SlideShare a Scribd company logo
Outline
7.1 Introduction
7.2 Pointer Variable Declarations and Initialization
7.3 Pointer Operators
7.4 Calling Functions by Reference
7.5 Using the Const Qualifier with Pointers
7.6 Bubble Sort Using Call by Reference
7.7 Pointer Expressions and Pointer Arithmetic
7.8 The Relationship between Pointers and Arrays
7.9 Arrays of Pointers
7.10 Case Study: A Card Shuffling and Dealing
Simulation
7.11 Pointers to Functions
 Pointers
◦ Powerful, but difficult to master
◦ Simulate call-by-reference
◦ Close relationship with arrays and strings
 Pointer variables
◦ Contain memory addresses as their values
◦ Normal variables contain a specific value (direct
reference)
◦ Pointers contain address of a variable that has a
specific value (indirect reference)
◦ Indirection - referencing a pointer value
count
7
countPtr
 
count
7
 Pointer declarations
◦ * used with pointer variables
int *myPtr;
◦ Declares a pointer to an int (pointer of type int *)
◦ Multiple pointers, multiple *
int *myPtr1, *myPtr2;
◦ Can declare pointers to any data type
◦ Initialize pointers to 0, NULL, or an address
 0 or NULL - points to nothing (NULL preferred)
 & (address operator)
◦ Returns address of operand
int y = 5;
int *yPtr;
yPtr = &y; //yPtr gets address of y
◦ yPtr “points to” y
yPtr
y
5
yptr
500000 600000
y
600000 5
Address of y 
is value of 
yptr
 * (indirection/dereferencing operator)
◦ Returns a synonym/alias of what its operand points to
*yptr returns y (because yptr points to y)
◦ * can be used for assignment
 Returns alias to an object
*yptr = 7; // changes y to 7
◦ Dereferenced pointer (operand of *) must be an lvalue
(no constants)
 * and & are inverses
◦ They cancel each other out
*&yptr -> * (&yptr) -> * (address of yptr)->
returns alias of what operand points to -> yptr
&*yptr -> &(*yptr) -> &(y) -> returns address of y,
which is yptr -> yptr
1. Declare variables
2 Initialize variables
3. Print
Program Output
1 /* Fig. 7.4: fig07_04.c
2 Using the & and * operators */
3 #include <stdio.h>
4
5 int main()
6 {
7 int a; /* a is an integer */
8 int *aPtr; /* aPtr is a pointer to an integer */
9
10 a = 7;
11 aPtr = &a; /* aPtr set to address of a */
12
13 printf( "The address of a is %p"
14 "nThe value of aPtr is %p", &a, aPtr );
15
16 printf( "nnThe value of a is %d"
17 "nThe value of *aPtr is %d", a, *aPtr );
18
19 printf( "nnShowing that * and & are inverses of "
20 "each other.n&*aPtr = %p"
21 "n*&aPtr = %pn", &*aPtr, *&aPtr );
22
23 return 0;
24 }
The address of a is 0012FF88
The value of aPtr is 0012FF88
The value of a is 7
The value of *aPtr is 7
Proving that * and & are complements of each other.
&*aPtr = 0012FF88
*&aPtr = 0012FF88
The address of a is the value 
of aPtr.
The * operator returns an 
alias to what its operand 
points to.  aPtr points to a, 
so *aPtr returns a.
Notice how * and 
& are inverses 
 Call by reference with pointer arguments
◦ Pass address of argument using & operator
◦ Allows you to change actual location in memory
◦ Arrays are not passed with & because the array name is already
a pointer
 * operator
◦ Used as alias/nickname for variable inside of function
void double(int *number)
{
*number = 2 * (*number);
}
*number used as nickname for the variable passed
1. Function prototype
- takes a pointer to an
int.
1.1 Initialize variables
2. Call function
3. Define function
Program Output
1 /* Fig. 7.7: fig07_07.c
2 Cube a variable using call-by-reference
3 with a pointer argument */
4
5 #include <stdio.h>
6
7 void cubeByReference( int * ); /* prototype */
8
9 int main()
10 {
11 int number = 5;
12
13 printf( "The original value of number is %d", number );
14 cubeByReference( &number );
15 printf( "nThe new value of number is %dn", number );
16
17 return 0;
18 }
19
20 void cubeByReference( int *nPtr )
21 {
22 *nPtr = *nPtr * *nPtr * *nPtr; /* cube number in main */
23 }
The original value of number is 5
The new value of number is 125
Notice how the address of
number is given -
cubeByReference expects a
pointer (an address of a variable).
Inside cubeByReference,
*nPtr is used (*nPtr is
number).
 const qualifier - variable cannot be changed
◦ Good idea to have const if function does not need to change a
variable
◦ Attempting to change a const is a compiler error
 const pointers - point to same memory location
◦ Must be initialized when declared
int *const myPtr = &x;
 Type int *const - constant pointer to an int
const int *myPtr = &x;
 Regular pointer to a const int
const int *const Ptr = &x;
 const pointer to a const int
 x can be changed, but not *Ptr
1. Declare variables
1.1 Declare const
pointer to an int.
2. Change *ptr
(which is x).
2.1 Attempt to change
ptr.
3. Output
