SlideShare a Scribd company logo
Autonomic
Nervous
System
Introduction
• The autonomic nervous system, along with the endocrine
system, coordinates the regulation and integration of bodily
functions.
• The autonomic nervous system (ANS) is the part of the
peripheral nervous system that acts as a control system
functioning largely below the level of consciousness, and
controls visceral functions.
• The ANS affects heart rate, digestion, respiration rate,
salivation, perspiration, diameter of the pupils, micturition
(urination), and sexual arousal. Whereas most of its actions
are involuntary, some, such as breathing, work in tandem with
the conscious mind.
Organization of the nervous system.
The nervous system is divided into two
anatomical divisions: the central nervous
system (CNS), which is composed of the brain
and spinal cord, and the peripheral nervous
system, which includes neurons located
outside the brain and spinal cord that is, any
nerves that enter or leave the CNS.
The peripheral nervous system is subdivided
into the efferent division, the neurons of which
carry signals away from the brain and spinal
cord to the peripheral tissues, and the afferent
division, the neurons of which bring
information from the periphery to the CNS.
Afferent neurons provide sensory input to
modulate the function of the efferent division
through reflex arcs, that is, neural pathways
that mediate a reflex action.
Functional divisions within the nervous system
• The efferent portion of the peripheral nervous system is further
divided into two major functional subdivisions, the somatic and the
autonomic systems.
• The somatic efferent neurons are involved in the voluntary control
of functions such as contraction of the skeletal muscles essential for
locomotion.
• On the other hand, the autonomic system regulates the everyday
requirements of vital bodily functions without the conscious
participation of the mind. It is composed of efferent neurons that
innervate smooth muscle of the viscera, cardiac muscle,
vasculature, and the exocrine glands, thereby controlling digestion,
cardiac output, blood flow, and glandular secretions.
Anatomy of the autonomic nervous system
Efferent neurons of the autonomic nervous system
Functions of the sympathetic nervous system
• Effects of stimulation of the sympathetic division: The
effect of sympathetic output is to increase heart rate and
blood pressure, to mobilize energy stores of the body,
and to increase blood flow to skeletal muscles and the
heart while diverting flow from the skin and internal
organs.
• Sympathetic stimulation results in dilation of the pupils
and the bronchioles. It also affects gastrointestinal
motility and the function of the bladder and sexual
organs.
• The sympathetic nervous system tends to
function as a unit, and it often discharges
as a complete system for example, during
severe exercise or in reactions to fear.
This system, with its diffuse distribution
of postganglionic fibers, is involved in a
wide array of physiologic activities, but it
is not essential for life.
Pharmacology   introduction to a.n.s
Pharmacology   introduction to a.n.s
*Cranial and sacral outflow
* Approx 75% of
parasympathetic nerve
fibers are in vagus nerves
(cranial nerve X)
* most preganglionic fibers
pass uninterrupted to
organ as postganglionic
neurons are located in the
wall of organ → very short
postganglionic fibers
Parasympathetic nervous system
What is the Fight or flight response?
• The changes experienced by the body during
emergencies have been referred to as the
fight or flight•response.
• These reactions are triggered both by direct
sympathetic activation of the effector organs
and by stimulation of the adrenal medulla to
release epinephrine and lesser amounts of
norepinephrine. These hormones enter the
bloodstream and promote responses in
effector organs that contain adrenergic
receptors.
Functions of the parasympathetic
nervous system
• The parasympathetic division maintains essential
bodily functions, such as digestive processes and
elimination of wastes, and is required for life.
• It usually acts to oppose or balance the actions of
the sympathetic division and is generally dominant
over the sympathetic system in rest and digest
situations.
• The parasympathetic system is not a functional
entity as such, and it never discharges as a complete
system. If it did, it would produce massive,
undesirable, and unpleasant symptoms. Instead,
discrete parasympathetic fibers are activated
separately, and the system functions to affect specific
organs, such as the stomach or eye.
