handelwijze van hem
omtrent den Bisschop van Utrecht, door den Graaf gestraft,
daarmede, dat hij zijne goederen, waaronder ook Amstelland, aan den
Graave moest opdraagen, waarna hij dezelven weder als een Leen
van deezen ontving: Amstelland is volgends sommigen daarna een
49. Leen van de Utrechtsche Kerk geweest, doch ook weder aan de
Graaflijkheid gehecht; anderen ontkennen zulks geheel of ten deele.
De uitgestrektheid van deeze gewezene Heerlijkheid is aanmerkelijk
groot; zij wordt door den Amstel in twee deelen gescheiden, en aan
de West-zijde Nieuwer-Amstel genoemd, in tegenstelling van de
andere zijde die den naam van Ouder-Amstel draagt; zij bevat de
dorpen, Slooten, Slooterdijk, Amstelveen, Ouderkerk, Diemen met
Diemerdam, Loenen en Loosdrecht, [3]Duivendrecht, Waver,
Waverveen, Oostdorp, en meer andere vlekjens; ook zelfs
Amsteldam, dat men de hoofdstad van deeze Heerlijkheid zoude
kunnen noemen: de grond van dezelve is over ’t algemeen laag,
week, moerassig en brakachtig; des vindt men er weinig bouwland, in
vergelijking van den gras- en veen-grond die er voorhanden is: de
laage ligging vereischt groote kosten aan watermolens, om het water
geen overhand te laaten neemen; integendeel zijn onder de
voordeelen van Amstelland te tellen, de veenen en ook zelfs de
waterplassen welken er zijn, beiden groote winsten aanbrengende, de
laatstgemelden door keur van allerleie smaaklijke riviervisch: voor
weinige jaaren is boven Amstelveen, een diep uitgebaggerde
veengrond droog gemaakt, en is thans reeds weder tot goed land
geworden—dat weleer binnen den omtrek van deeze Heerlijkheid
zwaare bosschen, (waarvan geheel Holland toen rijklijk voorzien
was1
) gestaan moeten hebben, en in de zo bekende boomstortingen
gevallen zijn, blijkt van tijd tot tijd daaraan dat onder het graaven
zwaare boomen gevonden worden; aan sommigen van dezelven heeft
men vinden hangen, nooten en andere vruchten, die nog zeer goed
waren—ons bestek laat niet toe breeder over deeze anders zo
aangenaame taak, zo weinig als over Amstelland op zig zelf, te
spreeken; des keeren wij tot Amstelveen weder.
N A A M S O O R S P R O N G .
50. De naam welke dit aangenaame dorp draagt, verklaart tevens
deszelfs afkomst; betekenende naamlijk het veen dat aan den Amstel
ligt, of Amstels Veen; waarom de eigenlijke naam niet Amsterveen,
gelijk wij zeiden dat het doorgaands genoemd wordt, maar
Amstelveen is. [4]
S T I C H T I N G e n G R O O T T E .
Wat de stichting betreft, daarvan kan, gelijk van veele andere dorpen,
enz. niets gezegd worden; zeer waarschijnelijk zijn dezelven hunnen
oorsprong verschuldigd aan ’t verblijf van eenige lieden, visschers,
landbouwers, of baggerders, welken hunne nooddruft uit de
grondsgelegenheid aldaar vonden, en bij wie misschien, door hunnen
welvaart van tijd tot tijd uitgelokt, zig veele anderen gevoegd, en zo
een buurt gemaakt hebben, welke, na verloop van tijd, in een dorp
veranderd kan geworden weezen.
Wat de grootte van Amstelveen betreft, het geheele Ambacht wordt in
de oude verpondings lijsten gesteld op 2670 morgen en 766 roeden;
in andere opgaven vindt men er 4076 morgen voor, welk verschil
ontstaan kan door eene andere bepaaling van het district, of liever
van den grond die onder de opgave betrokken is; thans wordt het wel
6000 morgen groot geschat: in oude lijsten staan voor Amstelveen
251 huizen aangetekend; in nieuwere 1167 huizen en één molen;
welk verschil weder op de gemelde wijze kan ontstaan zijn, althans de
laatste opgaave, bepaalt zig niet binnen den omtrek van het eigenlijke
dorp zelf, maar gaat ook over de buurten welken daaronder behooren,
liggende aan den Amstel, den Veendijk, de zogenaamde
Zwaluwenbuurt, en de Nes, ook de geheele Amstelveensche weg,
aan de hand van Leiden, enz.
