SlideShare a Scribd company logo
POLYNOMIALS REVIEW
Classifying Polynomials
Adding & Subtracting Polynomials
Multiplying Polynomials
Remember: Monomials
are separated
by _____ or _____ signs.
 
But, what is a monomial?
A number or variable or product
of numbers and variables.
5x2
6 x
- y2
z3 ½xy
“Poly” means _________________?
Polynomials can be classified
according to the number of
terms they have.
• ONE TERM –
• TWO TERMS –
• THREE TERMS -
5 5 3 6 2
x x y z z
 
Classify the following:
3x2
– 8xy
4abc
3x2
– 8xy
5x2
a2
+ 2ab + b2
DEGREE………………
The degree of a monomial is
determined by adding the
exponents of its variables.
So, to find the degree of a
POLYnomial, find the degree of
each separate MONOmial. The
Monomial with the HIGHEST
sum determines the degree of
the problem.
5 5 3 6 2
x x y z z
 
2
3 5
x 
7 6 4 4
3
y y x m
 
Ascending & Descending
Order
• Ascending – means to count up!
So, order the VARIABLES
exponents from least to greatest.
• Descending – means to count down!
So, order the VARIABLES
exponents from greatest to least.
2 3
5 4 2
x x x
   
3 2
4 5 2
x x x
   
2 3 2 4
24 12 6
x y x y x
 
3 2
12x y
 2
24x y
 4
6x

2 3
5 4 2
x x x
    3
4x

2
 x
 2
5x

2 3 2 4
24 12 6
x y x y x
  2 3 2 4
24 12 6
x y x y x
 
( of “y” )
2
2 5 8
x y
 
20
3
3 8 2
x y
  
6
Adding & Subtracting
Polynomials
2
(3 5 6)
y y
  2
(7 9)
y
 
2
10y 5y
 15

2 2
(3 3 )
a ab b
 
2
(4 6 )
ab b
 
2
3a 7ab
 2
5b

2
(3 2)
x  (9x
 1)

2
(7x
 4 )
x

2
10 5 1
x x
 
2 2
(4 3 5 )
x y xy
  (8xy
 2
6x
 2
3 )
y

2 2
2 3 6
x xy y
  
Subtract
2
8 5
x x
   from
2
2 6
x x

2
3x 2x
 5

4
(8 6)
x  2
(4x
 2)
 4
(2x

2
)
x

4 2
10 5 8
x x
 
Multiplying Polynomials
3
4 (3 3 )
x x y

4
12 12
x xy
 4
5 (8 5 )
x x y
 
5
40x
 25

4
x y
4 3 2
3 (2 4 4 6)
x x x x
  
6 7
x 12
 6
x 12

5
x 18
 4
x
2 2 3
6 ( 4 2 )
x y x xy y
  
4
6x y
 3 2
24x y

2 4
12x y

2 2 3
2 ( 4 7 )
x y x xy y
  
4
2x y
 3 2
8x y
 2 4
14x y

( 7)( 1)
x x
 
2
x 8x
 7

( 4)( 2)
x x
 
2
x 6x
 8

( 6)( 5)
x x
 
2
x 11x
 30

( 7)( 3)
x x
 
2
x 10x
 21

( 9)( 3)
x x
 
2
x 6x
 27

( 6)( 3)
x x
 
2
x 3x
 18

( 1)( 8)
x x
 
2
7 8
x x
 
( 2)( 7)
x x
 
2
5 14
x x
 
Tie Breaker
(3x + 2) (2x + 3)
6x2 + 13x + 6

More Related Content

PPT
Polynomials review
PPTX
Factoring-and-Finding-Roots-of-Polynomials.pptx
PPTX
Factorization of Polynomial. analyze, simplifying polynomial
PPTX
Factoring Polynomials (1).pptx
PPT
polynomials.ppt new class VIII maths lesson
PPTX
Class VIII- Polynomials.pptx ppt polynomials
PPTX
Special Products and Factors.pptx
PPTX
G8 Math Q1- Week 1-2 Special Products and Factors (1).pptx
Polynomials review
Factoring-and-Finding-Roots-of-Polynomials.pptx
Factorization of Polynomial. analyze, simplifying polynomial
Factoring Polynomials (1).pptx
polynomials.ppt new class VIII maths lesson
Class VIII- Polynomials.pptx ppt polynomials
Special Products and Factors.pptx
G8 Math Q1- Week 1-2 Special Products and Factors (1).pptx

Similar to POLYNOMIALS-REVIEW.ppt (20)

PPT
Factoring and Box Method
PPTX
Lecture 05 b radicals multiplication and division
PPTX
Polynomials
PDF
0.3 Factoring Polynomials
PPTX
Chapter 9 - Rational Expressions
PPTX
Mathnasium Presentation (1)
PDF
Factoring
PPTX
4.3.1 factoring
PPTX
MIT Math Syllabus 10-3 Lesson 2 : Polynomials
PPTX
polynomial , x and y intercepts, poly or not poly
PPT
Foil method and distributive.ppt
PDF
Pc12 sol c08_8-6
PPTX
Math-80-module1.1
PPT
section 5.2.ppt
PPSX
Algebra equations & inequalities
PPT
Add sub polynomials
PPT
Polynomial operations (1)
PDF
College algebra in context 5th edition harshbarger solutions manual
PPTX
Factoring GCF and Grouping
Factoring and Box Method
Lecture 05 b radicals multiplication and division
Polynomials
0.3 Factoring Polynomials
Chapter 9 - Rational Expressions
Mathnasium Presentation (1)
Factoring
4.3.1 factoring
MIT Math Syllabus 10-3 Lesson 2 : Polynomials
polynomial , x and y intercepts, poly or not poly
Foil method and distributive.ppt
Pc12 sol c08_8-6
Math-80-module1.1
section 5.2.ppt
Algebra equations & inequalities
Add sub polynomials
Polynomial operations (1)
College algebra in context 5th edition harshbarger solutions manual
Factoring GCF and Grouping
Ad