What is the Dual innervation ?
Dual innervation: Most organs in the body are innervated
by both divisions of the autonomic nervous system.
Thus, vagal parasympathetic innervation slows the heart rate,
and sympathetic innervation increases the heart rate. Despite
this dual innervation, one system usually predominates in
controlling the activity of a given organ.
For example, in the heart, the vagus nerve is the predominant
factor for controlling rate. This type of antagonism is
considered to be dynamic and is fine-tuned at any given time
to control homeostatic organ functions.
Are all the organs have dual innervation?
• Although most tissues receive dual
innervation, some effector organs, such as the
adrenal medulla, kidney, pilomotor muscles,
and sweat glands, receive innervation only
from the sympathetic system. The control of
blood pressure is also mainly a sympathetic
activity, with essentially no participation by
the parasympathetic system.
Functions of Somatic motor nervous system
• The efferent somatic nervous system differs
from the autonomic system in that a single
myelinated motor neuron, originating in the
CNS, travels directly to skeletal muscle without
the mediation of ganglia. As noted earlier, the
somatic nervous system is under voluntary
control, whereas the autonomic is an
involuntary system.
Differences among Sympathetic,
Parasympathetic, and Motor Nerves
• The sympathetic system is distributed to effectors
throughout the body, whereas parasympathetic distribution
is much more limited.
• Furthermore, the sympathetic fibers ramify to a much
greater extent. A preganglionic sympathetic fiber may
traverse a considerable distance of the sympathetic chain
and pass through several ganglia before it finally synapses
with a postganglionic neuron; also, its terminals make
contact with a large number of postganglionic neurons. In
some ganglia, the ratio of preganglionic axons to ganglion
cells may be 1:20 or more. This organization permits a
diffuse discharge of the sympathetic system. In addition,
synaptic innervation overlaps, so one ganglion cell may be
supplied by several preganglionic fibers.
The parasympathetic system, in contrast, has terminal
ganglia very near or within the organs innervated and thus
is more circumscribed in its influences. In some organs, a
1:1 relationship between the number of preganglionic and
postganglionic fibers has been suggested, but the ratio of
preganglionic vagal fibers to ganglion cells in the myenteric
plexus has been estimated as 1:8000. Hence this distinction
between the two systems does not apply to all sites.
The cell bodies of somatic motor neurons reside in the
ventral horn of the spinal cord; the axon divides into many
branches, each of which innervates a single muscle fiber, so
more than 100 muscle fibers may be supplied by one motor
neuron to form a motor unit.
Schematic diagram comparing some
anatomic and neurotransmitter
features of autonomic and somatic
motor nerves. Only the primary
transmitter substances are shown.
Parasympathetic ganglia are not
shown because most are in or near
the wall of the organ innervated.
Note that some sympathetic
postganglionic fibers release
acetylcholine or dopamine rather
than norepinephrine. The adrenal
medulla, a modified sympathetic
ganglion, receives sympathetic
preganglionic fibers and releases
epinephrine and norepinephrine into
the blood.
(ACh, acetylcholine; D, dopamine;
Epi, epinephrine; NE, norepinephrine; N, nicotinic
receptors; M, muscarinic receptors.)
What are the differences among
Sympathetic, Parasympathetic, and
Motor Nerves in terms of
distribution, fibers, and functions?
Chemical Signaling Between Cells
• Neurotransmission in the autonomic nervous
system is an example of the more general process
of chemical signaling between cells. In addition to
neurotransmission, other types of chemical
signaling are the release of local mediators and
the secretion of hormones.
• The following chart represent a Summary of the
neurotransmitters released and the types of
receptors found within the autonomic and
somatic nervous systems.
Pharmacology   introduction to a.n.s
A. Local mediators
• Most cells in the body secrete chemicals that
act locally that is, on cells in their immediate
environment. These chemical signals are
rapidly destroyed or removed; therefore, they
do not enter the blood and are not distributed
throughout the body. Histamine and the
prostaglandins are examples of local
mediators.