51. Ten noorden paalt het rechtsgebied van Amstelveen onmiddelijk aan
dat van Amsteldam, waarvan de Heer Wellekens, in zijne Visschers
en Jagersgezangen, dus zingt:
Juist daar de Mijlpaal staat, uit blaauw arduin gehouwen,
Die ’t land en halsrecht scheidt, de beken en Landsdouwen,
Van ’t prachtig Amsteldam, en ’t nedrig Amstelveen,
Gelijk van stam en naam, maar nu met lotgemeen.
’T W A P E N .
Dit is een rood Schild, met twee zwarte dwarsbalken doorsneden;
[5]op den bovensten balk drie, en op den ondersten één witte kruisen.
K E R K L IJ K E G E B O U W E N .
Onder deezen kunnen geene anderen geteld worden dan de Kerk
zelve, het Diaconie-Weeshuis, en ’t algemeene Armehuis; in het
Diaconie-Weeshuis zijn niet meer dan twintig kinderen, en weinige
oude lieden, en het Armehuis is in tweeën gescheiden; zijnde het
voorste gedeelte ten dienste der Gereformeerden, en het achterste
voor de Roomschen en Lutherschen, als mede voor de oude lieden
van beide gezindheden: voor het Armehuis leest men:
Den armen wees tot nut, bragt men dit huis tot stand,
Den ouden tot een stut, in Nieuwer Amstelland.
Boven den ingang van het Diaconiehuis staan de volgende woorden
in een vierkanten steen uitgehouwen: „Door de weldaadigheid van
Nieuweramstel en Amsteldam, is dit Diaconie Weeshuis gebouwd, in
het jaar 1765.
„De Heere houdt de Weezen en Weduwen staande: Ps. 126 vs. 9.”
52. Weleer stond boven de poort of ingang, naast het zelve huis nog een
versjen, ’t welk door ’t schilderen daarvoor van daan geraakt is: dus
luidde het:
De liefde omhelst ’t verlaten weesken alhier,
Om z’in haar schoot te voên en te onderwijzen,
Verkwikt, versterkt met wijs bestier,
De Oude, Arme, en afgewerkte grijzen:
O Amstelland! wie roemt en volgt u niet,
Als men dit huis met zijn bewooners ziet!
De Kerk staat op een bemuurd kerkhof, dat met schoon geboomte
beplant is; het gebouw pronkt met een aartig spits torentjen, waarin
slag en uurwerk is: onder de weinige sieraadjen van binnen munt zeer
uit het eeregraf van den beroemden Nederlandschen Dichter, Johan
van [6]Broekhuizen, zijner nagedachtenisse geschonken door den
Wel Ed. Heer, Mr. Abraham Calkoen, Heer van Kortenhoef, ten tijde
der oprichting (1767) Baljuw en Dijkgraaf van Amstelland, naderhand
Hoofdofficier der Stad Amsteldam: hetzelve bestaat in eene aloude
lijkbus van blaauw arduinsteen, rustende op een dergelijk voetstuk,
voor hetwelk een Latijnsch vers van den Hoogleeraar Burman, op
een wit marmer tafreel is uitgehouwen, zijnde van deezen inhoud:
„Ter gedachtenisse van
Johan van Broekhuizen,
Overleden in het Jaar 1707.
„Gij alle die de Dichtkunst en Wapenoefening bemint, strooit lauren, mirten
en veil op dit gewijde graf: Broekhuizen, wiens gedichten die van
Propertius evenaarten, ligt hier in de Amstelveensche Kerk begraven; op
dat hij ruste in dien zelfden oord, waarin hij, ontslagen van zijne
krijgsamten, die hij met eere bekleed had, zig, in stilte, met geleerde
oefeningen bezig gehouden heeft: de erkentenis die men aan zijnen asch,
waarvoor men zo schandelijk verzuimd had eenig gedenkteken opterichten,
na zestig jaaren verloops, de verschuldigde eer bewijst, hebbe haaren
verdienden lof, en verstrekke ten treffelijken voorbeelde voor de dankbaare
53. nakomelingschap; doch schoon dit grafteken, gelijk alle anderen, zelfs
zulken die uit het kostbaar marmer gehouwen zijn, eindelijk vergaan moet,
zullen nogthans de werken van zo groot eenen geest alleen zijnen naam
onstervelijk maaken.”
