SlideShare a Scribd company logo
Polynomial Operations
Chapter 6
p.333

1
2
3
What is polynomial?
A polynomial of a letter is an algebraic expression that is the sum
of the products between real numbers and the non-negative integer
powers of the letter.
Examples, Suppose that the letter is x, then
3 x + 2, 2 x 2 − 3 x + 5, x 3 + 2 x 2 − 4 x, x100 are all polynomials of x.
Note:
1. The Polynomial letter could be any letter.
3 y + 2, 2t 2 − 3t + 5, r 3 + 2r 2 − 4r , p100 are all polynomials .
2. Any number is also considered as a polynomial. This is because
5 = 5x 0 , which is 5 times the zero power of x.
3. Each product is called the term of the polynomial
2 y 2 − 3 y + 5 has three terms: 2 y 2 , − 3 y, 5.
4
4. Each number of the product is called the coeficient of the polynomial
3 x + 2 has 2 coeficients 3 and 2
2 y 2 − 3 y + 5 has 3 coeficients 2, − 3 and 5.
x 3 + 2 x 2 − 4 x − 3, has 4 coeficients 1, 2, − 4 and − 3.
x100 has one coeficient 1.
5. The heighest power exponent of x is called the degree of the polynomial.
3 x + 2 has degree =1,
2 y 2 − 3 y + 5 has degree =2
x3 + 2 x 2 − 4 x − 3
x100 has degree =100
5 has degree = 0.
6. A singleton term polynomial is called monomial, such as
x100 , 2x, 5
5
7. A two terms polynomial is called binomial, such as
2 x + 5, 9 p 5 + 7, x 2 − 4.
8. A three terms polynomial is called trinomial, such as
2 x 2 − 3 x + 5, 9 p 5 + 7 p 2 + p, x 2 + 4 x + 4.
9.

2 x 2 − 3x + 5 x ,

1
+ 4 x + 4,
2
x

x +1
x−2

are not polynomials. Why?
10. Polynomial could have more than one letters, if all letters have
non-negative powers, such as
2 x 2 y − 3 xy 3 + 5 x 6 y 2 , 8m 2 p 5 + 9m3 p 2
They are called multi-varialbles polynomials. In the above examples,
we also can consider that only one letter as variable and other letters
as numbers.
6
Polynomial Operations
1. Add and subtract: We only do on the same power terms.
ax n ± bx n = ( a ± b ) x n
3x 3 + 5 x 3 = ( 3 + 5 ) x 3 = 8 x 3

3m 5 − 7 m 5 = ( 3 − 7 ) m 5 = − 4m 5

when we have multiple terms, we just add or subtract terms with
the same powers
Examples:
(2 x 4 − 3 x 2 + 5 x) + ( x 4 + 2 x 2 + 4 x)
= (2 + 1) x 4 + (−3 + 2) x 2 + (5 + 4) x = 3x 4 − x 2 + 9 x
(3 x 2 + 7 x − 6) − (5 x 2 − 4 x + 8)
= (3 − 5) x 2 + (7 − (−4)) x + (−6 − 8) = −2 x 2 + 11x − 14
Can we do addition 2 x 4 + 3 x 2 ?
7
Do operation vertically
(3 x 2 + 7 x − 6) − (5 x 2 − 4 x + 8) = − 2 x 2 + 11x − 14
3x 2 + 7 x − 6
5 x 2 − 4 x + 8 (−
− 2 x 2 + 11x − 14
or
(3 x 3 + 7 x 2 − 6) + (5 x 3 − 4 x + 8) = 8 x 3 + 7 x 2 − 4 x + 2
3 x 3 + 7 x 2 + 0 ×x − 6
5 x3 + 0 ×x 2 − 4 x + 8 (+
8 x3 + 7 x 2 − 4 x + 2
Align the same power terms vetically. Put 0s for the missing power
terms. Then do numbers operations veritcally.
8
2. Multiplication: Use formula

( ax ) ×( bx )
m

n

= abx m + n

( 3x ) ( 5 x ) = ( 3 ×5 ) x = 15x
( 3m ) ( −7m ) = ( 3 ×( −7 ) ) m
2

3+ 2

3

5

2

5

5+ 2

= − 21m7

When two polynomials have multiple terms, then every term of the
1st polynomial must multiply to every term of the 2nd polynoimial.
Examples:
(3 x − 4)(2 x 2 − 3 x + 5)
= (3 x)(2 x 2 − 3 x + 5) + (−4)(2 x 2 − 3 x + 5)
= (3 x)(2 x 2 ) + (3 x)(−3 x) + (3 x)(5) + ( −4)(2 x 2 ) + (−4)(−3 x) + (−4)(5)
= 6 x 3 − 9 x 2 + 15 x − 8 x 2 + 12 x − 20
= 6 x 3 − 17 x 2 + 27 x − 20
9
Do multiplication vertically, put 0 for missing power terms
(3 x − 4)(2 x 2 − 3x + 5) = 6 x 3 − 17 x 2 + 27 x − 20
2x2

6 x3
6 x3

−8 x 2
−9 x 2
−17 x 2

−3 x
3x
+12 x
+15 x
+27 x

+5
−4 (×
−20
(+
−20

(2 x + 3)( x 2 − 5) = 2 x 3 + 3x 2 − 10 x − 15
x2

2 x3
2 x3

3x 2
0 x2
+3 x 2

0 ×x
2x
0x
−10 x
−10 x

−5
+3 (×
−15
(+
−15

10
Multiplication vertically example2
( x 2 + 2 x − 3)(2 x 2 − 3x + 5) = 2 x 4 + x 3 − 7 x 2 + 19 x − 15
x2

+ 2x

−3

2x2

−3 x

+ 5 (×

5x2

+10 x −15

−3 x 3

−6 x 2

+9 x

2 x4

+4 x 3

−6 x 2

2 x4

+ x3

− 7 x2

+ 19 x

Multiply by

5

Multiply by

−3x
Multiply by 2x2
− 15

11
Vertical multiplication with numbers only
(3 x − 4)(2 x 2 − 3 x + 5) = 6 x3 − 17 x 2 + 27 x − 20

(2 x + 3)( x 2 − 5) = 2 x 3 + 3 x 2 − 10 x − 15

12
( x 2 + 2 x − 3)(2 x 2 − 3 x + 5) = 2 x 4 + x 3 − 7 x 2 + 19 x − 15

13
Two binomial multiplication. Use FOIL rule
First terms, Outside terms, Inside terms, Last terms
(2 x − 3)(6 x + 5) = ( 2 x ) ( 6 x ) + ( 2 x ) ( 5 ) + ( −3) ( 6 x ) + ( −3) ( 5 )
1 24 124 1 24 124
4 3 4 3
4 3 4 3
F
O
I
L
= 12 x 2 + 10 x − 18 x − 15
= 12 x 2 − 8 x − 15
or simply vertical way

2x
6x
12 x 2
12 x 2

−3
+5

(×

10 x −15
−18 x
− 8x

− 15
14
Exercises
1. (3 x 2 − 4 x + 5) + ( −2 x 2 + 3 x − 2)
2. (4m3 − 3m 2 + 5) + ( −3m3 − m 2 + 5)
3. 2(12 x − 8 x + 6) − 4(3 x − 4 x + 2)
2

2

4. − (8 x + x − 3) + (2 x + x) − (4 x − 1)
2

2

2

5. 2 x 3 (3 x 2 − 5 x + 2)
6. ( x 2 + 5)(3 x − 2)
7. (4 x + 5)(3 x − 2)
8. (3 x 2 − 4 x + 5)(3 x + 1)
9. (3 x 2 − 4 x + 5)(2 x 2 + x − 2)
15
Some important formulas
1. ( x + y )( x − y ) = x 2 − y 2