Program Output
1 /* Fig. 7.13: fig07_13.c
2 Attempting to modify a constant pointer to
3 non-constant data */
4
5 #include <stdio.h>
6
7 int main()
8 {
9 int x, y;
10
11 int * const ptr = &x; /* ptr is a constant pointer to an
12 integer. An integer can be modified
13 through ptr, but ptr always points
14 to the same memory location. */
15 *ptr = 7;
16 ptr = &y;
17
18 return 0;
19 }
FIG07_13.c:
Error E2024 FIG07_13.c 16: Cannot modify a const object in
function main
*** 1 errors in Compile ***
Changing *ptr is allowed - x is
not a constant.
Changing ptr is an error -
ptr is a constant pointer.
 Implement bubblesort using pointers
◦ Swap two elements
◦ swap function must receive address (using &) of array elements
 Array elements have call-by-value default
◦ Using pointers and the * operator, swap can switch array elements
 Psuedocode
Initialize array
print data in original order
Call function bubblesort
print sorted array
Define bubblesort
 sizeof
◦ Returns size of operand in bytes
◦ For arrays: size of 1 element * number of elements
◦ if sizeof(int) = 4 bytes, then
int myArray[10];
printf( "%d", sizeof( myArray ) );
will print 40
 sizeof can be used with
◦ Variable names
◦ Type name
◦ Constant values
1. Initialize array
1.1 Declare variables
2. Print array
2.1 Call bubbleSort
2.2 Print array
1 /* Fig. 7.15: fig07_15.c
2 This program puts values into an array, sorts the values into
3 ascending order, and prints the resulting array. */
4 #include <stdio.h>
5 #define SIZE 10
6 void bubbleSort( int *, const int );
7
8 int main()
9 {
10
11 int a[ SIZE ] = { 2, 6, 4, 8, 10, 12, 89, 68, 45, 37 };
12 int i;
13
14 printf( "Data items in original ordern" );
15
16 for ( i = 0; i < SIZE; i++ )
17 printf( "%4d", a[ i ] );
18
19 bubbleSort( a, SIZE ); /* sort the array */
20 printf( "nData items in ascending ordern" );
21
22 for ( i = 0; i < SIZE; i++ )
23 printf( "%4d", a[ i ] );
24
25 printf( "n" );
26
27 return 0;
28 }
29
30 void bubbleSort( int *array, const int size )
31 {
32 void swap( int *, int * );
Bubblesort gets passed the
address of array elements
(pointers). The name of an
array is a pointer.
3. Function definitions
Program Output
33 int pass, j;
34 for ( pass = 0; pass < size - 1; pass++ )
35
36 for ( j = 0; j < size - 1; j++ )
37
38 if ( array[ j ] > array[ j + 1 ] )
39 swap( &array[ j ], &array[ j + 1 ] );
40 }
41
42 void swap( int *element1Ptr, int *element2Ptr )
43 {
44 int hold = *element1Ptr;
45 *element1Ptr = *element2Ptr;
46 *element2Ptr = hold;
47 }
Data items in original order
2 6 4 8 10 12 89 68 45 37
Data items in ascending order
2 4 6 8 10 12 37 45
 Arithmetic operations can be performed on
pointers
◦ Increment/decrement pointer (++ or --)
◦ Add an integer to a pointer( + or += , - or -=)
◦ Pointers may be subtracted from each other
◦ Operations meaningless unless performed on an
array
 5 element int array on machine with 4 byte ints
◦ vPtr points to first element v[0]
at location 3000. (vPtr = 3000)
◦ vPtr +=2; sets vPtr to 3008
 vPtr points to v[2] (incremented
by 2), but machine has 4 byte ints.
pointer variable vPtr
v[0] v[1] v[2] v[4]v[3]
3000 3004 3008 3012 3016
location
 Subtracting pointers
◦ Returns number of elements from one to the other.
vPtr2 = v[2];
vPtr = v[0];
vPtr2 - vPtr == 2.
 Pointer comparison ( <, == , > )
◦ See which pointer points to the higher numbered
array element
◦ Also, see if a pointer points to 0
 Pointers of the same type can be assigned to
each other
◦ If not the same type, a cast operator must be used
◦ Exception: pointer to void (type void *)
 Generic pointer, represents any type
 No casting needed to convert a pointer to void pointer
 void pointers cannot be dereferenced
 Arrays and pointers closely related
◦ Array name like a constant pointer
◦ Pointers can do array subscripting operations
 Declare an array b[5] and a pointer bPtr
bPtr = b;
Array name actually a address of first element
OR
bPtr = &b[0]
Explicitly assign bPtr to address of first element
 Element b[n]
◦ can be accessed by *( bPtr + n )
◦ n - offset (pointer/offset notation)
◦ Array itself can use pointer arithmetic.
b[3] same as *(b + 3)
◦ Pointers can be subscripted (pointer/subscript
notation)
bPtr[3] same as b[3]
 Arrays can contain pointers - array of strings
char *suit[4] = {"Hearts", "Diamonds", "Clubs", "Spades" };
◦ String: pointer to first character
◦ char * - each element of suit is a pointer to a char
◦ Strings not actually in array - only pointers to string in array
 suit array has a fixed size, but strings can be of any
size.
suit[3]
suit[2]
suit[1]
suit[0] ’H’ ’e’ ’a’ ’r’ ’t’ ’s’ ’0’
’D’ ’i’ ’a’ ’m’ ’o’ ’n’ ’d’ ’s’ ’0’
’C’ ’l’ ’u’ ’b’ ’s’ ’0’
’S’ ’p’ ’a’ ’d’ ’e’ ’s’ ’0’
 