Tot genoegen van onze Leezers, maar voornaamlijk tot genoegen van
de bewooners van Amstelveen, zullen wij hier eene kleine schets van
de levensbeschrijving diens voortreffelijken mans bijvoegen; ’t kan
gezegde bewooners tog niet onverschillig zijn te weeten wie hij
eigenlijk was die verdiend heeft, dat hun Kerkjen met zijn eereteken
pronkt.
Johan van Broekhuizen, was dan een Amsteldammer, [7]ter dier
stede geboren den 20 November des jaars 1649; de zoon van een
Hoedestoffeerder, die daarna ook klerk ter Secretarij van de
Admiraliteit aldaar was; zijne moeder Eva Vos, was aan de
aanzienlijke geslachten van Witsen en Hudde, vermaagschapt:
Broekhuizen werd van jongs af der studie toegewijd; maakte groote
vorderingen in de geleerde taalen, en betoonde al vroeg eene
ongemeene zucht voor de dichtkunde der Latijnen; en deeze zucht
was in onzen dichter zelfs zo brandend, dat hij, meer dan vijftig
versen, in die taale gedicht, slechts één maal gehoord hebbende,
dezelven van buiten kende; inderdaad een doorslaand bewijs van
eene wonderbaare natuurgaaf, die zo vermaaklijk als in andere
gevallen, (doch voor den dichter altoos hoogstwenschlijk,) lastig is;
want Broekhuizen kon met geene mogelijkheid de regelen der
Logica, eene drooge schoolsche studie, in zijn geheugen prenten;
leevende voorbeelden zouden den man van ondervinding van deeze
waarheid meer dan hij verlangde overtuigen: zo geheugt het mij, toen
ik lessen in de Wiskunst gaf, meermaals leerlingen gehad te hebben,
die uitmuntten in allerleie werken van genie, als daar is het maaken
van tooneelspellen, en zamenstellen van romans, dat deezen, spijt
alle mijne aangewende moeite, geen denkbeeld van eene rekening
van proportie, of zogenaamde regel van drieën konden verkrijgen.
54. Van de schoole gekomen zijnde, besteedde zijn Oom, die hem na den
dood zijns Vaders, tot tweeden Vader verstrekte, hem in een
Apotheek, waarin hij eenige jaaren doorbragt, zonder echter de
dichtkunde van zijne geliefde Latijnen te vergeeten: deeze slaafsche
verbinding konde hem, zeer natuurlijk, niet lang behagen; hij kreeg er
tegenzin in, en begaf zig tot een vrijer leven, tot den krijgsdienst
naamlijk, waarin hij welhaast tot den rang van Vendrig bevorderd
werd; hoe zou ook een lievelingskind der Natuur in allerleie standen
geene bevordering verkrijgen! intusschen vergat hij zijne waarde
Latijnen niet; ook niet toen hij vervolgends onder den dapperen De
Ruiter, een togt ter zee deed, of toen hij, in 1673, in [8]zijne
geboortestad, Lieutenant werd over een Vendel van de stads
bezetting: behalven dat woonde hij verscheidene veldtogten in
Duitschland en de Nederlanden bij: hij zettede zig, na het sluiten van
den vrede te Nijmegen, met er woon te Utrecht neder, en gaf zig
aldaar geheel aan de boekoefening over: van daar kwam hij te
Amsteldam, en had het geluk zijne studie voordtezetten in gezelschap
van zijne beroemde tijdgenooten de Heeren Hulst, Huijdecooper,
Heinck, Geelvink, en anderen: Burgemeester Hudde bezorgde hem
de Capiteinsplaats van één der Vendelen van meergemelde stads
bezetting: toen na het sluiten van den Rijswijkschen vrede, dat Vendel
afgedankt werd, verkoos onze Broekhuizen een aangenaam
buitenverblijf, onder het gebied van Amstelveen ter wooning, alwaar
hij bij aanhoudendheid van de voornaamste Geleerden bezocht werd,
en zijne studiën met onvermoeiden vlijt voordzettede; na lang
gesukkeld te hebben, overleed hij aldaar den 15 van Wintermaand
des jaars 1707, en werd op den vijfden dag na zijn overlijden, in
gevolge van zijnen laatsten wil, in de Kerk te Amstelveen begraven.—
Wat zijn arbeid betreft, Propertius en Tibullus, zijn fraai door hem
verbeterd, in ’t licht gegeven, als mede de gedichten van Sanesarius
en anderen: zijne eigene Latijnsche poëzij is door den beroemden
David van Hoogstraaten in den jaare 1711 ter persse bezorgd, en
55. weinige jaaren daarna ook zijne Nederduitsche gedichten, voor
welken ’t verhaal van ’s dichters leven geplaatst is: kort na zijn
overlijden deed de Hoogleeraar P. Burman eene redevoering daarop
toepasselijk: welke eere ’s mans nagedachtenis is aangedaan,
hebben wij boven gezien.