(sum and difference product)

Use FOIL ( x + y )( x − y ) = x 2 − xy + xy − y 2
= x2 − y 2
or

(a + b)(a − b) = a 2 − b 2

2. ( x + y ) 2 = x 2 + 2 xy + y 2 (square of sum )
Use FOIL ( x + y ) 2 = ( x + y )( x + y ) = x 2 + xy + xy + y 2
= x 2 + 2 xy + y 2
or

(a + b) 2 = a 2 + 2ab + b 2

3. ( x − y ) 2 = x 2 − 2 xy + y 2

(square of difference )

Use FOIL ( x − y ) 2 = ( x − y )( x − y ) = x 2 − xy − xy + y 2
= x 2 − 2 xy + y
or

(a − b) 2 = a 2 − 2ab + b 2

16
4. ( x + y )( x 2 − xy + y 2 ) =x3 + y 3

(sum of cubic powers)

This is because
( x + y )( x 2 − xy + y 2 ) = x( x 2 − xy + y 2 ) + y ( x 2 − xy + y 2 )

(

) (

)

= x 3 − x 2 y + xy 2 + yx 2 − xy 2 + y 3 = x3 + y 3
Eexamples

( a + 1)( a 2 − a + 1) = a 3 + 1

(a + 2)(a 2 − 2a + 4) = ( a + 2)( a 2 − 2 ×a + 2 2 ) = a 3 + 23 = a 3 + 8
(a + 3)(a 2 − 3a + 9) = (a + 2)(a 2 − 3 ×a + 32 ) = a 3 + 33 = a 3 + 27
5. ( x − y )( x 2 + xy + y 2 ) =x 3 − y 3 (difference of cubic powers)
This is because, we can use − y to replace y in the above formula

( x + ( − y ) ) ( x 2 − x ( − y ) + ( − y ) 2 ) =x 3 + ( − y ) 3

which is
Examples

( x − y )( x 2 + xy + y 2 ) =x 3 − y 3
(a − 1)(a 2 + a + 1) = a 3 − 1

(a − 2)(a 2 + 2a + 4) = (a − 2)(a 2 + 2 ×a + 2 2 ) = a 3 − 23 = a 3 − 8
(a − 3)(a 2 + 3a + 9) = (a − 2)(a 2 + 3 ×a + 32 ) = a 3 − 33 = a 3 − 27

17
Example
1. (3 p + 11)(3 p − 11) = ( 3 p ) − 112 = 9 p 2 − 121
2

2. (5m − 3)(5m + 3) = ( 5m
3

3

)

3 2

− 32 = 25m6 − 9

3. (9k − 11r )(9k + 11r ) = ( 9k ) − ( 11r
3

2

3

)

3 2

= 81k 2 − 121r 6

4. (2m + 5) 2 = ( 2m ) + 2( 2m)(5) + ( 5 ) = 4 m 2 + 20 m + 25
2

( x + y )2

5. ( 3x − 7 y

2

x2

) = ( 3x )

4 2

( a −b ) 2

a2

y2

2 xy
2

− 2(3 x)(7 y )+ ( 7 y
4

2 ab

)

4 2

b2

= 9 x 2 − 42 xy 4 + 49 y 8
6. ( 3 x − 2 y ) ( 9 x + 6 xy + 4 y ) = ( 3 x ) − ( 2 y ) = 27 x 3 − 8 y 6
1 24 144 2444 {
4 3
4
3
1 3
2
2

(a − b)

2

2

a 2 + ab + b 2

3

4

a3

2 3

b3

18
Exercises
1. (3 x + 5)(3 x − 5)
2

2

2. (2m3 + n)(2m3 − n)
3. ( 5r + 4t

)

2 2

4. ( 2 x − 3 y )
4

2

5. (3 p + 5) 2
6. (4 − x)(16 + 4 x + x 2 )
7. (2a + 3b)(4a 2 − 6ab + 9b 2 )

19
Higher Power of binomial
We have (a + b) 2 = a 2 + 2ab + b 2 what is (a + b)3 ?
After calculating
( a + b) 3 = (a + b)( a + b) 2 = (a + b)( a 2 + 2 ab + b 2 )
= a (a 2 + 2ab + b 2 ) + b( a 2 + 2ab + b 2 )
= (a 3 + 2a 2b + ab 2 ) + (a 2b + 2a 2b + b3 )
= a 3 + 3a 2b + 3ab 2 + b3
We can see the powers of a is decreasing and the powers of b is
increasing. The coefficients are 1, 3, 3, 1. Similarly,
(a + b) 4 = (a + b)(a + b)3 = (a + b)(a 3 + 3a 2b + 3a 2b + b 3)
= a (a 3 + 3a 2b + 3a 2b + b3) + b(a 3 + 3a 2b + 3a 2b + b 3)
= a 4 + 4a 3b + 6a 2b 2 + 4ab3 + b 4
The coefficients are 1, 4, 6, 4, 1.
20
Pascal Triangle
We see that

( a + b ) has coefficients

1, 1

(a + b) 2 = a 2 + 2ab + b 2 has coefficients 1, 2, 1
( a + b)3 = a 3 + 3a 2b + 3a 2b + b3 has coefficients 1, 3, 3,1
(a + b) 4 = a 4 + 4a 3b + 6a 2b 2 + 4ab3 + b 4 has coefficients 1, 4, 6, 4, 1
So we can arrage them into a triangle like
1
1
1
1

1
2

3
4

1
3

6

1
4

1

Every number is the sum of two numbers on its shoulder.

21
1
1
1
1
1
1

2
3

4
5

1
1
3
6

10

1
4

10

1
5

1

It we continue to calculate the numbers on the next line, we
will get numbers 1, 5, 10, 10, 5, 1, which are coefficients
of power (a + b)5 . Therefore we get

(a + b)5 = a 5 + 5a 4b + 10a 3b 2 + 10a 2b3 + 6ab 4 +b 5
This triangle is called the Pascal Triangle.
22
Powers of (a − b)

n

Similarly, we have
(a − b) 2 = a 2 − 2ab + b 2
(a − b)3 = a 3 − 3a 2b + 3a 2b − b3
(a − b) 4 = a 4 − 4a 3b + 6a 2b 2 − 4ab3 + b 4
(a − b)5 = a 5 − 5a 4b + 10a 3b 2 − 10a 2b3 + 6ab 4 − b5
The coeficient is negative if the power exponent of b is odd number
Practice Exercises
1. ( x + 3)3
2. ( x − 2) 4
3. ( x − 1)5
4. ( x + 1)6
23
3. Division
Case 1: If the devisor is monomial
4 x 3 − 8 x 2 + 6 x 4 x3 8x 2 6x
=
−
+
= 2x2 − 4x + 3
2x
2x
2x
2x
Sometimes, we may have remainder
4 x 3 − 8 x 2 + 6 x + 3 4 x3 8x 2 6x
3
3
=
−
+
+
= 2x2 − 4x + 3 +
2x
2x
2x
2x
2x 2 x
Case 2: If the devisor is binomial
Use factoring

ab + ac = a (b + c) or

ab − ac = a (b − c )

