SlideShare a Scribd company logo
© T Madas
© T Madas
Equilateral
Triangle
Square
Pentagon Hexagon
Heptagon Octagon Enneagon
Decagon Hendecagon Dodecagon
© T Madas
20 sides
Eicosagon
© T Madas
Interior Angle
What is the sum of the interior angles of this enneagon?
7 x 180° = 1260°
A 9–sided polygon is split into 7 triangles
© T Madas
What is the sum of the interior angles of this enneagon?
What is the sum of the interior angles of a polygon
with n sides?
A n - sided polygon can be split into triangles
n – 2
( 2)
n - 180
´ ° 180( 2)
n
= -
=
sum
© T Madas
sum of the interior angles of various polygons
triangle
180°
quadrilateral
180° x 2 = 360°
pentagon
180° x 3 = 540°
hexagon
180° x 4 = 720°
heptagon
180° x 5 = 900°
octagon
180° x 6 = 1080°
© T Madas
© T Madas
Consider the following polygon
What do the exterior angles of a polygon add up to?
Exterior Angle
© T Madas
360°
Consider the following polygon
What do the exterior angles of a polygon add up to?
© T Madas
© T Madas
Exterior Angle
Consider the following polygon
What do the exterior angles of a polygon add up to?
© T Madas
Consider the following polygon
What do the exterior angles of a polygon add up to?
© T Madas
Consider the following polygon
What do the exterior angles of a polygon add up to?
© T Madas
Consider the following polygon
What do the exterior angles of a polygon add up to?
© T Madas
Consider the following polygon
What do the exterior angles of a polygon add up to?
© T Madas
Consider the following polygon
What do the exterior angles of a polygon add up to?
© T Madas
Consider the following polygon
What do the exterior angles of a polygon add up to?
© T Madas
Consider the following polygon
360°
What do the exterior angles of a polygon add up to?
© T Madas
© T Madas
Central Angle
Central Angle
The central angle of a regular polygon
How do we find the
central angle of a regular
polygon with n sides?
Central angle =
360°
n
© T Madas
The central angle of a regular polygon
How do we find the
central angle of a regular
polygon with n sides?
Central angle of a pentagon =
360°
5
= 72°
© T Madas
The central angle of a regular polygon
How do we find the
central angle of a regular
polygon with n sides?
Central angle of an octagon =
360°
8
= 45°
© T Madas
The exterior angle of a regular pentagon
exterior angle =
360°
5
The exterior angles of any polygon add up to 360°
= 72°
© T Madas
The exterior angle of a regular octagon
exterior angle =
360°
8
= 45°
The exterior angles of any polygon add up to 360°
© T Madas
The interior angle of a regular polygon
A n - sided polygon can be split into
triangles
n – 2
( 2)
n - 180
´ ° 180( 2)
n
= -
=
sum
Interior angle =
180(n – 2)
n
© T Madas
the interior angles of various regular polygons
equilateral
triangle
180°
square
180° x 2 = 360°
pentagon
180° x 3 = 540°
hexagon
180° x 4 = 720°
heptagon
180° x 5 = 900°
octagon
180° x 6 = 1080°
÷ 3 = 60° 360° ÷ 4 = 90° 540° ÷ 5 = 72°
720° ÷ 6 = 120° 900° ÷ 7 ≈ 128.6° 1080° ÷ 8 = 135°
© T Madas
central angle =
360°
n
exterior angle =
360°
n
For every regular polygon
interior angle =
180(n – 2)
n
These formulae are very easy to derive
© T Madas

More Related Content

PPT
Interior-and-Exterior-Angles-of-Polygons.ppt
PPT
POLYGON PROPERTIES @ 9B
PPT
Interior-and-Exterior-Angles-of-Polygons.ppt
PPT
Polygons, Parts of Polygons, Concave and Convex, Sum of Interior Angles
PPTX
07 Angles in Polygons.pptx Mathematics grade 7
PPTX
Diagonals Powerpoint Grade 7 Lesson first quarter
PPTX
w.6 Gr.6 L(3.1)Polygons.pptxw.6 Gr.6 L(3.1)Polygons.pptx
PPT
Lesson on Polygons and it’s property.ppt
Interior-and-Exterior-Angles-of-Polygons.ppt
POLYGON PROPERTIES @ 9B
Interior-and-Exterior-Angles-of-Polygons.ppt
Polygons, Parts of Polygons, Concave and Convex, Sum of Interior Angles
07 Angles in Polygons.pptx Mathematics grade 7
Diagonals Powerpoint Grade 7 Lesson first quarter
w.6 Gr.6 L(3.1)Polygons.pptxw.6 Gr.6 L(3.1)Polygons.pptx
Lesson on Polygons and it’s property.ppt