Het Kerkjen is gesticht in den jaare 1594, heeft geen orgel, en is de
eenigste die in de banne van Amstelveen gevonden wordt; ofschoon
zij bijna 1100 ledemaaten kan tellen: daarentegen zijn er op het zelfde
grondgebied wel vier Roomsche Kerken; een van dezelve staat op
den Amstelveenschen Weg, tusschen den Overtoom, en de
Kalfjeslaan, die geen van de kleinste is, een mooi orgel heeft, en door
twee Pastoors bediend [9]wordt: hij bevat onder zig wel 800
ledemaaten, behalven de menigte van vreemdelingen, welken des
zomers aldaar ter Kerke gaan.
De eerste Predikant op dit dorp is (1586) geweest Gerard Pauli,
zijnde hetzelve alstoen gecombineerd met Ouderkerk, doch in 1588 is
die combinatie gescheiden—voor eenige jaaren heeft de zonderlinge
Leeraar van der Zouw, door zijne wijze van den volke het
Euangelium te verkondigen, dit dorp geen gering voordeel
aangebragt, door de menigte van stedelingen, en omliggende
bewooners, welken hem kwamen hooren prediken; zijn toon en wijze
van verhandelen waren even zonderling; dikwijls brak hij zijne reden
af, om de in- en uitgaande menigte te zeggen dat zij minder
opschudding moesten maaken; om te zeggen dat men deezen of
geenen vermoeiden boêr, welke te weinig begrips van zijne
verklaaring konde maaken, en dien hij derhalven in de slaap gepredikt
had, optewekken; om aan den koster te klaagen dat de zon, door de
kerkglazen schijnende, hem geweldig hinderden, en dat derhalven de
56. glasgordijnen toegeschoven moesten worden; om bij het verschijnen
van een of ander gezelschap welgeklede lieden, uitteroepen: „Kijk,
kijk! daar komen weêr Amsteldammers aan! maar met geen hart,
hongerende en dorstende naar de geestelijke spijs en drank des
Euangeliums,” of iet dergelijks—’t geheugt mij zijn Wel Eerwaarden
eens het gebod der Wet, Gij en zult niet steelen, te hebben hooren
verklaaren, en hem in die verklaaring hooren stellen, dat alle
menschen, van wat staat en stand, van wat ouderdom, dieven waren;
zijn Weleerwaarde begon bij de kinderen, die zig niet zelden schuldig
maaken, zeide hij, aan het steelen van een appel of peer—tot de
Diakens der Kerke gekomen zijnde, dacht ik, de Leeraar zoude
evenwel deezen uit zijn algemeen vonnis uitsluiten, maar neen! zijn
hoofd naar derzelver gewoone plaats in de Kerk keerende,
schreeuwde zijn Wel Eerwaarde uit: Er wordt niet anders als koperen
munt in ’t zakjen gevonden! hij liet de uitlegging van de betekenis der
woorden aan Diakenen zelven over, en ging voord met zijne rol van
dieven verder afteleezen. [10]
Van de Wereldlijke Gebouwen, Amstelveen betreffende, daar het
Rechthuis, even als dat op alle andere dorpen, niets bijzonders heeft,
des juist niet in den rang van gebouwen geplaatst kan worden,
hebben wij geene aantekeningen te maaken, niet anders als dat
hetzelve een stads gebouw is; geapproprieerd tot eene wooning voor
den Officier, met eenen grooten tuin daar achter, waar voor de Officier
voornoemd jaarlijks eene zekere somme aan de stad Amsteldam
moet opbrengen: het gebouw heeft anders geen aanzien als dat het in
zijn gevel pronkt met het wapen van Amsteldam: om de drie weeken
wordt er, donderdags, rechtdag gehouden.
R E G E E R I N G .
Deeze bestaat voor zo veel Amstelveen zelf aangaat, uit den Balliuw,
Schout en zeven Schepenen: eene Ambachtsheerlijkheid van
57. Amsteldam zijnde, is er ook eene Ambachtsheer over gesteld, die de
zaaken, het Ambacht bijzonderlijk betreffende waarneemt; bestaande
de crimineele rechtbank aldaar eigenlijk uit Bailluw en Schepenen
voornoemd; welke eerstgemelde ook Bailluw van Amstelland is.