 Card shuffling program
◦ Use array of pointers to strings
◦ Use double scripted array (suit, face)
◦ The numbers 1-52 go into the array - this is the order they are
dealt
Hearts
Diamonds
Clubs
Spades
0
1
2
3
Ace Two Three Four Five Six Seven Eight Nine Ten Jack Queen King
0 1 2 3 4 5 6 7 8 9 10 11 12
deck[2][12] represents the King of Clubs
Clubs King
 Pseudocode - Top level: Shuffle and deal 52
cards
Initialize the suit array
Initialize the face array
Initialize the deck array
Shuffle the deck
Deal 52 cards
For each of the 52 cards
Place card number in randomly
selected unoccupied slot of deck
For each of the 52 cards
Find card number in deck array
and print face and suit of card
Choose slot of deck randomly
While chosen slot of deck has been
previously chosen
Choose slot of deck randomly
Place card number in chosen slot of
deck
For each slot of the deck array
If slot contains card number
Print the face and suit of the
card
Second refinement
Third refinement
First refinement
1. Initialize suit and
face arrays
1.1 Initialize deck
array
2. Call function
shuffle
2.1 Call function deal
3. Define functions
1 /* Fig. 7.24: fig07_24.c
2 Card shuffling dealing program */
3 #include <stdio.h>
4 #include <stdlib.h>
5 #include <time.h>
6
7 void shuffle( int [][ 13 ] );
8 void deal( const int [][ 13 ], const char *[], const char *[] );
9
10 int main()
11 {
12 const char *suit[ 4 ] =
13 { "Hearts", "Diamonds", "Clubs", "Spades" };
14 const char *face[ 13 ] =
15 { "Ace", "Deuce", "Three", "Four",
16 "Five", "Six", "Seven", "Eight",
17 "Nine", "Ten", "Jack", "Queen", "King" };
18 int deck[ 4 ][ 13 ] = { 0 };
19
20 srand( time( 0 ) );
21
22 shuffle( deck );
23 deal( deck, face, suit );
24
25 return 0;
26 }
27
28 void shuffle( int wDeck[][ 13 ] )
29 {
30 int row, column, card;
31
32 for ( card = 1; card <= 52; card++ ) {
3. Define functions
33 do {
34 row = rand() % 4;
35 column = rand() % 13;
36 } while( wDeck[ row ][ column ] != 0 );
37
38 wDeck[ row ][ column ] = card;
39 }
40 }
41
42 void deal( const int wDeck[][ 13 ], const char *wFace[],
43 const char *wSuit[] )
44 {
45 int card, row, column;
46
47 for ( card = 1; card <= 52; card++ )
48
49 for ( row = 0; row <= 3; row++ )
50
51 for ( column = 0; column <= 12; column++ )
52
53 if ( wDeck[ row ][ column ] == card )
54 printf( "%5s of %-8s%c",
55 wFace[ column ], wSuit[ row ],
56 card % 2 == 0 ? 'n' : 't' );
57 }
The numbers 1-52 are 
randomly placed into the 
deck array.
Searches deck for the 
card number, then prints 
the face and suit. 
Program Output
Six of Clubs Seven of Diamonds
Ace of Spades Ace of Diamonds
Ace of Hearts Queen of Diamonds
Queen of Clubs Seven of Hearts
Ten of Hearts Deuce of Clubs
Ten of Spades Three of Spades
Ten of Diamonds Four of Spades
Four of Diamonds Ten of Clubs
Six of Diamonds Six of Spades
Eight of Hearts Three of Diamonds
Nine of Hearts Three of Hearts
Deuce of Spades Six of Hearts
Five of Clubs Eight of Clubs
Deuce of Diamonds Eight of Spades
Five of Spades King of Clubs
King of Diamonds Jack of Spades
Deuce of Hearts Queen of Hearts
Ace of Clubs King of Spades
Three of Clubs King of Hearts
Nine of Clubs Nine of Spades
Four of Hearts Queen of Spades
Eight of Diamonds Nine of Diamonds
Jack of Diamonds Seven of Clubs
Five of Hearts Five of Diamonds
Four of Clubs Jack of Hearts
Jack of Clubs Seven of Spades
 Pointer to function
◦ Contains address of function
◦ Similar to how array name is address of first element
◦ Function name is starting address of code that defines function
 Function pointers can be
◦ Passed to functions
◦ Stored in arrays
◦ Assigned to other function pointers
 Example: bubblesort
◦ Function bubble takes a function pointer
 bubble calls this helper function
 this determines ascending or descending sorting
◦ The argument in bubblesort for the function pointer:
bool ( *compare )( int, int )
tells bubblesort to expect a pointer to a function that takes two
ints and returns a bool.
◦ If the parentheses were left out:
bool *compare( int, int )
 Declares a function that receives two integers and returns a pointer to
a bool
1. Initialize array.
2. Prompt for
ascending or
descending sorting.
2.1 Put appropriate
function pointer into
bubblesort.
2.2 Call bubble.
3. Print results.
1 /* Fig. 7.26: fig07_26.c
2 Multipurpose sorting program using function pointers */
3 #include <stdio.h>
4 #define SIZE 10
5 void bubble( int [], const int, int (*)( int, int ) );
6 int ascending( int, int );
7 int descending( int, int );
8
9 int main()
10 {
11
12 int order,
13 counter,
14 a[ SIZE ] = { 2, 6, 4, 8, 10, 12, 89, 68, 45, 37 };
15
16 printf( "Enter 1 to sort in ascending order,n"
17 "Enter 2 to sort in descending order: " );
18 scanf( "%d", &order );
19 printf( "nData items in original ordern" );
20
21 for ( counter = 0; counter < SIZE; counter++ )
22 printf( "%5d", a[ counter ] );
23
24 if ( order == 1 ) {
25 bubble( a, SIZE, ascending );
26 printf( "nData items in ascending ordern" );
27 }
28 else {
29 bubble( a, SIZE, descending );
30 printf( "nData items in descending ordern" );
31 }
32
Notice the function pointer
parameter.
3.1 Define functions.
33 for ( counter = 0; counter < SIZE; counter++ )
34 printf( "%5d", a[ counter ] );
35
36 printf( "n" );
37
38 return 0;
39 }
40
41 void bubble( int work[], const int size,
42 int (*compare)( int, int ) )
43 {
44 int pass, count;
45
46 void swap( int *, int * );
47
48 for ( pass = 1; pass < size; pass++ )
49
50 for ( count = 0; count < size - 1; count++ )
51
52 if ( (*compare)( work[ count ], work[ count + 1 ] ) )
53 swap( &work[ count ], &work[ count + 1 ] );
54 }
55
56 void swap( int *element1Ptr, int *element2Ptr )
57 {
58 int temp;
59
60 temp = *element1Ptr;
61 *element1Ptr = *element2Ptr;
62 *element2Ptr = temp;
63 }
64
ascending and descending
return true or false.
bubble calls swap if the
function call returns true.
Notice how function pointers
are called using the
dereferencing operator. The *
is not required, but emphasizes
that compare is a function
pointer and not a function.
3.1 Define functions.
Program Output
65 int ascending( int a, int b )
66 {
67 return b < a; /* swap if b is less than a */
68 }
69
70 int descending( int a, int b )
71 {
72 return b > a; /* swap if b is greater than a */
73 }
Enter 1 to sort in ascending order,
Enter 2 to sort in descending order: 1
Data items in original order
2 6 4 8 10 12 89 68 45 37
Data items in ascending order
2 4 6 8 10 12 37 45 68 89
Enter 1 to sort in ascending order,
Enter 2 to sort in descending order: 2
Data items in original order
2 6 4 8 10 12 89 68 45 37
Data items in descending order
89 68 45 37 12 10 8 6 4 2