B. Hormones
• Specialized endocrine cells secrete hormones
into the bloodstream, where they travel
throughout the body exerting effects on
broadly distributed target cells in the body
C. Neurotransmitters
• All neurons are distinct anatomic units, and no
structural continuity exists between most
neurons.
• Communication between nerve cells and
between nerve cells and effector organs
occurs through the release of specific
chemical signals, called neurotransmitters,
from the nerve terminals.
Types of neurotransmitters
The autonomic nerve fibers can be divided into two groups based on
the chemical nature of the neurotransmitter released :
If transmission is mediated by acetylcholine, the neuron is termed
cholinergic.
Acetylcholine mediates the transmission of nerve impulses across
autonomic ganglia in both the sympathetic and parasympathetic
nervous systems. It is the neurotransmitter at the adrenal medulla.
Transmission from the autonomic postganglionic nerves to the
effector organs in the parasympathetic system and a few
sympathetic system organs also involves the release of
acetylcholine.
In the somatic nervous system, transmission at the neuromuscular
junction (that is, between nerve fibers and voluntary muscles) is also
cholinergic.
2. When norepinephrine or epinephrine is the
transmitter, the fiber is termed adrenergic.
In the sympathetic system, norepinephrine
mediates the transmission of nerve impulses from
autonomic postganglionic nerves to effector organs.
* Adrenaline being another name for epinephrine
Second Messenger Systems in
Intracellular Response
The binding of chemical signals to receptors activates enzymatic
processes within the cell membrane that ultimately result in a
cellular response, such as the phosphorylation of intracellular
proteins or changes in the conductivity of ion channels.
A. Membrane receptors affecting ion permeability
Neurotransmitter receptors are membrane proteins that provide a
binding site that recognizes and responds to neurotransmitter
molecules.
Some receptors, such as the postsynaptic receptors of nerve or
muscle, are directly linked to membrane ion channels; thus, binding
of the neurotransmitter occurs rapidly (within fractions of a
millisecond) and directly affects ion permeability.
Membrane receptors
• All neurotransmitters and most hormones and
local mediators are too hydrophilic to penetrate
the lipid bilayer of target-cell plasma membranes.
Instead, their signal is mediated by binding to
specific receptors on the cell surface of target
organs.
• A receptor is defined as a recognition site for a
substance. It has a binding specificity, and it is
coupled to processes that eventually evoke a
response. Most receptors are proteins. They need
not be located in the membrane.
Three mechanisms whereby binding of a
neurotransmitter leads to a cellular effect
• Many receptors are not directly coupled to ion
gates.
• Second-messenger molecules so named because
they intervene between the original message (the
neurotransmitter or hormone) and the ultimate
effect on the cell are part of the cascade of
events that translates neurotransmitter binding
into a cellular response, usually through the
intervention of a G protein.
B. Regulation involving second-messenger
molecules
• The two most widely recognized second
messengers are the adenylyl cyclase system
and the calcium/phosphatidylinositol system.
• Gs is the protein involved in the activation of
adenylyl cyclase, and Gq is the subunit that
activates phospholipase C to release
diacylglycerol and inositol trisphosphate.