4x2 + 2x
2 x ×2 x + 2 x 2 x (2 x + 1)
=
=
= 2x
2x +1
2x +1
2x +1

2
4x2 − 6x − 3 4x2 + 2x − 8x − 4 + 1 ( 4 x + 2x ) − ( 8x + 4) + 1
=
=
2x +1
2x +1
2x +1
4x2 + 2x 8x + 4
1
1
=
−
+
= 2x − 4 +
2x +1
2x +1 2x +1
2x +1

24
Other methods to get result
4x2 − 6x − 3
1
= 2x − 4 +
2x +1
2x +1
vertical division

25
13
2

4m − 8m + 4m + 6
1
2
= 2m − 3m + +
2m − 1
2 2m − 1
vertical way with number only
3

2

26
3x 3 − 2 x 2 − 150 3 x 3 − 2 x 2 + 0 ×x − 150
12 x − 158
=
= 3x − 2 +
2
2
x −4
x + 0 ×x − 4
x2 − 4
Put 0s for the missing terms

Remainder

27
Exercises
Do divisions
−4 x 7 − 14 x 6 + 10 x 4 − 14 x 2
1.
−2 x 2
10 x8 − 16 x 6 − 4 x 4
2.
−2 x 6
Use vertical devision with number only
12 x 3 − 2 x + 5
3.
x −3
6 x 4 + 9 x3 + 2 x 2 − 8 x + 7
4.
3x 2 − 2
5x4 + 2x2 − 3
5.
x2 − x + 1

28
Factoring
Factoring is the reverse of polynomial multiplication and based on
ab + ac = a (b + c ) here a could number or formula
Factor the Greatest Common Factor GCF, including the largest
posssible common number factor and lowest power of x or anything
Examples:
9 x 2 + 6 x −12 = (3 × x 2 + 3 × x − 3 × ) = 3(3 x 2 + 2 x − 4)
3
2
4
9 x 5 + 6 x 3 − 12 x 2 = (3 x 2 × x 3 + 3 x 2 × x − 3 x 2 × ) = 3 x 2 (3 x 3 + 2 x − 4)
3
2
4
6 x 2t + 8 xt + 12t = (2t × x 2 + 2t × x + 2t × ) = 2t (3 x 2 + 4 x + 6)
3
4
6
14(m + 1)3 − 28(m + 1) 2 − 7( m + 1)

= ( 7(m + 1) × m + 1) 2 − 7(m + 1) × m + 1) − 7( m + 1) × )
2(
4(
1
= 7(m + 1) ( 2(m + 1) 2 − 4(m + 1) − 1)

29
Group Factoring
If there are four terms, we can group the 1st two and the last two terms.
Then do the preliminary factors on two grous and factor again.
x 3 + 2 x 2 + 2 x + 4 = ( x 3 + 2 x 2 ) + ( 2 x + 4 ) = x 2 ( x + 2 ) + 2( x + 2)
= ( x 2 ( x + 2 ) + 2( x + 2) ) = ( x + 2 ) ( x 2 + 2 )

4 x 3 + 2 x 2 − 6 x − 3 = ( 4 x 3 + 2 x 2 ) − ( 6 x + 3 ) = 2 x 2 ( 2 x + 1) − 3(2 x + 1)
= ( 2 x 2 ( 2 x + 1) − 3(2 x + 1) ) = ( 2 x + 1) ( 2 x 2 − 3)

mp 2 + 7m 2 + 3 p 2 + 21m = ( mp 2 + 7m 2 ) + ( 3 p 2 + 21m )
= m ( p 2 + 7m ) + 3 ( p 2 + 7m )

(

)

= m ( p 2 + 7m ) + 3 ( p 2 + 7 m ) ¬ − − We can skip this
= ( p 2 + 7 m ) ( m + 3)

30
Factor the following

Exercises

1. 12m + 60
2. 4 p 3 q 4 − 6 p 2 q 5
3. 4k 2 m3 + 8k 4 m3 − 12k 2 m 4
4. 4( y − 2) 2 + 3( y − 2)
5. 6 st + 9t − 10 s − 15
6. 20 z 2 − 8 x + 5 pz 2 − 2 px
31
Quadratic polynomials
Factoring is the reverse of polynomial multiplication.
(3x − 4)(2 x + 5) = 6 x 2 + 7 x − 20

is multiplication

6 x 2 + 7 x − 20 = (3x − 4)(2 x + 5) is factoring
How to obtain numbers 3, − 4, 2 and 5 from 6, 7 and − 20?
Because 6 x 2 = 3 x ×2 x so we have 6 = 3 ×2 and − 20= ( −4 ) ×
5
Also 7 x = 3 x × + ( −4 ) ×2 x so we have 7 = 3 × + ( −4 ) ×2
5
5
Therefore we have chcart (answer are 4 corner numbers)

2x+5
3x−4

32
Example 2. Factor 6 x 2 − 13 x + 6
This is not match

This is match

2x−3
3x−2

Answer: 6 x 2 − 11x + 6 = (2 x − 3)(3 x − 2)
33
Example 3. Factor 4 x 2 − 11xy + 6 y 2

4x−3y
x−2y
Answer: 4 x 2 − 11xy + 6 y 2 = (4 x − 3 y )( x − 2 y )

Example 4. Factor 6 p 2 − 7 p − 5

Answer: 6 p 2 − 7 p − 5 = (2 p + 1)(3 p − 5)

34
Example 5. Factor x − 11x + 30
2

Answer: x 2 − 11x + 30 = ( x − 5)( x − 6)

Example 6. Factor a 2 − 5ab − 14b 2

Answer: a 2 − 5ab − 14b 2 = (a + 2b)(a − 7b)

35
Note: If the first coefficient is one like x 2 + px + q
then we only need to decompose q to the product of two number
such that their sum is p.
Examples:
1.

x 2 − 11x + 30
because
30 = ( −5)(−6) and
so

2.

3.

x 2 − 11x + 30 = ( x − 5)( x − 6)

a 2 − 5a − 14
because
− 14 = 2 ×(−7) and
so

(−5) + (−6) = −11

2 + (−7) = −5

a 2 − 5a − 14 = (a + 2)(a − 7)

x 2 + 10 x − 39
because
− 39 = 13 ×( −3) and 13 + ( −3) = 10
so

x 2 + 10 x − 39 = ( x + 13)( x − 3)

36
Factor the following

Exercises

1. 8h 2 − 2h − 21
2. 3m 2 + 14m + 8
3. 9 y 2 − 18 y + 8
4. 6k 2 − 5kp − 6 p 2
5. 5a 2 − 7 ab − 6b 2
6. 24a 4 + 10a 3b − 2a 2b 2
7. 18 x 5 + 15 x 4 z − 75 x 3 z 2
8.

x 2 + 12 x + 27

9.

x 2 + x − 12

10.

x 2 + 11x − 12

11.

x 2 + 10 x − 24

12.

x 2 − 5 x − 24

13.

x2 − 2 x + 5

37
Prime Polynomial
If a integer coefficients polynomial cannot be factored to a product
of polynomials with integer, then it called prime polynomials.
1. Suppose that m and n are positive integers, then mx 2 + n is prime
such as

x 2 + 9, 2 y 2 + 5,

x2 + y2

are all prime.