More Related Content

PPTX
Pointer in C
PPTX
Pointers in c - Mohammad Salman
PPTX
COM1407: Working with Pointers
PPT
Basics of pointer, pointer expressions, pointer to pointer and pointer in fun...
PPTX
Presentation on pointer.
PPT
Pointers C programming
PDF
C Pointers
PPTX
Strings in C
Pointer in C
Pointers in c - Mohammad Salman
COM1407: Working with Pointers
Basics of pointer, pointer expressions, pointer to pointer and pointer in fun...
Presentation on pointer.
Pointers C programming
C Pointers
Strings in C

What's hot (20)

PPTX
Pointer in C++
PPTX
Pointer in c
PPTX
Pointer in c program
PPT
Pointers in C
PPT
Pointers (Pp Tminimizer)
PPTX
Pointers in C Programming
PDF
Pointers in C
PPT
Pointers in c
PPTX
PPTX
Functions in c language
PPTX
Pointers in c++
PPTX
Array Of Pointers
PPTX
Identifiers and keywords
PDF
Pointers and Structures
PPTX
Pointers in c++
PPTX
Pointers in C
PPTX
C programming language tutorial
PPTX
File handling in c
PPTX
This pointer
PPTX
Pointers in c v5 12102017 1
Pointer in C++
Pointer in c
Pointer in c program
Pointers in C
Pointers (Pp Tminimizer)
Pointers in C Programming
Pointers in C
Pointers in c
Functions in c language
Pointers in c++
Array Of Pointers
Identifiers and keywords
Pointers and Structures
Pointers in c++
Pointers in C
C programming language tutorial
File handling in c
This pointer
Pointers in c v5 12102017 1
Ad

Viewers also liked (7)

PPT
detailed information about Pointers in c language
PPT
PPT
Introduction to pointers and memory management in C
PDF
Binary tree
PPTX
Binary Search Tree in Data Structure
PPTX
Trees (data structure)
PPTX
C++ Pointers
detailed information about Pointers in c language
Introduction to pointers and memory management in C
Binary tree
Binary Search Tree in Data Structure
Trees (data structure)
C++ Pointers
Ad

Similar to pointers (20)

PPT
pointers
PPT
Pointers
PPT
pointers
PPT
Pointers in C
PPTX
week14Pointers_II. pointers pemrograman dasar C++.pptx
PPT
Data structure and problem solving ch05.ppt
PPTX
C++ Pointer | Introduction to programming
ODP
Pointers in c++ by minal
PPT
Lecture#9 Arrays in c++
PPT
Unit 6 pointers
PPT
Pointer
PPTX
Array in C newrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
PPTX
POLITEKNIK MALAYSIA
PPT
FP 201 - Unit 6
PPTX
Unit-I Pointer Data structure.pptx
PDF
Lecture15.pdf
PPT
Pointers and arrays
PPTX
Computer Programming Lecture numer 05 -- pointers,variablesb
PPTX
Computer Programming for Engineers Spring 2023Lab 8 - Pointers.pptx
PPT
Lecture#5-Arrays-oral patholohu hfFoP.ppt
pointers
Pointers
pointers
Pointers in C
week14Pointers_II. pointers pemrograman dasar C++.pptx
Data structure and problem solving ch05.ppt
C++ Pointer | Introduction to programming
Pointers in c++ by minal
Lecture#9 Arrays in c++
Unit 6 pointers
Pointer
Array in C newrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
POLITEKNIK MALAYSIA
FP 201 - Unit 6
Unit-I Pointer Data structure.pptx
Lecture15.pdf
Pointers and arrays
Computer Programming Lecture numer 05 -- pointers,variablesb
Computer Programming for Engineers Spring 2023Lab 8 - Pointers.pptx
Lecture#5-Arrays-oral patholohu hfFoP.ppt