Recently uploaded (20)

PDF
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
PDF
Updated Idioms and Phrasal Verbs in English subject
DOC
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
PDF
Chinmaya Tiranga quiz Grand Finale.pdf
PDF
01-Introduction-to-Information-Management.pdf
PPTX
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PDF
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
PDF
Paper A Mock Exam 9_ Attempt review.pdf.
PDF
Supply Chain Operations Speaking Notes -ICLT Program
PDF
What if we spent less time fighting change, and more time building what’s rig...
PPTX
master seminar digital applications in india
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PDF
LNK 2025 (2).pdf MWEHEHEHEHEHEHEHEHEHEHE
PDF
Microbial disease of the cardiovascular and lymphatic systems
PDF
Classroom Observation Tools for Teachers
PDF
Practical Manual AGRO-233 Principles and Practices of Natural Farming
PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
PPTX
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
PPTX
Final Presentation General Medicine 03-08-2024.pptx
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
Updated Idioms and Phrasal Verbs in English subject
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
Chinmaya Tiranga quiz Grand Finale.pdf
01-Introduction-to-Information-Management.pdf
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx
Module 4: Burden of Disease Tutorial Slides S2 2025
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
Paper A Mock Exam 9_ Attempt review.pdf.
Supply Chain Operations Speaking Notes -ICLT Program
What if we spent less time fighting change, and more time building what’s rig...
master seminar digital applications in india
Final Presentation General Medicine 03-08-2024.pptx
LNK 2025 (2).pdf MWEHEHEHEHEHEHEHEHEHEHE
Microbial disease of the cardiovascular and lymphatic systems
Classroom Observation Tools for Teachers
Practical Manual AGRO-233 Principles and Practices of Natural Farming
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
Final Presentation General Medicine 03-08-2024.pptx
Ad

POLYNOMIALS-REVIEW.ppt

  • 1. POLYNOMIALS REVIEW Classifying Polynomials Adding & Subtracting Polynomials Multiplying Polynomials
  • 2. Remember: Monomials are separated by _____ or _____ signs.  
  • 3. But, what is a monomial? A number or variable or product of numbers and variables. 5x2 6 x - y2 z3 ½xy
  • 4. “Poly” means _________________? Polynomials can be classified according to the number of terms they have. • ONE TERM – • TWO TERMS – • THREE TERMS -
  • 5. 5 5 3 6 2 x x y z z   Classify the following: 3x2 – 8xy 4abc 3x2 – 8xy 5x2 a2 + 2ab + b2
  • 6. DEGREE……………… The degree of a monomial is determined by adding the exponents of its variables. So, to find the degree of a POLYnomial, find the degree of each separate MONOmial. The Monomial with the HIGHEST sum determines the degree of the problem.
  • 7. 5 5 3 6 2 x x y z z   2 3 5 x  7 6 4 4 3 y y x m  
  • 8. Ascending & Descending Order • Ascending – means to count up! So, order the VARIABLES exponents from least to greatest. • Descending – means to count down! So, order the VARIABLES exponents from greatest to least.
  • 9. 2 3 5 4 2 x x x     3 2 4 5 2 x x x     2 3 2 4 24 12 6 x y x y x   3 2 12x y  2 24x y  4 6x  2 3 5 4 2 x x x     3 4x  2  x  2 5x  2 3 2 4 24 12 6 x y x y x   2 3 2 4 24 12 6 x y x y x   ( of “y” )
  • 10. 2 2 5 8 x y   20 3 3 8 2 x y    6
  • 11. Adding & Subtracting Polynomials 2 (3 5 6) y y   2 (7 9) y   2 10y 5y  15  2 2 (3 3 ) a ab b   2 (4 6 ) ab b   2 3a 7ab  2 5b  2 (3 2) x  (9x  1)  2 (7x  4 ) x  2 10 5 1 x x  
  • 12. 2 2 (4 3 5 ) x y xy   (8xy  2 6x  2 3 ) y  2 2 2 3 6 x xy y    Subtract 2 8 5 x x    from 2 2 6 x x  2 3x 2x  5  4 (8 6) x  2 (4x  2)  4 (2x  2 ) x  4 2 10 5 8 x x  
  • 13. Multiplying Polynomials 3 4 (3 3 ) x x y  4 12 12 x xy  4 5 (8 5 ) x x y   5 40x  25  4 x y 4 3 2 3 (2 4 4 6) x x x x    6 7 x 12  6 x 12  5 x 18  4 x
  • 14. 2 2 3 6 ( 4 2 ) x y x xy y    4 6x y  3 2 24x y  2 4 12x y  2 2 3 2 ( 4 7 ) x y x xy y    4 2x y  3 2 8x y  2 4 14x y  ( 7)( 1) x x   2 x 8x  7  ( 4)( 2) x x   2 x 6x  8 
  • 15. ( 6)( 5) x x   2 x 11x  30  ( 7)( 3) x x   2 x 10x  21  ( 9)( 3) x x   2 x 6x  27 
  • 16. ( 6)( 3) x x   2 x 3x  18  ( 1)( 8) x x   2 7 8 x x   ( 2)( 7) x x   2 5 14 x x  
  • 17. Tie Breaker (3x + 2) (2x + 3) 6x2 + 13x + 6