2. For quadratice polynoimal ax 2 + bx + c
if number

b 2 − 4ac < 0

Example: x 2 + x + 1,

then ax 2 + bx + c is prime

x 2 + 2 xy + 3 y 2 are all prime.

if number b 2 − 4ac is not a square number then ax 2 + bx + c is prime
Example: x 2 + 3 x + 1, b 2 − 4ac = 32 − 4 × × = 5 not a square number
11
so x 2 + 3 x + 1 is prime
38
Use Formulas
We have the following formulas
x 2 − y 2 = ( x + y )( x − y )

difference of squares

x 2 + 2 xy + y 2 = ( x + y ) 2

perfect saqure of sum

x 2 − 2 xy + y 2 = ( x − y ) 2

perfect saqure of difference

x 3 + y 3 = ( x + y )( x 2 − xy + y 2 ) sum of cubic powers
x 3 − y 3 = ( x − y )( x 2 + xy + y 2 ) difference of cubic powers
Examples
1. 4m 2 − 9 = (2m) 2 − 32 = (2m + 3)(2m − 3)
1 3 1 3
2
2
2
2
x

y

x+ y

x− y

2. 4 x 2 − 9 y 2 = (2 x) 2 − (3 y ) 2 = (2 x + 3 y )(2 x − 3 y )
39
3. 256k − 81m = ( 16k
4

4

= ( 16k 2 + 9m 2

) − ( 9m ) = ( 16k
) ( (4k ) − (3m) )
2 2

2 2

2

2

+ 9m 2 ) ( 16k 2 − 9m 2 )

2

= ( 16k 2 + 9m 2 ) ( 4k + 3m ) ( 4k − 3m )

4. (a + 2b) 2 − 4c 2 = ( a + 2b) 2 − (2c) 2 = [ ( a + 2b) + 2c ] [ ( a + 2b) − 2c ]
= (a + 2b + 2c)(a + 2b − 2c)

5. x 2 + 2 x + 1 = ( x + 1) 2
6. x 2 + 2 xy + y 2 = ( x + y ) 2
7. x 2 − 6 x + 9 = ( x − 3) 2
8. 25 y 2 − 10 y + 1 = ( 5 y ) − 2 × y × + 12 = (5 y − 1) 2
5 1
2

9. 4m + 28m + 49 = ( 2m ) + 2 ×2m ×7 + (7) 2 = (2m + 7) 2
2

2

40
10. x − 6 x + 9 − y = ( x − 3) − ( y

) = ( x −3+ y ) ( x −3− y )
11. ( m + 14m + 49 ) − ( y − 10 y + 25 ) = (m + 7) − ( y − 5)
2

4

2

2

2 2

2

2

2

2

2

= [ (m + 7) + ( y − 5) ] [ (m + 7) − ( y − 5) ]
= (m + y − 2)(m − y + 12)

12. x 3 + 27 = x 3 + 33 = ( x + 3)( x 2 − x × + 32 ) = ( x + 3)( x 2 − 3 x + 9)
3
13. m − 64n = m − ( 4n ) = ( m − 4n)  m 2 + m ×4n + ( 4n) 2 


3

3

3

3

= (m − 4n) ( m 2 + 4mn + 16n 2 )

14. 8q + 125 p = ( 2q
6

9

= (2q

2

= (2q 2

) +(5p )
+ 5 p ) ( 2q ) − 2q × p + (5 p )
5


+ 5 p ) ( 4q − 10q p + 25 p )
2 3

3 3

2 2

3

3

4

2

2

3

3

3 2





6

41
Exercises

Factor the following by formulas
1. 9m 2 − 12m + 4
2. 16 p 2 + 40 p + 25
3. 36 x 2 − 60 xy + 25 y 2
4. 9 x 2 − 6 x3 + x 4
5. 4 x 2 y 2 + 28 xy + 49
6. ( a − 2b) 2 − 6( a − 2b) + 9
7. 9m 2 n 2 − 4 p 2
8. ( a + 2b) 2 − 25( a − 3b) 2
9.

8 x3 + 27

10.

x 4 − 81

11.

27 − ( m + 2n)3

12. x 4 − 16
13.

x4 − 5x2 + 4

42

More Related Content

PPTX
linear equations.pptx
PPTX
Operations on Polynomials
PPTX
Radical and exponents (2)
ODP
Simplifying exponents
PPTX
Subtracting polynomials
PPT
The Laws of Exponents
PPTX
Multiplying-and-dividing-polynomials.pptx
PDF
Radical expressions
linear equations.pptx
Operations on Polynomials
Radical and exponents (2)
Simplifying exponents
Subtracting polynomials
The Laws of Exponents
Multiplying-and-dividing-polynomials.pptx
Radical expressions

What's hot (20)

PPT
Rational Exponents
PPTX
Quadratic functions
PPT
Multiplying polynomials
PPSX
Square of a Binomial (Special Products)
PPTX
Solving Quadratic Equations by Factoring
PPT
Adding and subtracting polynomials
PPT
Solving Word Problems Involving Quadratic Equations
PPTX
Square of trinomial
PPT
Solving Systems by Substitution
PPT
Quadratic inequalities
PDF
Functions and Relations
PDF
Factoring Sum and Difference of Two Cubes
PPT
Factoring by grouping ppt
PPTX
Factoring polynomials using greatest common factor
PPTX
rational equation transformable to quadratic equation.pptx
PPTX
7.7 Solving Radical Equations
PPTX
Factoring Perfect Square Trinomial
PPT
Rational Exponents
PPTX
Factor Theorem and Remainder Theorem
PPTX
Factoring by grouping
Rational Exponents
Quadratic functions
Multiplying polynomials
Square of a Binomial (Special Products)
Solving Quadratic Equations by Factoring
Adding and subtracting polynomials
Solving Word Problems Involving Quadratic Equations
Square of trinomial
Solving Systems by Substitution
Quadratic inequalities
Functions and Relations
Factoring Sum and Difference of Two Cubes
Factoring by grouping ppt
Factoring polynomials using greatest common factor
rational equation transformable to quadratic equation.pptx
7.7 Solving Radical Equations
Factoring Perfect Square Trinomial
Rational Exponents
Factor Theorem and Remainder Theorem
Factoring by grouping
Ad

Similar to Polynomial operations (1) (20)

PPTX
Polynomials
PPT
Polynomials
PPT
Prashant tiwari ppt.on
PDF
Re call basic operations in mathematics
PPSX
Chapter 4- Learning Outcome 1_Mathematics for Technologists
PPT
Polynomial math
PPT
9.4.1
PPT
Chapter p 5
PPT
Polynomials2
PPT
Polynomials and factoring
PPT
Polynomials Grade 10
PPTX
Lecture 03 special products and factoring
PPT
polynomials.ppt new class VIII maths lesson
PPTX
PPTX
General-Trinomials for public schoolpptx
PPT
Pascal’s Triangle
PDF
Math-8-Lesghdjkgdjkasjksghddgsjjkbxjksabson-2.pdf
DOCX
Binomial theorem
PPT
Math083 day 1 chapter 6 2013 fall
PPT
Polynomials
Polynomials
Prashant tiwari ppt.on
Re call basic operations in mathematics
Chapter 4- Learning Outcome 1_Mathematics for Technologists
Polynomial math
9.4.1
Chapter p 5
Polynomials2
Polynomials and factoring
Polynomials Grade 10
Lecture 03 special products and factoring
polynomials.ppt new class VIII maths lesson
General-Trinomials for public schoolpptx
Pascal’s Triangle
Math-8-Lesghdjkgdjkasjksghddgsjjkbxjksabson-2.pdf
Binomial theorem
Math083 day 1 chapter 6 2013 fall
Ad

More from swartzje (20)

