SlideShare a Scribd company logo
Hendrik Drachsler,
Open University of the Netherlands

PhD Defense, 16 October 2009
Networked Knowledge Society
                 g        y
Learning = Knowledge Society
    Knowledge Society
             g       y
Informal Learning Activities
Learning Networks

• explicitly address informal 
  learning 

• allow learners to publish, 
  share, rate, tag and adjust 
  their own Learning Activities 
  their own Learning Activities
  in a Learning Network

• contain open corpora that 
  emerge from the bottom 
  upwards
Emerging paths
                           g gp

                                    Personalized
                                    paths
                                      th
  Main
  Road




© peterme.com, flickr 2009
Selection Problem


  Learners can get 
  overwhelmed by  y
  the amount of 
  information in 
  Learning Networks.
Recommender Systems
                   y
People who bought the same
product also bought product
B or C …
Recommender Systems for 
               y
     Learning Paths
The PhD Project
              j
                                                                                      Prototype: 
  Practical                                                                     Recommender System 
                                                                                for Learning Networks




                                                                  Study 3: Learning Networks
                                                                      y           g
                                                                            Simulation

                                                    Study 2: Psychology Experiment
                                                    Study 2: Psychology Experiment


Theoretical                             Study 1: Theoretical Background
                                            y                    g



                             2006              2007              2008                2009
   hendrik.drachsler@ou.nl
   Recommender Systems 2008, Lausanne
   Page 10
The PhD Project
              j
                                                                                      Prototype: 
  Practical                                                                     Recommender System 
                                                                                for Learning Networks

2006

                                                                  Study 3: Learning Networks
                                                                      y           g
                                                                            Simulation

                                                    Study 2: Psychology Experiment
                                                    Study 2: Psychology Experiment


Theoretical                             Study 1: Theoretical Background
                                            y                    g



                             2006              2007              2008                2009
   hendrik.drachsler@ou.nl
   Recommender Systems 2008, Lausanne
   Page 11
The PhD Project
              j
                                                                                      Prototype: 
  Practical                                                                     Recommender System 
                                                                                for Learning Networks
2007
2008
2006
 2009
                                                                  Study 3: Learning Networks
                                                                      y           g
                                                                            Simulation

                                                    Study 2: Psychology Experiment
                                                    Study 2: Psychology Experiment


Theoretical                             Study 1: Theoretical Background
                                            y                    g



                             2006              2007              2008                2009
   hendrik.drachsler@ou.nl
   Recommender Systems 2008, Lausanne
   Page 12
The PhD Project
              j
                                                                                      Prototype: 
  Practical                                                                     Recommender System 
                                                                                for Learning Networks
2008
2006
 2009
                                                                  Study 3: Learning Networks
                                                                      y           g
                                                                            Simulation

                                                    Study 2: Psychology Experiment
                                                    Study 2: Psychology Experiment


Theoretical                             Study 1: Theoretical Background
                                            y                    g



                             2006              2007              2008                2009
   hendrik.drachsler@ou.nl
   Recommender Systems 2008, Lausanne
   Page 13
The PhD Project
              j
                                                                                      Prototype: 
  Practical                                                                     Recommender System 
                                                                                for Learning Networks

2006
 2009
                                                                  Study 3: Learning Networks
                                                                      y           g
                                                                            Simulation

                                                    Study 2: Psychology Experiment
                                                    Study 2: Psychology Experiment


Theoretical                             Study 1: Theoretical Background
                                            y                    g



                             2006              2007              2008                2009
   hendrik.drachsler@ou.nl
   Recommender Systems 2008, Lausanne
   Page 14
Conclusions
Recommender Systems for learning
  have to be designed differently to
  recommender systems for e-
  commerce.

Recommender Systems can support
  lifelong learners to follow more
  personalized learning paths. Further,
  they positively influence the time they
  need to reach their learning goals.
Many thanks for your attention! 
   y            y
         Sponsored by

More Related Content

PDF
Machine Learning, LIX004M5
PDF
Machine Learning, LIX004M5
PDF
How Can Machine Learning Help Your Research Forward?
PDF
Navigation Support for Learners in Informal Learning Environments, Recommende...
PPT
ReMashed presentation at Community Building Cluster at CELSTEC, Heerlen, NL
PPT
Afectividad Y Sexualidad Adolescente
PDF
LACE Project Overview and Exploitation
PDF
Visual Learning Pulse
Machine Learning, LIX004M5
Machine Learning, LIX004M5
How Can Machine Learning Help Your Research Forward?
Navigation Support for Learners in Informal Learning Environments, Recommende...
ReMashed presentation at Community Building Cluster at CELSTEC, Heerlen, NL
Afectividad Y Sexualidad Adolescente
LACE Project Overview and Exploitation
Visual Learning Pulse