Similar to polygons - Grade 8 Mathematics- classification (20)

PPT
Polygons.pptssssssssssssssssssssssssssss
PPTX
Polygons, types of polygons, definitions
PPTX
8.1mathematics Angles of Polygons Powerpoint.pptx
PPT
interior-and-exterior-angles-of-polygons
PPTX
Interior_Angles_Polygon_Presentation.pptx
PPTX
Interior_Angles_Polygon_Presentation.pptx
PPT
introduction and classification of polygons
PPT
Polygons and their properties of it.pptx
PPTX
Grade 7- Lesson 3.pptxaspc,pea,cee,ac,ww ke
PPTX
Angle properties of polygons part 2
PPTX
ANGLES of a CONVEX POLYGONNNNNNNNNN.pptx
PPT
Interior-and-Exterior-Angles-of-Polygons.ppt
PPT
Interior-and-Exterior-Angles-of-Polygons.ppt
PPT
Polygons By.leinard
PPT
Polygons
PPTX
Polygon: Definition, Terminologies and Kinds
PPT
Polygons
PPTX
7 Determining Measures of Angles and Number of Sides of a Polygon [Autosaved]...
PPTX
Grade 5-melcbasedPolygonsthirdquarter.pptx
PPT
Polygonsn grade 5 quarter 3 (COT Tracy).ppt
Polygons.pptssssssssssssssssssssssssssss
Polygons, types of polygons, definitions
8.1mathematics Angles of Polygons Powerpoint.pptx
interior-and-exterior-angles-of-polygons
Interior_Angles_Polygon_Presentation.pptx
Interior_Angles_Polygon_Presentation.pptx
introduction and classification of polygons
Polygons and their properties of it.pptx
Grade 7- Lesson 3.pptxaspc,pea,cee,ac,ww ke
Angle properties of polygons part 2
ANGLES of a CONVEX POLYGONNNNNNNNNN.pptx
Interior-and-Exterior-Angles-of-Polygons.ppt
Interior-and-Exterior-Angles-of-Polygons.ppt
Polygons By.leinard
Polygons
Polygon: Definition, Terminologies and Kinds
Polygons
7 Determining Measures of Angles and Number of Sides of a Polygon [Autosaved]...
Grade 5-melcbasedPolygonsthirdquarter.pptx
Polygonsn grade 5 quarter 3 (COT Tracy).ppt
Ad

Recently uploaded (20)

PPTX
202450812 BayCHI UCSC-SV 20250812 v17.pptx
PDF
HVAC Specification 2024 according to central public works department
PPTX
B.Sc. DS Unit 2 Software Engineering.pptx
PDF
FOISHS ANNUAL IMPLEMENTATION PLAN 2025.pdf
PDF
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
PPTX
TNA_Presentation-1-Final(SAVE)) (1).pptx
PDF
International_Financial_Reporting_Standa.pdf
PDF
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
DOCX
Cambridge-Practice-Tests-for-IELTS-12.docx
PDF
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 2).pdf
PPTX
A powerpoint presentation on the Revised K-10 Science Shaping Paper
PDF
IGGE1 Understanding the Self1234567891011
PPTX
Computer Architecture Input Output Memory.pptx
PDF
Empowerment Technology for Senior High School Guide
PDF
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
PDF
advance database management system book.pdf
PDF
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين
PDF
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
PDF
CISA (Certified Information Systems Auditor) Domain-Wise Summary.pdf
PDF
Practical Manual AGRO-233 Principles and Practices of Natural Farming
202450812 BayCHI UCSC-SV 20250812 v17.pptx
HVAC Specification 2024 according to central public works department
B.Sc. DS Unit 2 Software Engineering.pptx
FOISHS ANNUAL IMPLEMENTATION PLAN 2025.pdf
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
TNA_Presentation-1-Final(SAVE)) (1).pptx
International_Financial_Reporting_Standa.pdf
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
Cambridge-Practice-Tests-for-IELTS-12.docx
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 2).pdf
A powerpoint presentation on the Revised K-10 Science Shaping Paper
IGGE1 Understanding the Self1234567891011
Computer Architecture Input Output Memory.pptx
Empowerment Technology for Senior High School Guide
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
advance database management system book.pdf
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
CISA (Certified Information Systems Auditor) Domain-Wise Summary.pdf
Practical Manual AGRO-233 Principles and Practices of Natural Farming
Ad