PDF
Algebra 1 - EOC Practice Test
PPT
Swartz Factoring
PPT
POLYNOMIAL NOTES Day #2
PPT
POLYNOMIALS - Add Subtract Multiply
PPT
Polynomials Introduction
PPT
Sig Figs and Accuracy
PPT
Solving Systems - Elimination NOTES
PPT
Literal Equations Wed. 9/9 notes
PPT
Solving Linear Equations with Notes
PPTX
4 1 15 notes
PPTX
16.6 Quadratic Formula & Discriminant
PPT
16.4 solving quadratics by completing the square
PPT
16.2 Solving by Factoring
PPT
16.1 Solving Quadratics by square roots
PPT
Factoring 15.3 and 15.4 Grouping and Trial and Error
PPT
15.2 factoring x2+bx+c
PPTX
Factoring GCF and Grouping
PPT
Multiplying special binomials
PPT
Multiplying polynomials
PPTX
Multiplying Monomials
Algebra 1 - EOC Practice Test
Swartz Factoring
POLYNOMIAL NOTES Day #2
POLYNOMIALS - Add Subtract Multiply
Polynomials Introduction
Sig Figs and Accuracy
Solving Systems - Elimination NOTES
Literal Equations Wed. 9/9 notes
Solving Linear Equations with Notes
4 1 15 notes
16.6 Quadratic Formula & Discriminant
16.4 solving quadratics by completing the square
16.2 Solving by Factoring
16.1 Solving Quadratics by square roots
Factoring 15.3 and 15.4 Grouping and Trial and Error
15.2 factoring x2+bx+c
Factoring GCF and Grouping
Multiplying special binomials
Multiplying polynomials
Multiplying Monomials

Recently uploaded (20)

PDF
Training And Development of Employee .pdf
PDF
kom-180-proposal-for-a-directive-amending-directive-2014-45-eu-and-directive-...
PDF
IFRS Notes in your pocket for study all the time
PPTX
HR Introduction Slide (1).pptx on hr intro
PDF
Roadmap Map-digital Banking feature MB,IB,AB
PDF
How to Get Business Funding for Small Business Fast
PPTX
job Avenue by vinith.pptxvnbvnvnvbnvbnbmnbmbh
PDF
Katrina Stoneking: Shaking Up the Alcohol Beverage Industry
PDF
Power and position in leadershipDOC-20250808-WA0011..pdf
DOCX
unit 1 COST ACCOUNTING AND COST SHEET
PDF
Solara Labs: Empowering Health through Innovative Nutraceutical Solutions
PPTX
ICG2025_ICG 6th steering committee 30-8-24.pptx
PPT
Data mining for business intelligence ch04 sharda
PDF
Stem Cell Market Report | Trends, Growth & Forecast 2025-2034
PDF
pdfcoffee.com-opt-b1plus-sb-answers.pdfvi
PPTX
The Marketing Journey - Tracey Phillips - Marketing Matters 7-2025.pptx
PDF
Ôn tập tiếng anh trong kinh doanh nâng cao
PPTX
AI-assistance in Knowledge Collection and Curation supporting Safe and Sustai...
PDF
A Brief Introduction About Julia Allison
PPTX
5 Stages of group development guide.pptx
Training And Development of Employee .pdf
kom-180-proposal-for-a-directive-amending-directive-2014-45-eu-and-directive-...
IFRS Notes in your pocket for study all the time
HR Introduction Slide (1).pptx on hr intro
Roadmap Map-digital Banking feature MB,IB,AB
How to Get Business Funding for Small Business Fast
job Avenue by vinith.pptxvnbvnvnvbnvbnbmnbmbh
Katrina Stoneking: Shaking Up the Alcohol Beverage Industry
Power and position in leadershipDOC-20250808-WA0011..pdf
unit 1 COST ACCOUNTING AND COST SHEET
Solara Labs: Empowering Health through Innovative Nutraceutical Solutions
ICG2025_ICG 6th steering committee 30-8-24.pptx
Data mining for business intelligence ch04 sharda
Stem Cell Market Report | Trends, Growth & Forecast 2025-2034
pdfcoffee.com-opt-b1plus-sb-answers.pdfvi
The Marketing Journey - Tracey Phillips - Marketing Matters 7-2025.pptx
Ôn tập tiếng anh trong kinh doanh nâng cao
AI-assistance in Knowledge Collection and Curation supporting Safe and Sustai...
A Brief Introduction About Julia Allison
5 Stages of group development guide.pptx

Polynomial operations (1)