Tot het bestuur der Polderzaaken, wordt volgends octrooi van keizer
Karel den Vijfden, dato 31 December 1520, een Dijkgraaf- en
Hoog-Heemraadschap opgericht, dat met en benevens het Gerecht
van Amstelveen het opzicht zoude hebben, over de dijken, bruggen,
dijkslooten en andere polderwerken; volgends deeze handvest,
zouden van de vijf Landrijksten, vier Heemraaden, en de oudste dier
vijf, tot Dijkgraaf verkoozen worden: de Keizer noemde hen Dijkgraaf
en Heemraden van de Landen en Dorpen van Amstelveen, doch
hedendaags noemt men dat Collegie Dijkgraaf en Heemraaden van
Nieuwer-Amstel; het aanstellen van dat opzicht is zijne geboorte
verschuldigd aan de klagten die eenigen der Landrijksten bij den
Keizer inbragten, daarover dat de vloeden der Zuiderzee, dagelijks
aanwiessen, en die van het sticht van Utrecht hunne wateren ook
dagelijks door molens uitwierpen, en deeden loopen op de landen van
Amstelveen, waardoor de opgezetenen aldaar, indien er niet in
voorzien werd, scheenen te zullen [11]bedorven worden, en ten
eeuwigsten dage verloren blijven, verzoekende derhalven dat
hetzelve door het aanstellen van het bovengemelde Collegie, om
desaangaande de noodige voorzorgen te doen neemen, mogt
voorgekomen worden; de Keizer het gewigt deezer klagten inziende,
willigde hun verzoek in.
De verkiezing van deeze Dijkgraaf en Heemraaden geschiedde
weleer door de Rekenkamer der Graaflijkheids Domeinen, doch thans
58. geschiedt het door Gecommitteerde Raaden van de Staaten van
Holland, op aanschrijving van Burgemeesteren van Amsteldam.
V O O R R E C H T E N .
Deeze Ambachtsheerlijkheid is, in voorige eeuwen, door de Graaven
met verscheidene voorrechten beschonken; van daar heeft het nog
een vrij halsgerecht; ook mag, volgends privilegie van Graaf
Albrecht, in geheel Amstelland, geen beroep van vonnisse gedaan
worden—zij die eenig denkbeeld van het district, waarvan wij hier
spreeken, kunnen maaken, zullen zig in gevolge van het
eerstgemelde der bovengenoemde voorrechten, niet meer
verwonderen dat er te Amstelveen zo dikwijls halsrecht gedaan wordt.
Amstelveen heeft ook het recht om die van Amsteldam, nalaatig
bevonden wordende in het onderhouden van de sluizen „op ten
Middeldam, en op St. Anthonies-poorte,” te beslaan in de boete van
zes goudguldens dagelijks, tot duizend goudguldens toe, doch niet
hooger.
B E Z I G H E D E N .
Deezen bestaan onder de bewooners van deeze
Ambachtsheerlijkheid in het weiden van vee, maaken van melk, boter
en kaas, en het veenen, of baggeren van turf, enz.
G E S C H I E D E N I S S E N .
Hoe de Heerlijkheid Amstelland, en gevolglijk ook dit dorp Amstelveen
aan de Graaven van Holland gekomen is, hebben [12]wij boven,
(bladz. 2.) gezien; en in onze beschrijving van Sloterdijk, tekenden wij
59. aan dat dezelve naderhand in het huis van Brederode zijn
overgegaan, alwaar wij ook zeiden, dat niet naauwkeurig bepaald
konde worden, langs welken weg (zie aldaar bladz. 2); doch, onder
het naslaan van eenige andere dan de toen geraadpleegde schrijvers,
vinden wij dat men dien overgang dus opgeeft: Graaf Jan van
Holland, die zijn’ Vader den omgebragten Graaf Floris den Vijfden
opvolgde, kwam derhalven ook in het bezit van de verbeurd
verklaarde goederen van Van Amstel; en deeze, in 1299, zonder
kinderen komende te overlijden, is hem, als naast in den bloede, tot
erfgenaam opgevolgd, Jan van Avennes, welke in ’t begin zijner
regeeringe de Heerlijkheden van Amstel en Woerden schonk aan
zijnen broeder Guy; na den dood van deezen, en van Graaf Jan heeft
’s Graaven zoon Willem (1317,) die Heerlijkheden weder benaderd
en aan de Graaflijkheid gehecht.