Thank you

More Related Content

PPT
2. Choice and combined use of Anti-microbial agents
PDF
Introduction to biomarkers
PPTX
Pharmacokinetics
PPTX
Introduction to practical pharmacology
PPTX
Audits in pharmaceutical industry
PPTX
Skeletal muscle relaxants
DOCX
Top 100 pharmacology mcq & ans
PPTX
ANS pharmacology ppt
2. Choice and combined use of Anti-microbial agents
Introduction to biomarkers
Pharmacokinetics
Introduction to practical pharmacology
Audits in pharmaceutical industry
Skeletal muscle relaxants
Top 100 pharmacology mcq & ans
ANS pharmacology ppt

What's hot (20)

PPTX
Neurotransmitters in CNS
PPTX
NEUROTRANSMITTERS & RECEPTORS IN ANS
PPTX
Adrenergic receptors
PPTX
L1: Drugs acting on the ANS
PPTX
Receptor - Pharmacology
PPTX
PPTX
Organization of ans
PPTX
A REVIEW ON OPIOID RECEPTORS
PPTX
Sympathomimetics- pharmacology
PPTX
Neurohumoral Transmission in central nervous system
PPTX
ORGANSATION & FUNCTIONS OF ANS
PPTX
NEUROHUMORAL TRANSMISSION
PPTX
cholinergic receptors
PPTX
Sympatholytics.pptx
PPT
pharmacology of myasthenia gravis
PPTX
Cotransmission
PPTX
Serotonin Pharmacology (5-HT) [Neurotransmitter]
PPTX
Neurohumoral Transmission in CNS
PPTX
Drugs used in myasthenia gravis and galucoma
Neurotransmitters in CNS
NEUROTRANSMITTERS & RECEPTORS IN ANS
Adrenergic receptors
L1: Drugs acting on the ANS
Receptor - Pharmacology
Organization of ans
A REVIEW ON OPIOID RECEPTORS
Sympathomimetics- pharmacology
Neurohumoral Transmission in central nervous system
ORGANSATION & FUNCTIONS OF ANS
NEUROHUMORAL TRANSMISSION
cholinergic receptors
Sympatholytics.pptx
pharmacology of myasthenia gravis
Cotransmission
Serotonin Pharmacology (5-HT) [Neurotransmitter]
Neurohumoral Transmission in CNS
Drugs used in myasthenia gravis and galucoma
Ad

Viewers also liked (9)

PPT
Introduction to autonomic nervous system
PDF
Introduction to ANS Pharmacology
PPTX
BIOSYNTHESIS OF ACETYLCHOLINE IN CNS AND CHOLINERGIC TRANSMISSION
PPTX
Acetylcholine
PPTX
ANS introduction
PPTX
Introduction to Autonomic Nervous System Pharmacology
PPT
Autonomic nervous system - pharmacology
PPT
Autonomic nervous system (1)
PPTX
Neurotransmitters
Introduction to autonomic nervous system
Introduction to ANS Pharmacology
BIOSYNTHESIS OF ACETYLCHOLINE IN CNS AND CHOLINERGIC TRANSMISSION
Acetylcholine
ANS introduction
Introduction to Autonomic Nervous System Pharmacology
Autonomic nervous system - pharmacology
Autonomic nervous system (1)
Neurotransmitters
Ad

Similar to Pharmacology introduction to a.n.s (20)

PPTX
DRUGS AFFECTING THE AUTONOMIC NERVOUS SYSTEM.pptx
PPSX
Autonomic nervous system
PPTX
Autonomic Neurotransmission - Akhil.pptx
PPT
THE CENTRAL NERVOUS system in science lab
PPT
THE CENTRAL NERVOUS system in science curriculum
PDF
organizations of autonomic nervous systems..pdf
PPTX
Nervous system
PPTX
Autonomic nervous system
PPTX
Autonomic nervous system
PDF
IVMS Autonomic Nervous System Notes
PPTX
Pharmacology of drug acting on Peripheral Nervous System.pptx
PPTX
PPT
ASAS PSIKOLOGI Asas biologi dalam tingkah laku
PPT
Nerves and synapses
PDF
Review of structure
PDF
VISCERAL NERVOUS SYSTEM ANATOMY VETS.pdf
PPTX
Physiological aspects of Human Nervous System
PPT
Nervous system
PPTX
Autonomic nervous system
PPT
6. nervous system
DRUGS AFFECTING THE AUTONOMIC NERVOUS SYSTEM.pptx
Autonomic nervous system
Autonomic Neurotransmission - Akhil.pptx
THE CENTRAL NERVOUS system in science lab
THE CENTRAL NERVOUS system in science curriculum
organizations of autonomic nervous systems..pdf