More from teach4uin (20)

PPTX
Controls
PPT
validation
PPT
validation
PPT
Master pages
PPTX
.Net framework
PPT
Scripting languages
PPTX
Css1
PPTX
Code model
PPT
Asp db
PPTX
State management
PPT
security configuration
PPT
static dynamic html tags
PPT
static dynamic html tags
PPTX
New microsoft office power point presentation
PPT
.Net overview
PPT
Stdlib functions lesson
PPT
enums
PPT
memory
PPT
array
PPT
storage clas
Controls
validation
validation
Master pages
.Net framework
Scripting languages
Css1
Code model
Asp db
State management
security configuration
static dynamic html tags
static dynamic html tags
New microsoft office power point presentation
.Net overview
Stdlib functions lesson
enums
memory
array
storage clas

Recently uploaded (20)

PDF
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
PDF
Accuracy of neural networks in brain wave diagnosis of schizophrenia
PPTX
Digital-Transformation-Roadmap-for-Companies.pptx
PDF
Advanced methodologies resolving dimensionality complications for autism neur...
PPTX
SOPHOS-XG Firewall Administrator PPT.pptx
PDF
Encapsulation_ Review paper, used for researhc scholars
PDF
Video forgery: An extensive analysis of inter-and intra-frame manipulation al...
PDF
Getting Started with Data Integration: FME Form 101
PDF
A comparative analysis of optical character recognition models for extracting...
PDF
Unlocking AI with Model Context Protocol (MCP)
PPTX
TLE Review Electricity (Electricity).pptx
PDF
Spectral efficient network and resource selection model in 5G networks
PPTX
1. Introduction to Computer Programming.pptx
PPTX
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
PPTX
Machine Learning_overview_presentation.pptx
PDF
A comparative study of natural language inference in Swahili using monolingua...
PDF
Assigned Numbers - 2025 - Bluetooth® Document
PDF
Approach and Philosophy of On baking technology
PDF
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
PDF
Machine learning based COVID-19 study performance prediction
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
Accuracy of neural networks in brain wave diagnosis of schizophrenia
Digital-Transformation-Roadmap-for-Companies.pptx
Advanced methodologies resolving dimensionality complications for autism neur...
SOPHOS-XG Firewall Administrator PPT.pptx
Encapsulation_ Review paper, used for researhc scholars
Video forgery: An extensive analysis of inter-and intra-frame manipulation al...
Getting Started with Data Integration: FME Form 101
A comparative analysis of optical character recognition models for extracting...
Unlocking AI with Model Context Protocol (MCP)
TLE Review Electricity (Electricity).pptx
Spectral efficient network and resource selection model in 5G networks
1. Introduction to Computer Programming.pptx
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
Machine Learning_overview_presentation.pptx
A comparative study of natural language inference in Swahili using monolingua...
Assigned Numbers - 2025 - Bluetooth® Document
Approach and Philosophy of On baking technology
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
Machine learning based COVID-19 study performance prediction