Naderhand heeft Albert van Beiëren, als Graaf van Holland, de
Ambachtsheerlijkheid Amstelveen, nevens de gevolgen van dien, ter
Ouder- en Nieuwer-Amstel (1399,) tot een onstervelijk leen gegeven,
aan Coen van Oosterwijk, voor de somma van 3100 schilden;
deeze droeg dat zijn eigendom (1402) weder op aan Margaretha
van Cleef, des Hertogs tweede Gemaalinne; hier door geraakte na
haar overlijden, Amstelveen, en de geheele nalaatenschap der
Graavinne aan haare Moeder, mede Margaretha genaamd, die de
Heerlijkheid tot 1434 bezat; in welk jaar Hendrik van Borselen,
Heer van ter Veere, uit krachte van aanhoop, daarmede verleid is
geworden; en door het huwelijk van Margareta van Borsselen, met
Walraven van Brederode, ging Amstelveen dus in dat geslacht
over, zijnde hetzelve in 1529, door Heer Walraven aan de stad
Amsteldam verkocht, gelijk wij in ons blad, over Sloterdijk handelende,
reeds gezegd hebben.
In de woede der hervorming heeft Amstelveen denkelijk gedeeld;
[13]want in de sententiën van Alba, vindt men een banvonnis, tegen
zekeren Cornelis van Amstelveen, welke daarin ten laste gelegd
60. wordt, dat hij de kerkplonderaars te drinken gegeven, den Pastoor
voor eenen verleider des volks uitgemaakt, en gezegd zoude hebben,
dat men van de klokken der kerken roers en geschut zoude gieten.
Wat Amstelveen in onze jongstledene beroerten heeft moeten lijden,
is bij ieder bekend; aldaar tog was om zo te spreeken voor een
gedeelte het tooneel des oorlogs.
In den nacht van den 30 September, rukte de Hertog, met zijne
Pruissen reeds tot nabij de Hand van Leiden gekomen zijnde, nader
derwaards; doch eene Patriotsche patrouille vertelde hem weldra met
snaphaanskogels, dat zij onversaagd waren: deezen echter waren
door de overmagt genoodzaakt zig te bedwingen; de Hertog
posteerde vervolgens zijn geschut op den dijk naar Amstelveen,
waarop de aanval zoude geschieden; reeds ten 5 uuren in den
morgen hoorde men het signaalschot, en terstond daarop begonnen
de Pruissen te Ouderkerk hunne opgeworpene Batterijen te laaten
speelen; hunne jaagers gingen op het verlaat los, doch bemagtigden
hetzelve niet dan ten koste van veele koppen; want de Hollanders
vochten als leeuwen, als lieden die bij den oorlog opgevoed waren,
welke lof de Hertog zelf hun niet heeft kunnen weigeren—nog
herinneren wij ons, met siddering, het geluid der schoten aan welke ’t
behoud of verlies van geheel Amsteldam afhing; nog hooren wij de
hartlijke beden aan den hemel om overwinning.… doch liever staaken
wij dien toon.
Eenige honderden schreden achter het gezegde verlaat, lag eene
Patriotsche verschansing, door eene welbepalissadeerde gracht van
den dijk afgezonderd; deeze werd vervolgends aangetast en
veroverd, doch mede ten duuren prijze: ondertusschen was het dag
geworden: de dappere Colonel De Porte die de Patriotten te
Amstelveen commandeerde, en het dorp ongemeen versterkt had, liet
toen met vier stukken geschuts den dijk beschieten, en deed veele
Pruissen vallen; de Hertog echter hield [14]stand, zond zijne jaagers,
61. over de grachten, naar de nabijgelegene hooibergen, ten einde van
achter dezelven zijnen vijand te beschieten; de onzen maakten een
allerhevigst vuur, en betwistten elkander de eer van de meeste en
best gerichte schoten gedaan te hebben: ligtlijk begrijpt men dat de
Pruissen van hunnen kant mede hun best deeden, waardoor het
benaauwde Amstelveen zig in ’t grootste gevaar bevond, staande ten
prooje van de vijandlijke kogels, die echter niet zodanig neder
kwamen dat er eenig huis of schuur in de brand geschoten werd: de
onzen onvermoeid met schieten aanhoudende, en nu ziende dat men
hun van achter de hooibergen bestookte, hadden moeds genoeg om
op de Pruissische Jaagers, aldaar verstoken liggende, los te gaan, de
hooibergen in den brand te steeken, en vooral door hunne
welgeoefende scherpschutters, de jaagers voornoemd te verdrijven,
niet alleen, maar ook zag de Hertog zig genoodzaakt met al zijne
manschap naar de Hand van Leiden te retireeren, alwaar de
Lieutenant Generaal Van Knobelsdorf eene batterij geformeerd
had, om Amstelveen op zijde te beschieten.