Viewers also liked (20)

PDF
Truth is a Lie - 7 Myths of Human Annotation
PPTX
Presentation1
PDF
JSX - 公開から1年を迎えて
PPT
Maciej Kurak
PDF
AHA CHDO - EE in HOME Workshop
PPS
Siosgustanlosbichejos
PPT
Belgie2
PPT
彩蝶计划2008版
PDF
Phoenix Energy Performance Contracting Presentation
PDF
Dia Chi Toa Nha Tai Thanh Pho Ho Chi Minh
PPTX
Radionice kemija 4_razred
PPS
Unenouvelleplageaujapon3
PPT
M02 un05 p01
PPT
Emeklilik Şirketleri
PPT
Weblin20080826
PDF
OpenVis Conference Report Part 1 (and Introduction to D3.js)
PPTX
Lyddie: Unit2 lesson6
PPT
Using Simulations to Evaluated the Effects of Recommender Systems for Learner...
PPT
Mobile Innovation Market (MIM)
PPT
Rattlesnakes by Amya
Truth is a Lie - 7 Myths of Human Annotation
Presentation1
JSX - 公開から1年を迎えて
Maciej Kurak
AHA CHDO - EE in HOME Workshop
Siosgustanlosbichejos
Belgie2
彩蝶计划2008版
Phoenix Energy Performance Contracting Presentation
Dia Chi Toa Nha Tai Thanh Pho Ho Chi Minh
Radionice kemija 4_razred
Unenouvelleplageaujapon3
M02 un05 p01
Emeklilik Şirketleri
Weblin20080826
OpenVis Conference Report Part 1 (and Introduction to D3.js)
Lyddie: Unit2 lesson6
Using Simulations to Evaluated the Effects of Recommender Systems for Learner...
Mobile Innovation Market (MIM)
Rattlesnakes by Amya
Ad

More from Hendrik Drachsler (20)

PDF
Trusted Learning Analytics Research Program
PDF
Smart Speaker as Studying Assistant by Joao Pargana
PDF
Verhaltenskodex Trusted Learning Analytics
PDF
Rödling, S. (2019). Entwicklung einer Applikation zum assoziativen Medien Ler...
PDF
E.Leute: Learning the impact of Learning Analytics with an authentic dataset
PDF
Romano, G. (2019) Dancing Trainer: A System For Humans To Learn Dancing Using...
PPTX
Towards Tangible Trusted Learning Analytics
PPTX
Trusted Learning Analytics
PPTX
Fighting level 3: From the LA framework to LA practice on the micro-level
PPTX
Dutch Cooking with xAPI Recipes, The Good, the Bad, and the Consistent
PPTX
Recommendations for Open Online Education: An Algorithmic Study
PDF
Privacy and Analytics – it’s a DELICATE Issue. A Checklist for Trusted Learni...
PDF
DELICATE checklist - to establish trusted Learning Analytics
PDF
LACE Flyer 2016
PPT
The Future of Big Data in Education
PDF
The Future of Learning Analytics
PDF
Six dimensions of Learning Analytics
PDF
Learning Analytics Metadata Standards, xAPI recipes & Learning Record Store -
PDF
Ethics privacy washington
PDF
Ethics and Privacy in the Application of Learning Analytics (#EP4LA)
Trusted Learning Analytics Research Program
Smart Speaker as Studying Assistant by Joao Pargana
Verhaltenskodex Trusted Learning Analytics
Rödling, S. (2019). Entwicklung einer Applikation zum assoziativen Medien Ler...
E.Leute: Learning the impact of Learning Analytics with an authentic dataset
Romano, G. (2019) Dancing Trainer: A System For Humans To Learn Dancing Using...
Towards Tangible Trusted Learning Analytics
Trusted Learning Analytics
Fighting level 3: From the LA framework to LA practice on the micro-level
Dutch Cooking with xAPI Recipes, The Good, the Bad, and the Consistent
Recommendations for Open Online Education: An Algorithmic Study
Privacy and Analytics – it’s a DELICATE Issue. A Checklist for Trusted Learni...
DELICATE checklist - to establish trusted Learning Analytics
LACE Flyer 2016
The Future of Big Data in Education
The Future of Learning Analytics
Six dimensions of Learning Analytics
Learning Analytics Metadata Standards, xAPI recipes & Learning Record Store -
Ethics privacy washington
Ethics and Privacy in the Application of Learning Analytics (#EP4LA)
Ad

Recently uploaded (20)