  • 2. 2
  • 3. 3
  • 4. What is polynomial? A polynomial of a letter is an algebraic expression that is the sum of the products between real numbers and the non-negative integer powers of the letter. Examples, Suppose that the letter is x, then 3 x + 2, 2 x 2 − 3 x + 5, x 3 + 2 x 2 − 4 x, x100 are all polynomials of x. Note: 1. The Polynomial letter could be any letter. 3 y + 2, 2t 2 − 3t + 5, r 3 + 2r 2 − 4r , p100 are all polynomials . 2. Any number is also considered as a polynomial. This is because 5 = 5x 0 , which is 5 times the zero power of x. 3. Each product is called the term of the polynomial 2 y 2 − 3 y + 5 has three terms: 2 y 2 , − 3 y, 5. 4
  • 5. 4. Each number of the product is called the coeficient of the polynomial 3 x + 2 has 2 coeficients 3 and 2 2 y 2 − 3 y + 5 has 3 coeficients 2, − 3 and 5. x 3 + 2 x 2 − 4 x − 3, has 4 coeficients 1, 2, − 4 and − 3. x100 has one coeficient 1. 5. The heighest power exponent of x is called the degree of the polynomial. 3 x + 2 has degree =1, 2 y 2 − 3 y + 5 has degree =2 x3 + 2 x 2 − 4 x − 3 x100 has degree =100 5 has degree = 0. 6. A singleton term polynomial is called monomial, such as x100 , 2x, 5 5
  • 6. 7. A two terms polynomial is called binomial, such as 2 x + 5, 9 p 5 + 7, x 2 − 4. 8. A three terms polynomial is called trinomial, such as 2 x 2 − 3 x + 5, 9 p 5 + 7 p 2 + p, x 2 + 4 x + 4. 9. 2 x 2 − 3x + 5 x , 1 + 4 x + 4, 2 x x +1 x−2 are not polynomials. Why? 10. Polynomial could have more than one letters, if all letters have non-negative powers, such as 2 x 2 y − 3 xy 3 + 5 x 6 y 2 , 8m 2 p 5 + 9m3 p 2 They are called multi-varialbles polynomials. In the above examples, we also can consider that only one letter as variable and other letters as numbers. 6
  • 7. Polynomial Operations 1. Add and subtract: We only do on the same power terms. ax n ± bx n = ( a ± b ) x n 3x 3 + 5 x 3 = ( 3 + 5 ) x 3 = 8 x 3 3m 5 − 7 m 5 = ( 3 − 7 ) m 5 = − 4m 5 when we have multiple terms, we just add or subtract terms with the same powers Examples: (2 x 4 − 3 x 2 + 5 x) + ( x 4 + 2 x 2 + 4 x) = (2 + 1) x 4 + (−3 + 2) x 2 + (5 + 4) x = 3x 4 − x 2 + 9 x (3 x 2 + 7 x − 6) − (5 x 2 − 4 x + 8) = (3 − 5) x 2 + (7 − (−4)) x + (−6 − 8) = −2 x 2 + 11x − 14 Can we do addition 2 x 4 + 3 x 2 ? 7
  • 8. Do operation vertically (3 x 2 + 7 x − 6) − (5 x 2 − 4 x + 8) = − 2 x 2 + 11x − 14 3x 2 + 7 x − 6 5 x 2 − 4 x + 8 (− − 2 x 2 + 11x − 14 or (3 x 3 + 7 x 2 − 6) + (5 x 3 − 4 x + 8) = 8 x 3 + 7 x 2 − 4 x + 2 3 x 3 + 7 x 2 + 0 ×x − 6 5 x3 + 0 ×x 2 − 4 x + 8 (+ 8 x3 + 7 x 2 − 4 x + 2 Align the same power terms vetically. Put 0s for the missing power terms. Then do numbers operations veritcally. 8
  • 9. 2. Multiplication: Use formula ( ax ) ×( bx ) m n = abx m + n ( 3x ) ( 5 x ) = ( 3 ×5 ) x = 15x ( 3m ) ( −7m ) = ( 3 ×( −7 ) ) m 2 3+ 2 3 5 2 5 5+ 2 = − 21m7 When two polynomials have multiple terms, then every term of the 1st polynomial must multiply to every term of the 2nd polynoimial. Examples: (3 x − 4)(2 x 2 − 3 x + 5) = (3 x)(2 x 2 − 3 x + 5) + (−4)(2 x 2 − 3 x + 5) = (3 x)(2 x 2 ) + (3 x)(−3 x) + (3 x)(5) + ( −4)(2 x 2 ) + (−4)(−3 x) + (−4)(5) = 6 x 3 − 9 x 2 + 15 x − 8 x 2 + 12 x − 20 = 6 x 3 − 17 x 2 + 27 x − 20 9
  • 10. Do multiplication vertically, put 0 for missing power terms (3 x − 4)(2 x 2 − 3x + 5) = 6 x 3 − 17 x 2 + 27 x − 20 2x2 6 x3 6 x3 −8 x 2 −9 x 2 −17 x 2 −3 x 3x +12 x +15 x +27 x +5 −4 (× −20 (+ −20 (2 x + 3)( x 2 − 5) = 2 x 3 + 3x 2 − 10 x − 15 x2 2 x3 2 x3 3x 2 0 x2 +3 x 2 0 ×x 2x 0x −10 x −10 x −5 +3 (× −15 (+ −15 10
  • 11. Multiplication vertically example2 ( x 2 + 2 x − 3)(2 x 2 − 3x + 5) = 2 x 4 + x 3 − 7 x 2 + 19 x − 15 x2 + 2x −3 2x2 −3 x + 5 (× 5x2 +10 x −15 −3 x 3 −6 x 2 +9 x 2 x4 +4 x 3 −6 x 2 2 x4 + x3 − 7 x2 + 19 x Multiply by 5 Multiply by −3x Multiply by 2x2 − 15 11
  • 12. Vertical multiplication with numbers only (3 x − 4)(2 x 2 − 3 x + 5) = 6 x3 − 17 x 2 + 27 x − 20 (2 x + 3)( x 2 − 5) = 2 x 3 + 3 x 2 − 10 x − 15 12
  • 13. ( x 2 + 2 x − 3)(2 x 2 − 3 x + 5) = 2 x 4 + x 3 − 7 x 2 + 19 x − 15 13
  • 14. Two binomial multiplication. Use FOIL rule First terms, Outside terms, Inside terms, Last terms (2 x − 3)(6 x + 5) = ( 2 x ) ( 6 x ) + ( 2 x ) ( 5 ) + ( −3) ( 6 x ) + ( −3) ( 5 ) 1 24 124 1 24 124 4 3 4 3 4 3 4 3 F O I L = 12 x 2 + 10 x − 18 x − 15 = 12 x 2 − 8 x − 15 or simply vertical way 2x 6x 12 x 2 12 x 2 −3 +5 (× 10 x −15 −18 x − 8x − 15 14
  • 15. Exercises 1. (3 x 2 − 4 x + 5) + ( −2 x 2 + 3 x − 2) 2. (4m3 − 3m 2 + 5) + ( −3m3 − m 2 + 5) 3. 2(12 x − 8 x + 6) − 4(3 x − 4 x + 2) 2 2 4. − (8 x + x − 3) + (2 x + x) − (4 x − 1) 2 2 2 5. 2 x 3 (3 x 2 − 5 x + 2) 6. ( x 2 + 5)(3 x − 2) 7. (4 x + 5)(3 x − 2) 8. (3 x 2 − 4 x + 5)(3 x + 1) 9. (3 x 2 − 4 x + 5)(2 x 2 + x − 2) 15
  • 16. Some important formulas 1. ( x + y )( x − y ) = x 2 − y 2 (sum and difference product) Use FOIL ( x + y )( x − y ) = x 2 − xy + xy − y 2 = x2 − y 2 or (a + b)(a − b) = a 2 − b 2 2. ( x + y ) 2 = x 2 + 2 xy + y 2 (square of sum ) Use FOIL ( x + y ) 2 = ( x + y )( x + y ) = x 2 + xy + xy + y 2 = x 2 + 2 xy + y 2 or (a + b) 2 = a 2 + 2ab + b 2 3. ( x − y ) 2 = x 2 − 2 xy + y 2 (square of difference ) Use FOIL ( x − y ) 2 = ( x − y )( x − y ) = x 2 − xy − xy + y 2 = x 2 − 2 xy + y or (a − b) 2 = a 2 − 2ab + b 2 16