Nervous system
Autonomic nervous system
Autonomic nervous system
IVMS Autonomic Nervous System Notes
Pharmacology of drug acting on Peripheral Nervous System.pptx
ASAS PSIKOLOGI Asas biologi dalam tingkah laku
Nerves and synapses
Review of structure
VISCERAL NERVOUS SYSTEM ANATOMY VETS.pdf
Physiological aspects of Human Nervous System
Nervous system
Autonomic nervous system
6. nervous system

More from MBBS IMS MSU (20)

PPT
Hema practical 05 hema staining
PPT
Hema practical 03 coagulation
PPT
Hema practical 02 hematology
PPT
Pharmacology anticoagulation
PPT
Microbiology hiv-yf
PPT
Forensic medicine firearms and firearm injuries
PPT
Forensic medicine firearms and firearm injuries
PPT
Forensic medicine firearms and firearm injuries
DOC
Forensic medicine changes after death
PPTX
Pharmacology cvs medicine
PPTX
Pharmacology antiarrhythmias
PPTX
Pharmacology angina
PPT
Pathology hematology 3
PPT
Forensic medicine the medico-legal autopsy
PPT
Forensic medicine post mortem artefact
PPT
Pharmacology anemia and its treatment
PPT
Pharmacology neuromuscular blockers & anemia
PPT
Pharmacology - Parkinsonism
PPT
Forensic medicine medical negligence
PPTX
Forensic medicine medical negligence 2-bolam principle
Hema practical 05 hema staining
Hema practical 03 coagulation
Hema practical 02 hematology
Pharmacology anticoagulation
Microbiology hiv-yf
Forensic medicine firearms and firearm injuries
Forensic medicine firearms and firearm injuries
Forensic medicine firearms and firearm injuries
Forensic medicine changes after death
Pharmacology cvs medicine
Pharmacology antiarrhythmias
Pharmacology angina
Pathology hematology 3
Forensic medicine the medico-legal autopsy
Forensic medicine post mortem artefact
Pharmacology anemia and its treatment
Pharmacology neuromuscular blockers & anemia
Pharmacology - Parkinsonism
Forensic medicine medical negligence
Forensic medicine medical negligence 2-bolam principle

Recently uploaded (20)

PPTX
CEREBROVASCULAR DISORDER.POWERPOINT PRESENTATIONx
PPTX
15.MENINGITIS AND ENCEPHALITIS-elias.pptx
PPTX
History and examination of abdomen, & pelvis .pptx
PPTX
post stroke aphasia rehabilitation physician
PPT
OPIOID ANALGESICS AND THEIR IMPLICATIONS
PDF
Intl J Gynecology Obste - 2021 - Melamed - FIGO International Federation o...
PPTX
Fundamentals of human energy transfer .pptx
PDF
Therapeutic Potential of Citrus Flavonoids in Metabolic Inflammation and Ins...
DOCX
RUHS II MBBS Microbiology Paper-II with Answer Key | 6th August 2025 (New Sch...
PPTX
Chapter-1-The-Human-Body-Orientation-Edited-55-slides.pptx
PPT
Copy-Histopathology Practical by CMDA ESUTH CHAPTER(0) - Copy.ppt
PDF
Human Health And Disease hggyutgghg .pdf
PPTX
ACID BASE management, base deficit correction
DOC
Adobe Premiere Pro CC Crack With Serial Key Full Free Download 2025
PPTX
Respiratory drugs, drugs acting on the respi system
PPTX
Pathophysiology And Clinical Features Of Peripheral Nervous System .pptx
PPTX
1 General Principles of Radiotherapy.pptx
PPTX
Slider: TOC sampling methods for cleaning validation
PPTX
SKIN Anatomy and physiology and associated diseases
PPTX
Important Obstetric Emergency that must be recognised
CEREBROVASCULAR DISORDER.POWERPOINT PRESENTATIONx
15.MENINGITIS AND ENCEPHALITIS-elias.pptx
History and examination of abdomen, & pelvis .pptx
post stroke aphasia rehabilitation physician
OPIOID ANALGESICS AND THEIR IMPLICATIONS
Intl J Gynecology Obste - 2021 - Melamed - FIGO International Federation o...