pointers

  • 1. Outline 7.1 Introduction 7.2 Pointer Variable Declarations and Initialization 7.3 Pointer Operators 7.4 Calling Functions by Reference 7.5 Using the Const Qualifier with Pointers 7.6 Bubble Sort Using Call by Reference 7.7 Pointer Expressions and Pointer Arithmetic 7.8 The Relationship between Pointers and Arrays 7.9 Arrays of Pointers 7.10 Case Study: A Card Shuffling and Dealing Simulation 7.11 Pointers to Functions
  • 2.  Pointers ◦ Powerful, but difficult to master ◦ Simulate call-by-reference ◦ Close relationship with arrays and strings
  • 3.  Pointer variables ◦ Contain memory addresses as their values ◦ Normal variables contain a specific value (direct reference) ◦ Pointers contain address of a variable that has a specific value (indirect reference) ◦ Indirection - referencing a pointer value count 7 countPtr   count 7
  • 4.  Pointer declarations ◦ * used with pointer variables int *myPtr; ◦ Declares a pointer to an int (pointer of type int *) ◦ Multiple pointers, multiple * int *myPtr1, *myPtr2; ◦ Can declare pointers to any data type ◦ Initialize pointers to 0, NULL, or an address  0 or NULL - points to nothing (NULL preferred)
  • 5.  & (address operator) ◦ Returns address of operand int y = 5; int *yPtr; yPtr = &y; //yPtr gets address of y ◦ yPtr “points to” y yPtr y 5 yptr 500000 600000 y 600000 5 Address of y  is value of  yptr
  • 6.  * (indirection/dereferencing operator) ◦ Returns a synonym/alias of what its operand points to *yptr returns y (because yptr points to y) ◦ * can be used for assignment  Returns alias to an object *yptr = 7; // changes y to 7 ◦ Dereferenced pointer (operand of *) must be an lvalue (no constants)
  • 7.  * and & are inverses ◦ They cancel each other out *&yptr -> * (&yptr) -> * (address of yptr)-> returns alias of what operand points to -> yptr &*yptr -> &(*yptr) -> &(y) -> returns address of y, which is yptr -> yptr
  • 8. 1. Declare variables 2 Initialize variables 3. Print Program Output 1 /* Fig. 7.4: fig07_04.c 2 Using the & and * operators */ 3 #include <stdio.h> 4 5 int main() 6 { 7 int a; /* a is an integer */ 8 int *aPtr; /* aPtr is a pointer to an integer */ 9 10 a = 7; 11 aPtr = &a; /* aPtr set to address of a */ 12 13 printf( "The address of a is %p" 14 "nThe value of aPtr is %p", &a, aPtr ); 15 16 printf( "nnThe value of a is %d" 17 "nThe value of *aPtr is %d", a, *aPtr ); 18 19 printf( "nnShowing that * and & are inverses of " 20 "each other.n&*aPtr = %p" 21 "n*&aPtr = %pn", &*aPtr, *&aPtr ); 22 23 return 0; 24 } The address of a is 0012FF88 The value of aPtr is 0012FF88 The value of a is 7 The value of *aPtr is 7 Proving that * and & are complements of each other. &*aPtr = 0012FF88 *&aPtr = 0012FF88 The address of a is the value  of aPtr. The * operator returns an  alias to what its operand  points to.  aPtr points to a,  so *aPtr returns a. Notice how * and  & are inverses 
  • 9.  Call by reference with pointer arguments ◦ Pass address of argument using & operator ◦ Allows you to change actual location in memory ◦ Arrays are not passed with & because the array name is already a pointer  * operator ◦ Used as alias/nickname for variable inside of function void double(int *number) { *number = 2 * (*number); } *number used as nickname for the variable passed
  • 10. 1. Function prototype - takes a pointer to an int. 1.1 Initialize variables 2. Call function 3. Define function Program Output 1 /* Fig. 7.7: fig07_07.c 2 Cube a variable using call-by-reference 3 with a pointer argument */ 4 5 #include <stdio.h> 6 7 void cubeByReference( int * ); /* prototype */ 8 9 int main() 10 { 11 int number = 5; 12 13 printf( "The original value of number is %d", number ); 14 cubeByReference( &number ); 15 printf( "nThe new value of number is %dn", number ); 16 17 return 0; 18 } 19 20 void cubeByReference( int *nPtr ) 21 { 22 *nPtr = *nPtr * *nPtr * *nPtr; /* cube number in main */ 23 } The original value of number is 5 The new value of number is 125 Notice how the address of number is given - cubeByReference expects a pointer (an address of a variable). Inside cubeByReference, *nPtr is used (*nPtr is number).
  • 11.  const qualifier - variable cannot be changed ◦ Good idea to have const if function does not need to change a variable ◦ Attempting to change a const is a compiler error  const pointers - point to same memory location ◦ Must be initialized when declared int *const myPtr = &x;  Type int *const - constant pointer to an int const int *myPtr = &x;  Regular pointer to a const int const int *const Ptr = &x;  const pointer to a const int  x can be changed, but not *Ptr
  • 12. 1. Declare variables 1.1 Declare const pointer to an int. 2. Change *ptr (which is x). 2.1 Attempt to change ptr. 3. Output Program Output 1 /* Fig. 7.13: fig07_13.c 2 Attempting to modify a constant pointer to 3 non-constant data */ 4 5 #include <stdio.h> 6 7 int main() 8 { 9 int x, y; 10 11 int * const ptr = &x; /* ptr is a constant pointer to an 12 integer. An integer can be modified 13 through ptr, but ptr always points 14 to the same memory location. */ 15 *ptr = 7; 16 ptr = &y; 17 18 return 0; 19 } FIG07_13.c: Error E2024 FIG07_13.c 16: Cannot modify a const object in function main *** 1 errors in Compile *** Changing *ptr is allowed - x is not a constant. Changing ptr is an error - ptr is a constant pointer.