polygons - Grade 8 Mathematics- classification

  • 2. © T Madas Equilateral Triangle Square Pentagon Hexagon Heptagon Octagon Enneagon Decagon Hendecagon Dodecagon
  • 3. © T Madas 20 sides Eicosagon
  • 4. © T Madas Interior Angle What is the sum of the interior angles of this enneagon? 7 x 180° = 1260° A 9–sided polygon is split into 7 triangles
  • 5. © T Madas What is the sum of the interior angles of this enneagon? What is the sum of the interior angles of a polygon with n sides? A n - sided polygon can be split into triangles n – 2 ( 2) n - 180 ´ ° 180( 2) n = - = sum
  • 6. © T Madas sum of the interior angles of various polygons triangle 180° quadrilateral 180° x 2 = 360° pentagon 180° x 3 = 540° hexagon 180° x 4 = 720° heptagon 180° x 5 = 900° octagon 180° x 6 = 1080°
  • 8. © T Madas Consider the following polygon What do the exterior angles of a polygon add up to? Exterior Angle
  • 9. © T Madas 360° Consider the following polygon What do the exterior angles of a polygon add up to?
  • 11. © T Madas Exterior Angle Consider the following polygon What do the exterior angles of a polygon add up to?
  • 12. © T Madas Consider the following polygon What do the exterior angles of a polygon add up to?
  • 13. © T Madas Consider the following polygon What do the exterior angles of a polygon add up to?
  • 14. © T Madas Consider the following polygon What do the exterior angles of a polygon add up to?
  • 15. © T Madas Consider the following polygon What do the exterior angles of a polygon add up to?
  • 16. © T Madas Consider the following polygon What do the exterior angles of a polygon add up to?
  • 17. © T Madas Consider the following polygon What do the exterior angles of a polygon add up to?
  • 18. © T Madas Consider the following polygon 360° What do the exterior angles of a polygon add up to?
  • 20. © T Madas Central Angle Central Angle The central angle of a regular polygon How do we find the central angle of a regular polygon with n sides? Central angle = 360° n
  • 21. © T Madas The central angle of a regular polygon How do we find the central angle of a regular polygon with n sides? Central angle of a pentagon = 360° 5 = 72°
  • 22. © T Madas The central angle of a regular polygon How do we find the central angle of a regular polygon with n sides? Central angle of an octagon = 360° 8 = 45°
  • 23. © T Madas The exterior angle of a regular pentagon exterior angle = 360° 5 The exterior angles of any polygon add up to 360° = 72°
  • 24. © T Madas The exterior angle of a regular octagon exterior angle = 360° 8 = 45° The exterior angles of any polygon add up to 360°
  • 25. © T Madas The interior angle of a regular polygon A n - sided polygon can be split into triangles n – 2 ( 2) n - 180 ´ ° 180( 2) n = - = sum Interior angle = 180(n – 2) n
  • 26. © T Madas the interior angles of various regular polygons equilateral triangle 180° square 180° x 2 = 360° pentagon 180° x 3 = 540° hexagon 180° x 4 = 720° heptagon 180° x 5 = 900° octagon 180° x 6 = 1080° ÷ 3 = 60° 360° ÷ 4 = 90° 540° ÷ 5 = 72° 720° ÷ 6 = 120° 900° ÷ 7 ≈ 128.6° 1080° ÷ 8 = 135°
  • 27. © T Madas central angle = 360° n exterior angle = 360° n For every regular polygon interior angle = 180(n – 2) n These formulae are very easy to derive