Fundamentals of human energy transfer .pptx
Therapeutic Potential of Citrus Flavonoids in Metabolic Inflammation and Ins...
RUHS II MBBS Microbiology Paper-II with Answer Key | 6th August 2025 (New Sch...
Chapter-1-The-Human-Body-Orientation-Edited-55-slides.pptx
Copy-Histopathology Practical by CMDA ESUTH CHAPTER(0) - Copy.ppt
Human Health And Disease hggyutgghg .pdf
ACID BASE management, base deficit correction
Adobe Premiere Pro CC Crack With Serial Key Full Free Download 2025
Respiratory drugs, drugs acting on the respi system
Pathophysiology And Clinical Features Of Peripheral Nervous System .pptx
1 General Principles of Radiotherapy.pptx
Slider: TOC sampling methods for cleaning validation
SKIN Anatomy and physiology and associated diseases
Important Obstetric Emergency that must be recognised

Pharmacology introduction to a.n.s

  • 2. Introduction • The autonomic nervous system, along with the endocrine system, coordinates the regulation and integration of bodily functions. • The autonomic nervous system (ANS) is the part of the peripheral nervous system that acts as a control system functioning largely below the level of consciousness, and controls visceral functions. • The ANS affects heart rate, digestion, respiration rate, salivation, perspiration, diameter of the pupils, micturition (urination), and sexual arousal. Whereas most of its actions are involuntary, some, such as breathing, work in tandem with the conscious mind.
  • 3. Organization of the nervous system. The nervous system is divided into two anatomical divisions: the central nervous system (CNS), which is composed of the brain and spinal cord, and the peripheral nervous system, which includes neurons located outside the brain and spinal cord that is, any nerves that enter or leave the CNS. The peripheral nervous system is subdivided into the efferent division, the neurons of which carry signals away from the brain and spinal cord to the peripheral tissues, and the afferent division, the neurons of which bring information from the periphery to the CNS. Afferent neurons provide sensory input to modulate the function of the efferent division through reflex arcs, that is, neural pathways that mediate a reflex action.
  • 4. Functional divisions within the nervous system • The efferent portion of the peripheral nervous system is further divided into two major functional subdivisions, the somatic and the autonomic systems. • The somatic efferent neurons are involved in the voluntary control of functions such as contraction of the skeletal muscles essential for locomotion. • On the other hand, the autonomic system regulates the everyday requirements of vital bodily functions without the conscious participation of the mind. It is composed of efferent neurons that innervate smooth muscle of the viscera, cardiac muscle, vasculature, and the exocrine glands, thereby controlling digestion, cardiac output, blood flow, and glandular secretions.
  • 5. Anatomy of the autonomic nervous system Efferent neurons of the autonomic nervous system
  • 6. Functions of the sympathetic nervous system • Effects of stimulation of the sympathetic division: The effect of sympathetic output is to increase heart rate and blood pressure, to mobilize energy stores of the body, and to increase blood flow to skeletal muscles and the heart while diverting flow from the skin and internal organs. • Sympathetic stimulation results in dilation of the pupils and the bronchioles. It also affects gastrointestinal motility and the function of the bladder and sexual organs.
  • 7. • The sympathetic nervous system tends to function as a unit, and it often discharges as a complete system for example, during severe exercise or in reactions to fear. This system, with its diffuse distribution of postganglionic fibers, is involved in a wide array of physiologic activities, but it is not essential for life.