  • 13.  Implement bubblesort using pointers ◦ Swap two elements ◦ swap function must receive address (using &) of array elements  Array elements have call-by-value default ◦ Using pointers and the * operator, swap can switch array elements  Psuedocode Initialize array print data in original order Call function bubblesort print sorted array Define bubblesort
  • 14.  sizeof ◦ Returns size of operand in bytes ◦ For arrays: size of 1 element * number of elements ◦ if sizeof(int) = 4 bytes, then int myArray[10]; printf( "%d", sizeof( myArray ) ); will print 40  sizeof can be used with ◦ Variable names ◦ Type name ◦ Constant values
  • 15. 1. Initialize array 1.1 Declare variables 2. Print array 2.1 Call bubbleSort 2.2 Print array 1 /* Fig. 7.15: fig07_15.c 2 This program puts values into an array, sorts the values into 3 ascending order, and prints the resulting array. */ 4 #include <stdio.h> 5 #define SIZE 10 6 void bubbleSort( int *, const int ); 7 8 int main() 9 { 10 11 int a[ SIZE ] = { 2, 6, 4, 8, 10, 12, 89, 68, 45, 37 }; 12 int i; 13 14 printf( "Data items in original ordern" ); 15 16 for ( i = 0; i < SIZE; i++ ) 17 printf( "%4d", a[ i ] ); 18 19 bubbleSort( a, SIZE ); /* sort the array */ 20 printf( "nData items in ascending ordern" ); 21 22 for ( i = 0; i < SIZE; i++ ) 23 printf( "%4d", a[ i ] ); 24 25 printf( "n" ); 26 27 return 0; 28 } 29 30 void bubbleSort( int *array, const int size ) 31 { 32 void swap( int *, int * ); Bubblesort gets passed the address of array elements (pointers). The name of an array is a pointer.
  • 16. 3. Function definitions Program Output 33 int pass, j; 34 for ( pass = 0; pass < size - 1; pass++ ) 35 36 for ( j = 0; j < size - 1; j++ ) 37 38 if ( array[ j ] > array[ j + 1 ] ) 39 swap( &array[ j ], &array[ j + 1 ] ); 40 } 41 42 void swap( int *element1Ptr, int *element2Ptr ) 43 { 44 int hold = *element1Ptr; 45 *element1Ptr = *element2Ptr; 46 *element2Ptr = hold; 47 } Data items in original order 2 6 4 8 10 12 89 68 45 37 Data items in ascending order 2 4 6 8 10 12 37 45
  • 17.  Arithmetic operations can be performed on pointers ◦ Increment/decrement pointer (++ or --) ◦ Add an integer to a pointer( + or += , - or -=) ◦ Pointers may be subtracted from each other ◦ Operations meaningless unless performed on an array
  • 18.  5 element int array on machine with 4 byte ints ◦ vPtr points to first element v[0] at location 3000. (vPtr = 3000) ◦ vPtr +=2; sets vPtr to 3008  vPtr points to v[2] (incremented by 2), but machine has 4 byte ints. pointer variable vPtr v[0] v[1] v[2] v[4]v[3] 3000 3004 3008 3012 3016 location
  • 19.  Subtracting pointers ◦ Returns number of elements from one to the other. vPtr2 = v[2]; vPtr = v[0]; vPtr2 - vPtr == 2.  Pointer comparison ( <, == , > ) ◦ See which pointer points to the higher numbered array element ◦ Also, see if a pointer points to 0
  • 20.  Pointers of the same type can be assigned to each other ◦ If not the same type, a cast operator must be used ◦ Exception: pointer to void (type void *)  Generic pointer, represents any type  No casting needed to convert a pointer to void pointer  void pointers cannot be dereferenced
  • 21.  Arrays and pointers closely related ◦ Array name like a constant pointer ◦ Pointers can do array subscripting operations  Declare an array b[5] and a pointer bPtr bPtr = b; Array name actually a address of first element OR bPtr = &b[0] Explicitly assign bPtr to address of first element
  • 22.  Element b[n] ◦ can be accessed by *( bPtr + n ) ◦ n - offset (pointer/offset notation) ◦ Array itself can use pointer arithmetic. b[3] same as *(b + 3) ◦ Pointers can be subscripted (pointer/subscript notation) bPtr[3] same as b[3]
  • 23.  Arrays can contain pointers - array of strings char *suit[4] = {"Hearts", "Diamonds", "Clubs", "Spades" }; ◦ String: pointer to first character ◦ char * - each element of suit is a pointer to a char ◦ Strings not actually in array - only pointers to string in array  suit array has a fixed size, but strings can be of any size. suit[3] suit[2] suit[1] suit[0] ’H’ ’e’ ’a’ ’r’ ’t’ ’s’ ’0’ ’D’ ’i’ ’a’ ’m’ ’o’ ’n’ ’d’ ’s’ ’0’ ’C’ ’l’ ’u’ ’b’ ’s’ ’0’ ’S’ ’p’ ’a’ ’d’ ’e’ ’s’ ’0’  
  • 24.  Card shuffling program ◦ Use array of pointers to strings ◦ Use double scripted array (suit, face) ◦ The numbers 1-52 go into the array - this is the order they are dealt Hearts Diamonds Clubs Spades 0 1 2 3 Ace Two Three Four Five Six Seven Eight Nine Ten Jack Queen King 0 1 2 3 4 5 6 7 8 9 10 11 12 deck[2][12] represents the King of Clubs Clubs King
  • 25.  Pseudocode - Top level: Shuffle and deal 52 cards Initialize the suit array Initialize the face array Initialize the deck array Shuffle the deck Deal 52 cards For each of the 52 cards Place card number in randomly selected unoccupied slot of deck For each of the 52 cards Find card number in deck array and print face and suit of card Choose slot of deck randomly While chosen slot of deck has been previously chosen Choose slot of deck randomly Place card number in chosen slot of deck For each slot of the deck array If slot contains card number Print the face and suit of the card Second refinement Third refinement First refinement