  • 17. 4. ( x + y )( x 2 − xy + y 2 ) =x3 + y 3 (sum of cubic powers) This is because ( x + y )( x 2 − xy + y 2 ) = x( x 2 − xy + y 2 ) + y ( x 2 − xy + y 2 ) ( ) ( ) = x 3 − x 2 y + xy 2 + yx 2 − xy 2 + y 3 = x3 + y 3 Eexamples ( a + 1)( a 2 − a + 1) = a 3 + 1 (a + 2)(a 2 − 2a + 4) = ( a + 2)( a 2 − 2 ×a + 2 2 ) = a 3 + 23 = a 3 + 8 (a + 3)(a 2 − 3a + 9) = (a + 2)(a 2 − 3 ×a + 32 ) = a 3 + 33 = a 3 + 27 5. ( x − y )( x 2 + xy + y 2 ) =x 3 − y 3 (difference of cubic powers) This is because, we can use − y to replace y in the above formula ( x + ( − y ) ) ( x 2 − x ( − y ) + ( − y ) 2 ) =x 3 + ( − y ) 3 which is Examples ( x − y )( x 2 + xy + y 2 ) =x 3 − y 3 (a − 1)(a 2 + a + 1) = a 3 − 1 (a − 2)(a 2 + 2a + 4) = (a − 2)(a 2 + 2 ×a + 2 2 ) = a 3 − 23 = a 3 − 8 (a − 3)(a 2 + 3a + 9) = (a − 2)(a 2 + 3 ×a + 32 ) = a 3 − 33 = a 3 − 27 17
  • 18. Example 1. (3 p + 11)(3 p − 11) = ( 3 p ) − 112 = 9 p 2 − 121 2 2. (5m − 3)(5m + 3) = ( 5m 3 3 ) 3 2 − 32 = 25m6 − 9 3. (9k − 11r )(9k + 11r ) = ( 9k ) − ( 11r 3 2 3 ) 3 2 = 81k 2 − 121r 6 4. (2m + 5) 2 = ( 2m ) + 2( 2m)(5) + ( 5 ) = 4 m 2 + 20 m + 25 2 ( x + y )2 5. ( 3x − 7 y 2 x2 ) = ( 3x ) 4 2 ( a −b ) 2 a2 y2 2 xy 2 − 2(3 x)(7 y )+ ( 7 y 4 2 ab ) 4 2 b2 = 9 x 2 − 42 xy 4 + 49 y 8 6. ( 3 x − 2 y ) ( 9 x + 6 xy + 4 y ) = ( 3 x ) − ( 2 y ) = 27 x 3 − 8 y 6 1 24 144 2444 { 4 3 4 3 1 3 2 2 (a − b) 2 2 a 2 + ab + b 2 3 4 a3 2 3 b3 18
  • 19. Exercises 1. (3 x + 5)(3 x − 5) 2 2 2. (2m3 + n)(2m3 − n) 3. ( 5r + 4t ) 2 2 4. ( 2 x − 3 y ) 4 2 5. (3 p + 5) 2 6. (4 − x)(16 + 4 x + x 2 ) 7. (2a + 3b)(4a 2 − 6ab + 9b 2 ) 19
  • 20. Higher Power of binomial We have (a + b) 2 = a 2 + 2ab + b 2 what is (a + b)3 ? After calculating ( a + b) 3 = (a + b)( a + b) 2 = (a + b)( a 2 + 2 ab + b 2 ) = a (a 2 + 2ab + b 2 ) + b( a 2 + 2ab + b 2 ) = (a 3 + 2a 2b + ab 2 ) + (a 2b + 2a 2b + b3 ) = a 3 + 3a 2b + 3ab 2 + b3 We can see the powers of a is decreasing and the powers of b is increasing. The coefficients are 1, 3, 3, 1. Similarly, (a + b) 4 = (a + b)(a + b)3 = (a + b)(a 3 + 3a 2b + 3a 2b + b 3) = a (a 3 + 3a 2b + 3a 2b + b3) + b(a 3 + 3a 2b + 3a 2b + b 3) = a 4 + 4a 3b + 6a 2b 2 + 4ab3 + b 4 The coefficients are 1, 4, 6, 4, 1. 20
  • 21. Pascal Triangle We see that ( a + b ) has coefficients 1, 1 (a + b) 2 = a 2 + 2ab + b 2 has coefficients 1, 2, 1 ( a + b)3 = a 3 + 3a 2b + 3a 2b + b3 has coefficients 1, 3, 3,1 (a + b) 4 = a 4 + 4a 3b + 6a 2b 2 + 4ab3 + b 4 has coefficients 1, 4, 6, 4, 1 So we can arrage them into a triangle like 1 1 1 1 1 2 3 4 1 3 6 1 4 1 Every number is the sum of two numbers on its shoulder. 21
  • 22. 1 1 1 1 1 1 2 3 4 5 1 1 3 6 10 1 4 10 1 5 1 It we continue to calculate the numbers on the next line, we will get numbers 1, 5, 10, 10, 5, 1, which are coefficients of power (a + b)5 . Therefore we get (a + b)5 = a 5 + 5a 4b + 10a 3b 2 + 10a 2b3 + 6ab 4 +b 5 This triangle is called the Pascal Triangle. 22
  • 23. Powers of (a − b) n Similarly, we have (a − b) 2 = a 2 − 2ab + b 2 (a − b)3 = a 3 − 3a 2b + 3a 2b − b3 (a − b) 4 = a 4 − 4a 3b + 6a 2b 2 − 4ab3 + b 4 (a − b)5 = a 5 − 5a 4b + 10a 3b 2 − 10a 2b3 + 6ab 4 − b5 The coeficient is negative if the power exponent of b is odd number Practice Exercises 1. ( x + 3)3 2. ( x − 2) 4 3. ( x − 1)5 4. ( x + 1)6 23
  • 24. 3. Division Case 1: If the devisor is monomial 4 x 3 − 8 x 2 + 6 x 4 x3 8x 2 6x = − + = 2x2 − 4x + 3 2x 2x 2x 2x Sometimes, we may have remainder 4 x 3 − 8 x 2 + 6 x + 3 4 x3 8x 2 6x 3 3 = − + + = 2x2 − 4x + 3 + 2x 2x 2x 2x 2x 2 x Case 2: If the devisor is binomial Use factoring ab + ac = a (b + c) or ab − ac = a (b − c ) 4x2 + 2x 2 x ×2 x + 2 x 2 x (2 x + 1) = = = 2x 2x +1 2x +1 2x +1 2 4x2 − 6x − 3 4x2 + 2x − 8x − 4 + 1 ( 4 x + 2x ) − ( 8x + 4) + 1 = = 2x +1 2x +1 2x +1 4x2 + 2x 8x + 4 1 1 = − + = 2x − 4 + 2x +1 2x +1 2x +1 2x +1 24
  • 25. Other methods to get result 4x2 − 6x − 3 1 = 2x − 4 + 2x +1 2x +1 vertical division 25
  • 26. 13 2 4m − 8m + 4m + 6 1 2 = 2m − 3m + + 2m − 1 2 2m − 1 vertical way with number only 3 2 26
  • 27. 3x 3 − 2 x 2 − 150 3 x 3 − 2 x 2 + 0 ×x − 150 12 x − 158 = = 3x − 2 + 2 2 x −4 x + 0 ×x − 4 x2 − 4 Put 0s for the missing terms Remainder 27
  • 28. Exercises Do divisions −4 x 7 − 14 x 6 + 10 x 4 − 14 x 2 1. −2 x 2 10 x8 − 16 x 6 − 4 x 4 2. −2 x 6 Use vertical devision with number only 12 x 3 − 2 x + 5 3. x −3 6 x 4 + 9 x3 + 2 x 2 − 8 x + 7 4. 3x 2 − 2 5x4 + 2x2 − 3 5. x2 − x + 1 28
  • 29. Factoring Factoring is the reverse of polynomial multiplication and based on ab + ac = a (b + c ) here a could number or formula Factor the Greatest Common Factor GCF, including the largest posssible common number factor and lowest power of x or anything Examples: 9 x 2 + 6 x −12 = (3 × x 2 + 3 × x − 3 × ) = 3(3 x 2 + 2 x − 4) 3 2 4 9 x 5 + 6 x 3 − 12 x 2 = (3 x 2 × x 3 + 3 x 2 × x − 3 x 2 × ) = 3 x 2 (3 x 3 + 2 x − 4) 3 2 4 6 x 2t + 8 xt + 12t = (2t × x 2 + 2t × x + 2t × ) = 2t (3 x 2 + 4 x + 6) 3 4 6 14(m + 1)3 − 28(m + 1) 2 − 7( m + 1) = ( 7(m + 1) × m + 1) 2 − 7(m + 1) × m + 1) − 7( m + 1) × ) 2( 4( 1 = 7(m + 1) ( 2(m + 1) 2 − 4(m + 1) − 1) 29