De Hertog verwachtte alle oogenblikken dat de onzen van achteren
geattaqueerd zouden worden, en hij daardoor gelegenheid bekomen
van weder te kunnen avanceeren, want dit was zijn plan, maar dit
secours bleef vier en een half uur uit, het geen hun veel volks kostte,
die door het vuur der patriotten vielen.
Tegen tien uuren des morgens kreegen de onzen op den dijk van
Ouderkerk nieuwe versterking van voetvolk, want hoe heet het ook
reeds toeginge, brandde men echter van verlangen, vooral te
Amsteldam, om zig tot versterking derwaards te mogen begeeven;
men hield zig van eene volkomene overwinning verzekerd—dan God
had het anders besloten——wij weeten niet waarbij het toegekomen
is, dat de Pruissen verscheidene geretrancheerde posten van de
onzen op den dijk naar Amstelveen en elders veroverden, de moedige
Patriotten aan het wijken [15]bragten, en tot binnen het dorp dreeven; ’t
welk aldaar geene geringe schrik veroorzaakte—eene en andere
62. omstandigheden waren dringend genoeg om den Colonel De Porte
te doen besluiten, zig naar Ouderkerk te begeeven, ’t geen met zo
veel spoeds geschiedde dat de Pruissen nu, gereed zijnde hen met
hun eigen geschut te beschieten, hen niet meer berijken konden.
Te Ouderkerk had men zig tot nu toe even manlijk gedragen; de
gelegenheid van het plaatsjen had den Hertog belet het te naderen,
des zag hij ook geen kans om het tot de overgaaf te dwingen;
onvoorbeeldig kloekmoedig betoonden de Patriotten zig aldaar, doch
door de aankomst van De Porte, uit Amstelveen, werden zij
geintimideerd, als nu te wel beseffende hoe zij thans langs den
zelfden weg (’t zogenaamde groote loopveld, of de Kerkweg,) op de
zijde, door de Pruissen genaderd konden worden: de Colonels
Corkel en Leville, hadden hier het bevel, en beslooten de wijk naar
Amsteldam te neemen, liever dan door eene wanhoopige verdediging
den Vaderlande nog meer burgers te ontrukken—een ware held weet
op zijnen tijd te wijken: de aftogt geschiedde met alle mogelijke stilte,
en men kwam behouden te Amsteldam aan.
Nog dien zelfden avond werd het plaatsjen zo wel als Amsteldam door
de Pruissen bezet, waardoor de inwooners, in de uiterste droefheid
gedompeld, nu den overlast des soldaats moesten draagen—dat
deeze overlast niet gering geweest is bevestigen honderden van
getuigen; en te geloofwaardiger worden dezelven, als men beseft,
welk haatelijk denkbeeld den Pruissen van de Nederlandsche
Patriotten ingeboezemd was geworden; ook hadden zij te veel van de
moedige verdediging van deezen moeten ondergaan, om geheel vrij
te blijven van den trek tot bijzondere wraakneeming. [16]
B IJ Z O N D E R H E D E N .
Hier onder behoort weder in de eerste plaats de kerk, met het graf van
Broekhuizen (zie boven bladz. 5.)
63. 1
De droogmaakerij, (zie bladz. 3.)
Eene wandeling naar Ouderkerk, geeft ook bijzonder vermaak.
Voords zijn hier en daar nog eenige plaatsen en dingen in
oogenschouw te nemen, welken nagedachtenissen van het
voorbeschrevene dapper gevecht tegen de Pruissen draagen.
R E I S G E L E G E N H E D E N .
Met de Utrechtsche en andere schuiten die Ouderkerk passeeren, kan
men van Amsteldam tot daar, en terug medevaaren; voords gaat men
verders te voet naar Amstelveen: des zondags vaart langs dien weg
een Kerkschuit.
L O G E M E N T E N .
Het Nieuwe dorstige Hart.
Het Oude dorstige Hart.
Het Land van belofte.
De Paauwen.