  • 26. 1. Initialize suit and face arrays 1.1 Initialize deck array 2. Call function shuffle 2.1 Call function deal 3. Define functions 1 /* Fig. 7.24: fig07_24.c 2 Card shuffling dealing program */ 3 #include <stdio.h> 4 #include <stdlib.h> 5 #include <time.h> 6 7 void shuffle( int [][ 13 ] ); 8 void deal( const int [][ 13 ], const char *[], const char *[] ); 9 10 int main() 11 { 12 const char *suit[ 4 ] = 13 { "Hearts", "Diamonds", "Clubs", "Spades" }; 14 const char *face[ 13 ] = 15 { "Ace", "Deuce", "Three", "Four", 16 "Five", "Six", "Seven", "Eight", 17 "Nine", "Ten", "Jack", "Queen", "King" }; 18 int deck[ 4 ][ 13 ] = { 0 }; 19 20 srand( time( 0 ) ); 21 22 shuffle( deck ); 23 deal( deck, face, suit ); 24 25 return 0; 26 } 27 28 void shuffle( int wDeck[][ 13 ] ) 29 { 30 int row, column, card; 31 32 for ( card = 1; card <= 52; card++ ) {
  • 27. 3. Define functions 33 do { 34 row = rand() % 4; 35 column = rand() % 13; 36 } while( wDeck[ row ][ column ] != 0 ); 37 38 wDeck[ row ][ column ] = card; 39 } 40 } 41 42 void deal( const int wDeck[][ 13 ], const char *wFace[], 43 const char *wSuit[] ) 44 { 45 int card, row, column; 46 47 for ( card = 1; card <= 52; card++ ) 48 49 for ( row = 0; row <= 3; row++ ) 50 51 for ( column = 0; column <= 12; column++ ) 52 53 if ( wDeck[ row ][ column ] == card ) 54 printf( "%5s of %-8s%c", 55 wFace[ column ], wSuit[ row ], 56 card % 2 == 0 ? 'n' : 't' ); 57 } The numbers 1-52 are  randomly placed into the  deck array. Searches deck for the  card number, then prints  the face and suit. 
  • 28. Program Output Six of Clubs Seven of Diamonds Ace of Spades Ace of Diamonds Ace of Hearts Queen of Diamonds Queen of Clubs Seven of Hearts Ten of Hearts Deuce of Clubs Ten of Spades Three of Spades Ten of Diamonds Four of Spades Four of Diamonds Ten of Clubs Six of Diamonds Six of Spades Eight of Hearts Three of Diamonds Nine of Hearts Three of Hearts Deuce of Spades Six of Hearts Five of Clubs Eight of Clubs Deuce of Diamonds Eight of Spades Five of Spades King of Clubs King of Diamonds Jack of Spades Deuce of Hearts Queen of Hearts Ace of Clubs King of Spades Three of Clubs King of Hearts Nine of Clubs Nine of Spades Four of Hearts Queen of Spades Eight of Diamonds Nine of Diamonds Jack of Diamonds Seven of Clubs Five of Hearts Five of Diamonds Four of Clubs Jack of Hearts Jack of Clubs Seven of Spades
  • 29.  Pointer to function ◦ Contains address of function ◦ Similar to how array name is address of first element ◦ Function name is starting address of code that defines function  Function pointers can be ◦ Passed to functions ◦ Stored in arrays ◦ Assigned to other function pointers
  • 30.  Example: bubblesort ◦ Function bubble takes a function pointer  bubble calls this helper function  this determines ascending or descending sorting ◦ The argument in bubblesort for the function pointer: bool ( *compare )( int, int ) tells bubblesort to expect a pointer to a function that takes two ints and returns a bool. ◦ If the parentheses were left out: bool *compare( int, int )  Declares a function that receives two integers and returns a pointer to a bool
  • 31. 1. Initialize array. 2. Prompt for ascending or descending sorting. 2.1 Put appropriate function pointer into bubblesort. 2.2 Call bubble. 3. Print results. 1 /* Fig. 7.26: fig07_26.c 2 Multipurpose sorting program using function pointers */ 3 #include <stdio.h> 4 #define SIZE 10 5 void bubble( int [], const int, int (*)( int, int ) ); 6 int ascending( int, int ); 7 int descending( int, int ); 8 9 int main() 10 { 11 12 int order, 13 counter, 14 a[ SIZE ] = { 2, 6, 4, 8, 10, 12, 89, 68, 45, 37 }; 15 16 printf( "Enter 1 to sort in ascending order,n" 17 "Enter 2 to sort in descending order: " ); 18 scanf( "%d", &order ); 19 printf( "nData items in original ordern" ); 20 21 for ( counter = 0; counter < SIZE; counter++ ) 22 printf( "%5d", a[ counter ] ); 23 24 if ( order == 1 ) { 25 bubble( a, SIZE, ascending ); 26 printf( "nData items in ascending ordern" ); 27 } 28 else { 29 bubble( a, SIZE, descending ); 30 printf( "nData items in descending ordern" ); 31 } 32 Notice the function pointer parameter.
  • 32. 3.1 Define functions. 33 for ( counter = 0; counter < SIZE; counter++ ) 34 printf( "%5d", a[ counter ] ); 35 36 printf( "n" ); 37 38 return 0; 39 } 40 41 void bubble( int work[], const int size, 42 int (*compare)( int, int ) ) 43 { 44 int pass, count; 45 46 void swap( int *, int * ); 47 48 for ( pass = 1; pass < size; pass++ ) 49 50 for ( count = 0; count < size - 1; count++ ) 51 52 if ( (*compare)( work[ count ], work[ count + 1 ] ) ) 53 swap( &work[ count ], &work[ count + 1 ] ); 54 } 55 56 void swap( int *element1Ptr, int *element2Ptr ) 57 { 58 int temp; 59 60 temp = *element1Ptr; 61 *element1Ptr = *element2Ptr; 62 *element2Ptr = temp; 63 } 64 ascending and descending return true or false. bubble calls swap if the function call returns true. Notice how function pointers are called using the dereferencing operator. The * is not required, but emphasizes that compare is a function pointer and not a function.
  • 33. 3.1 Define functions. Program Output 65 int ascending( int a, int b ) 66 { 67 return b < a; /* swap if b is less than a */ 68 } 69 70 int descending( int a, int b ) 71 { 72 return b > a; /* swap if b is greater than a */ 73 } Enter 1 to sort in ascending order, Enter 2 to sort in descending order: 1 Data items in original order 2 6 4 8 10 12 89 68 45 37 Data items in ascending order 2 4 6 8 10 12 37 45 68 89 Enter 1 to sort in ascending order, Enter 2 to sort in descending order: 2 Data items in original order 2 6 4 8 10 12 89 68 45 37 Data items in descending order 89 68 45 37 12 10 8 6 4 2