  • 10. *Cranial and sacral outflow * Approx 75% of parasympathetic nerve fibers are in vagus nerves (cranial nerve X) * most preganglionic fibers pass uninterrupted to organ as postganglionic neurons are located in the wall of organ → very short postganglionic fibers Parasympathetic nervous system
  • 11. What is the Fight or flight response? • The changes experienced by the body during emergencies have been referred to as the fight or flight•response. • These reactions are triggered both by direct sympathetic activation of the effector organs and by stimulation of the adrenal medulla to release epinephrine and lesser amounts of norepinephrine. These hormones enter the bloodstream and promote responses in effector organs that contain adrenergic receptors.
  • 12. Functions of the parasympathetic nervous system • The parasympathetic division maintains essential bodily functions, such as digestive processes and elimination of wastes, and is required for life. • It usually acts to oppose or balance the actions of the sympathetic division and is generally dominant over the sympathetic system in rest and digest situations. • The parasympathetic system is not a functional entity as such, and it never discharges as a complete system. If it did, it would produce massive, undesirable, and unpleasant symptoms. Instead, discrete parasympathetic fibers are activated separately, and the system functions to affect specific organs, such as the stomach or eye.
  • 13. What is the Dual innervation ? Dual innervation: Most organs in the body are innervated by both divisions of the autonomic nervous system. Thus, vagal parasympathetic innervation slows the heart rate, and sympathetic innervation increases the heart rate. Despite this dual innervation, one system usually predominates in controlling the activity of a given organ. For example, in the heart, the vagus nerve is the predominant factor for controlling rate. This type of antagonism is considered to be dynamic and is fine-tuned at any given time to control homeostatic organ functions.
  • 14. Are all the organs have dual innervation? • Although most tissues receive dual innervation, some effector organs, such as the adrenal medulla, kidney, pilomotor muscles, and sweat glands, receive innervation only from the sympathetic system. The control of blood pressure is also mainly a sympathetic activity, with essentially no participation by the parasympathetic system.
  • 15. Functions of Somatic motor nervous system • The efferent somatic nervous system differs from the autonomic system in that a single myelinated motor neuron, originating in the CNS, travels directly to skeletal muscle without the mediation of ganglia. As noted earlier, the somatic nervous system is under voluntary control, whereas the autonomic is an involuntary system.
  • 16. Differences among Sympathetic, Parasympathetic, and Motor Nerves • The sympathetic system is distributed to effectors throughout the body, whereas parasympathetic distribution is much more limited. • Furthermore, the sympathetic fibers ramify to a much greater extent. A preganglionic sympathetic fiber may traverse a considerable distance of the sympathetic chain and pass through several ganglia before it finally synapses with a postganglionic neuron; also, its terminals make contact with a large number of postganglionic neurons. In some ganglia, the ratio of preganglionic axons to ganglion cells may be 1:20 or more. This organization permits a diffuse discharge of the sympathetic system. In addition, synaptic innervation overlaps, so one ganglion cell may be supplied by several preganglionic fibers.
  • 17. The parasympathetic system, in contrast, has terminal ganglia very near or within the organs innervated and thus is more circumscribed in its influences. In some organs, a 1:1 relationship between the number of preganglionic and postganglionic fibers has been suggested, but the ratio of preganglionic vagal fibers to ganglion cells in the myenteric plexus has been estimated as 1:8000. Hence this distinction between the two systems does not apply to all sites. The cell bodies of somatic motor neurons reside in the ventral horn of the spinal cord; the axon divides into many branches, each of which innervates a single muscle fiber, so more than 100 muscle fibers may be supplied by one motor neuron to form a motor unit.
  • 18. Schematic diagram comparing some anatomic and neurotransmitter features of autonomic and somatic motor nerves. Only the primary transmitter substances are shown. Parasympathetic ganglia are not shown because most are in or near the wall of the organ innervated. Note that some sympathetic postganglionic fibers release acetylcholine or dopamine rather than norepinephrine. The adrenal medulla, a modified sympathetic ganglion, receives sympathetic preganglionic fibers and releases epinephrine and norepinephrine into the blood. (ACh, acetylcholine; D, dopamine; Epi, epinephrine; NE, norepinephrine; N, nicotinic receptors; M, muscarinic receptors.)