[1]
Om deeze reden stellen sommigen ook niet dat Holland zijnen naam zoude
ontleend hebben van deszelfs laage (Holle) ligging, maar van de menigte
bosschen (Holt, hout) die er gevonden worden. ↑
65. B U U R T E N
ONDER DE BANNE VAN
AMSTELVEEN.
DE OVERTOOMSCHE, OF HEILIGE WEG.
Van deeze zeer volkrijke en digtbetimmerde buurt, die gedeeltelijk
mede tot een voorstad van Amsteldam aan die zijde verstrekt, is de
L I G G I N G
Ten westen van Amsteldam, aan wederzijde van een tamelijk breede
graft, de Overtoomsche Vaart genaamd, die uit de stads vest naar
den Overtoom loopt: de eene zijde der buurt is geheel digt
betimmerd en bestraat, de andere de Smalle of Stille zijde genoemd,
is niet bestraat, en ook op verre na zo aanzienlijk en digt niet
betimmerd; de eerstgemelde zijde is aan beide kanten met boomen
beplant, waardoor eene wandeling langs dezelve zeer vermaaklijk is.
[2]
N A A M S O O R S P R O N G .
Die van den eenen naam, welken deeze weg draagt, naamlijk
Heilige weg, hebben wij onder onze beschrijving van Amsteldam,
bladz. 7, reeds opgegeven; de andere naam, Overtoomsche weg,
draagt zij, om dat men langs dezelve van Amsteldam naar den
Overtoom gaat.
A A N L E G e n G R O O T T E .
66. Wat de aanleg betreft, door het veelvuldig gebruik dat van dien weg
gemaakt werd, om de Heilige stede te Amsteldam te gaan
bezoeken, zijn ongetwijfeld eenige winkels van benodigdheden of
ververschingen aldaar aangelegd; deezen in getal toegenomen
zijnde, hebben weder anderen, als handwerkslieden, enz. aldaar
noodzaakelijk gemaakt, en op die wijze zal deeze aanzienlijke buurt
haare tegenwoordige gedaante bekomen hebben: zij strekt, gelijk
gezegd is, ter wederzijde van de vaart, van den gebiedpaal van
Amsteldam af1
tot den Overtoom of Amstelveenschen weg toe; en
bevat veele huizen, waaronder eenige plaisiertuinen.
De bewooners deezer buurt zijn van den Gereformeerden of
Roomschen Godsdienst, eenige weinige zijn Luthersch. De eerst- en
laatst-gemelden gaan gemeenlijk naar Amsteldam ter kerk: de
Gereformeerden echter ook wel te Amstelveen, waaronder zij kerklijk
behooren; de Roomschen gaan op den Amstelveenschen weg, in de
Buitenvelderschen polder of te Buitenveldert.
Kerklijke of godsdienstige gebouwen zijn derhalven in deeze
buurt niet voorhanden; er zijn wel schoolen in, doch [3]dezelven zijn
van particulieren: voords is aan den Overtoom mede een school: de
armen en weezen, die er zijn worden door Amstelveen verzorgd.
De bezigheden der bewooneren van deeze buurt zijn veelerleie, en
veelal dezelfden als in de steden over het algemeen ter hand
genomen worden; er zijn verscheidene fabrieken, onder anderen
een pottebakkerij, kogelgieterij, kaarsgieterij, maar vooral glanzers
en catoendrukkers; de laatstgemelden zijn echter sedert eenigen tijd
merkelijk verminderd, gelijk die voorbodens van den ondergang
onzes Lands, ook elders uit hetzelve verdweenen zijn: voorheen
werden in deeze buurt ook meer dan één kruidstoof gevonden, doch
dezelve zijn allen voor en na gesprongen; de laatste, Sollenburg,
nog onder Amsteldam behoorende, (thans een behangsel fabriek,)
67. Welcome to our website – the ideal destination for book lovers and
knowledge seekers. With a mission to inspire endlessly, we offer a
vast collection of books, ranging from classic literary works to
specialized publications, self-development books, and children's
literature. Each book is a new journey of discovery, expanding
knowledge and enriching the soul of the reade
Our website is not just a platform for buying books, but a bridge
connecting readers to the timeless values of culture and wisdom. With
an elegant, user-friendly interface and an intelligent search system,
we are committed to providing a quick and convenient shopping
experience. Additionally, our special promotions and home delivery
services ensure that you save time and fully enjoy the joy of reading.
Let us accompany you on the journey of exploring knowledge and
personal growth!
ebookfinal.com