PDF
cuic standard and advanced reporting.pdf
PDF
KodekX | Application Modernization Development
PDF
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
PPTX
Detection-First SIEM: Rule Types, Dashboards, and Threat-Informed Strategy
PDF
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
PDF
Electronic commerce courselecture one. Pdf
PPTX
Understanding_Digital_Forensics_Presentation.pptx
PPTX
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
PDF
Dropbox Q2 2025 Financial Results & Investor Presentation
PDF
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
PDF
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
PDF
Chapter 3 Spatial Domain Image Processing.pdf
PPTX
Cloud computing and distributed systems.
PDF
Encapsulation theory and applications.pdf
PDF
Empathic Computing: Creating Shared Understanding
PDF
Agricultural_Statistics_at_a_Glance_2022_0.pdf
PDF
Machine learning based COVID-19 study performance prediction
PPT
“AI and Expert System Decision Support & Business Intelligence Systems”
PPTX
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
PDF
Advanced methodologies resolving dimensionality complications for autism neur...
cuic standard and advanced reporting.pdf
KodekX | Application Modernization Development
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
Detection-First SIEM: Rule Types, Dashboards, and Threat-Informed Strategy
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
Electronic commerce courselecture one. Pdf
Understanding_Digital_Forensics_Presentation.pptx
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
Dropbox Q2 2025 Financial Results & Investor Presentation
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
Chapter 3 Spatial Domain Image Processing.pdf
Cloud computing and distributed systems.
Encapsulation theory and applications.pdf
Empathic Computing: Creating Shared Understanding
Agricultural_Statistics_at_a_Glance_2022_0.pdf
Machine learning based COVID-19 study performance prediction
“AI and Expert System Decision Support & Business Intelligence Systems”
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
Advanced methodologies resolving dimensionality complications for autism neur...

PhD Defense: Navigation Support for Lerners in Informal Learning Networks

  • 3. Learning = Knowledge Society Knowledge Society g y
  • 5. Learning Networks • explicitly address informal  learning  • allow learners to publish,  share, rate, tag and adjust  their own Learning Activities  their own Learning Activities in a Learning Network • contain open corpora that  emerge from the bottom  upwards
  • 6. Emerging paths g gp Personalized paths th Main Road © peterme.com, flickr 2009
  • 7. Selection Problem Learners can get  overwhelmed by  y the amount of  information in  Learning Networks.
  • 8. Recommender Systems y People who bought the same product also bought product B or C …
  • 9. Recommender Systems for  y Learning Paths
  • 10. The PhD Project j Prototype:  Practical Recommender System  for Learning Networks Study 3: Learning Networks y g Simulation Study 2: Psychology Experiment Study 2: Psychology Experiment Theoretical Study 1: Theoretical Background y g 2006 2007 2008 2009 hendrik.drachsler@ou.nl Recommender Systems 2008, Lausanne Page 10
  • 11. The PhD Project j Prototype:  Practical Recommender System  for Learning Networks 2006 Study 3: Learning Networks y g Simulation Study 2: Psychology Experiment Study 2: Psychology Experiment Theoretical Study 1: Theoretical Background y g 2006 2007 2008 2009 hendrik.drachsler@ou.nl Recommender Systems 2008, Lausanne Page 11
  • 12. The PhD Project j Prototype:  Practical Recommender System  for Learning Networks 2007 2008 2006 2009 Study 3: Learning Networks y g Simulation Study 2: Psychology Experiment Study 2: Psychology Experiment Theoretical Study 1: Theoretical Background y g 2006 2007 2008 2009 hendrik.drachsler@ou.nl Recommender Systems 2008, Lausanne Page 12
  • 13. The PhD Project j Prototype:  Practical Recommender System  for Learning Networks 2008 2006 2009 Study 3: Learning Networks y g Simulation Study 2: Psychology Experiment Study 2: Psychology Experiment Theoretical Study 1: Theoretical Background y g 2006 2007 2008 2009 hendrik.drachsler@ou.nl Recommender Systems 2008, Lausanne Page 13
  • 14. The PhD Project j Prototype:  Practical Recommender System  for Learning Networks 2006 2009 Study 3: Learning Networks y g Simulation Study 2: Psychology Experiment Study 2: Psychology Experiment Theoretical Study 1: Theoretical Background y g 2006 2007 2008 2009 hendrik.drachsler@ou.nl Recommender Systems 2008, Lausanne Page 14
  • 15. Conclusions Recommender Systems for learning have to be designed differently to recommender systems for e- commerce. Recommender Systems can support lifelong learners to follow more personalized learning paths. Further, they positively influence the time they need to reach their learning goals.