  • 19. What are the differences among Sympathetic, Parasympathetic, and Motor Nerves in terms of distribution, fibers, and functions?
  • 20. Chemical Signaling Between Cells • Neurotransmission in the autonomic nervous system is an example of the more general process of chemical signaling between cells. In addition to neurotransmission, other types of chemical signaling are the release of local mediators and the secretion of hormones. • The following chart represent a Summary of the neurotransmitters released and the types of receptors found within the autonomic and somatic nervous systems.
  • 22. A. Local mediators • Most cells in the body secrete chemicals that act locally that is, on cells in their immediate environment. These chemical signals are rapidly destroyed or removed; therefore, they do not enter the blood and are not distributed throughout the body. Histamine and the prostaglandins are examples of local mediators.
  • 23. B. Hormones • Specialized endocrine cells secrete hormones into the bloodstream, where they travel throughout the body exerting effects on broadly distributed target cells in the body
  • 24. C. Neurotransmitters • All neurons are distinct anatomic units, and no structural continuity exists between most neurons. • Communication between nerve cells and between nerve cells and effector organs occurs through the release of specific chemical signals, called neurotransmitters, from the nerve terminals.
  • 25. Types of neurotransmitters The autonomic nerve fibers can be divided into two groups based on the chemical nature of the neurotransmitter released : If transmission is mediated by acetylcholine, the neuron is termed cholinergic. Acetylcholine mediates the transmission of nerve impulses across autonomic ganglia in both the sympathetic and parasympathetic nervous systems. It is the neurotransmitter at the adrenal medulla. Transmission from the autonomic postganglionic nerves to the effector organs in the parasympathetic system and a few sympathetic system organs also involves the release of acetylcholine. In the somatic nervous system, transmission at the neuromuscular junction (that is, between nerve fibers and voluntary muscles) is also cholinergic.
  • 26. 2. When norepinephrine or epinephrine is the transmitter, the fiber is termed adrenergic. In the sympathetic system, norepinephrine mediates the transmission of nerve impulses from autonomic postganglionic nerves to effector organs. * Adrenaline being another name for epinephrine
  • 27. Second Messenger Systems in Intracellular Response The binding of chemical signals to receptors activates enzymatic processes within the cell membrane that ultimately result in a cellular response, such as the phosphorylation of intracellular proteins or changes in the conductivity of ion channels. A. Membrane receptors affecting ion permeability Neurotransmitter receptors are membrane proteins that provide a binding site that recognizes and responds to neurotransmitter molecules. Some receptors, such as the postsynaptic receptors of nerve or muscle, are directly linked to membrane ion channels; thus, binding of the neurotransmitter occurs rapidly (within fractions of a millisecond) and directly affects ion permeability.
  • 28. Membrane receptors • All neurotransmitters and most hormones and local mediators are too hydrophilic to penetrate the lipid bilayer of target-cell plasma membranes. Instead, their signal is mediated by binding to specific receptors on the cell surface of target organs. • A receptor is defined as a recognition site for a substance. It has a binding specificity, and it is coupled to processes that eventually evoke a response. Most receptors are proteins. They need not be located in the membrane.
  • 29. Three mechanisms whereby binding of a neurotransmitter leads to a cellular effect
  • 30. • Many receptors are not directly coupled to ion gates. • Second-messenger molecules so named because they intervene between the original message (the neurotransmitter or hormone) and the ultimate effect on the cell are part of the cascade of events that translates neurotransmitter binding into a cellular response, usually through the intervention of a G protein. B. Regulation involving second-messenger molecules
  • 31. • The two most widely recognized second messengers are the adenylyl cyclase system and the calcium/phosphatidylinositol system. • Gs is the protein involved in the activation of adenylyl cyclase, and Gq is the subunit that activates phospholipase C to release diacylglycerol and inositol trisphosphate.