  • 30. Group Factoring If there are four terms, we can group the 1st two and the last two terms. Then do the preliminary factors on two grous and factor again. x 3 + 2 x 2 + 2 x + 4 = ( x 3 + 2 x 2 ) + ( 2 x + 4 ) = x 2 ( x + 2 ) + 2( x + 2) = ( x 2 ( x + 2 ) + 2( x + 2) ) = ( x + 2 ) ( x 2 + 2 ) 4 x 3 + 2 x 2 − 6 x − 3 = ( 4 x 3 + 2 x 2 ) − ( 6 x + 3 ) = 2 x 2 ( 2 x + 1) − 3(2 x + 1) = ( 2 x 2 ( 2 x + 1) − 3(2 x + 1) ) = ( 2 x + 1) ( 2 x 2 − 3) mp 2 + 7m 2 + 3 p 2 + 21m = ( mp 2 + 7m 2 ) + ( 3 p 2 + 21m ) = m ( p 2 + 7m ) + 3 ( p 2 + 7m ) ( ) = m ( p 2 + 7m ) + 3 ( p 2 + 7 m ) ¬ − − We can skip this = ( p 2 + 7 m ) ( m + 3) 30
  • 31. Factor the following Exercises 1. 12m + 60 2. 4 p 3 q 4 − 6 p 2 q 5 3. 4k 2 m3 + 8k 4 m3 − 12k 2 m 4 4. 4( y − 2) 2 + 3( y − 2) 5. 6 st + 9t − 10 s − 15 6. 20 z 2 − 8 x + 5 pz 2 − 2 px 31
  • 32. Quadratic polynomials Factoring is the reverse of polynomial multiplication. (3x − 4)(2 x + 5) = 6 x 2 + 7 x − 20 is multiplication 6 x 2 + 7 x − 20 = (3x − 4)(2 x + 5) is factoring How to obtain numbers 3, − 4, 2 and 5 from 6, 7 and − 20? Because 6 x 2 = 3 x ×2 x so we have 6 = 3 ×2 and − 20= ( −4 ) × 5 Also 7 x = 3 x × + ( −4 ) ×2 x so we have 7 = 3 × + ( −4 ) ×2 5 5 Therefore we have chcart (answer are 4 corner numbers) 2x+5 3x−4 32
  • 33. Example 2. Factor 6 x 2 − 13 x + 6 This is not match This is match 2x−3 3x−2 Answer: 6 x 2 − 11x + 6 = (2 x − 3)(3 x − 2) 33
  • 34. Example 3. Factor 4 x 2 − 11xy + 6 y 2 4x−3y x−2y Answer: 4 x 2 − 11xy + 6 y 2 = (4 x − 3 y )( x − 2 y ) Example 4. Factor 6 p 2 − 7 p − 5 Answer: 6 p 2 − 7 p − 5 = (2 p + 1)(3 p − 5) 34
  • 35. Example 5. Factor x − 11x + 30 2 Answer: x 2 − 11x + 30 = ( x − 5)( x − 6) Example 6. Factor a 2 − 5ab − 14b 2 Answer: a 2 − 5ab − 14b 2 = (a + 2b)(a − 7b) 35
  • 36. Note: If the first coefficient is one like x 2 + px + q then we only need to decompose q to the product of two number such that their sum is p. Examples: 1. x 2 − 11x + 30 because 30 = ( −5)(−6) and so 2. 3. x 2 − 11x + 30 = ( x − 5)( x − 6) a 2 − 5a − 14 because − 14 = 2 ×(−7) and so (−5) + (−6) = −11 2 + (−7) = −5 a 2 − 5a − 14 = (a + 2)(a − 7) x 2 + 10 x − 39 because − 39 = 13 ×( −3) and 13 + ( −3) = 10 so x 2 + 10 x − 39 = ( x + 13)( x − 3) 36
  • 37. Factor the following Exercises 1. 8h 2 − 2h − 21 2. 3m 2 + 14m + 8 3. 9 y 2 − 18 y + 8 4. 6k 2 − 5kp − 6 p 2 5. 5a 2 − 7 ab − 6b 2 6. 24a 4 + 10a 3b − 2a 2b 2 7. 18 x 5 + 15 x 4 z − 75 x 3 z 2 8. x 2 + 12 x + 27 9. x 2 + x − 12 10. x 2 + 11x − 12 11. x 2 + 10 x − 24 12. x 2 − 5 x − 24 13. x2 − 2 x + 5 37
  • 38. Prime Polynomial If a integer coefficients polynomial cannot be factored to a product of polynomials with integer, then it called prime polynomials. 1. Suppose that m and n are positive integers, then mx 2 + n is prime such as x 2 + 9, 2 y 2 + 5, x2 + y2 are all prime. 2. For quadratice polynoimal ax 2 + bx + c if number b 2 − 4ac < 0 Example: x 2 + x + 1, then ax 2 + bx + c is prime x 2 + 2 xy + 3 y 2 are all prime. if number b 2 − 4ac is not a square number then ax 2 + bx + c is prime Example: x 2 + 3 x + 1, b 2 − 4ac = 32 − 4 × × = 5 not a square number 11 so x 2 + 3 x + 1 is prime 38
  • 39. Use Formulas We have the following formulas x 2 − y 2 = ( x + y )( x − y ) difference of squares x 2 + 2 xy + y 2 = ( x + y ) 2 perfect saqure of sum x 2 − 2 xy + y 2 = ( x − y ) 2 perfect saqure of difference x 3 + y 3 = ( x + y )( x 2 − xy + y 2 ) sum of cubic powers x 3 − y 3 = ( x − y )( x 2 + xy + y 2 ) difference of cubic powers Examples 1. 4m 2 − 9 = (2m) 2 − 32 = (2m + 3)(2m − 3) 1 3 1 3 2 2 2 2 x y x+ y x− y 2. 4 x 2 − 9 y 2 = (2 x) 2 − (3 y ) 2 = (2 x + 3 y )(2 x − 3 y ) 39
  • 40. 3. 256k − 81m = ( 16k 4 4 = ( 16k 2 + 9m 2 ) − ( 9m ) = ( 16k ) ( (4k ) − (3m) ) 2 2 2 2 2 2 + 9m 2 ) ( 16k 2 − 9m 2 ) 2 = ( 16k 2 + 9m 2 ) ( 4k + 3m ) ( 4k − 3m ) 4. (a + 2b) 2 − 4c 2 = ( a + 2b) 2 − (2c) 2 = [ ( a + 2b) + 2c ] [ ( a + 2b) − 2c ] = (a + 2b + 2c)(a + 2b − 2c) 5. x 2 + 2 x + 1 = ( x + 1) 2 6. x 2 + 2 xy + y 2 = ( x + y ) 2 7. x 2 − 6 x + 9 = ( x − 3) 2 8. 25 y 2 − 10 y + 1 = ( 5 y ) − 2 × y × + 12 = (5 y − 1) 2 5 1 2 9. 4m + 28m + 49 = ( 2m ) + 2 ×2m ×7 + (7) 2 = (2m + 7) 2 2 2 40
  • 41. 10. x − 6 x + 9 − y = ( x − 3) − ( y ) = ( x −3+ y ) ( x −3− y ) 11. ( m + 14m + 49 ) − ( y − 10 y + 25 ) = (m + 7) − ( y − 5) 2 4 2 2 2 2 2 2 2 2 2 = [ (m + 7) + ( y − 5) ] [ (m + 7) − ( y − 5) ] = (m + y − 2)(m − y + 12) 12. x 3 + 27 = x 3 + 33 = ( x + 3)( x 2 − x × + 32 ) = ( x + 3)( x 2 − 3 x + 9) 3 13. m − 64n = m − ( 4n ) = ( m − 4n)  m 2 + m ×4n + ( 4n) 2    3 3 3 3 = (m − 4n) ( m 2 + 4mn + 16n 2 ) 14. 8q + 125 p = ( 2q 6 9 = (2q 2 = (2q 2 ) +(5p ) + 5 p ) ( 2q ) − 2q × p + (5 p ) 5   + 5 p ) ( 4q − 10q p + 25 p ) 2 3 3 3 2 2 3 3 4 2 2 3 3 3 2    6 41
  • 42. Exercises Factor the following by formulas 1. 9m 2 − 12m + 4 2. 16 p 2 + 40 p + 25 3. 36 x 2 − 60 xy + 25 y 2 4. 9 x 2 − 6 x3 + x 4 5. 4 x 2 y 2 + 28 xy + 49 6. ( a − 2b) 2 − 6( a − 2b) + 9 7. 9m 2 n 2 − 4 p 2 8. ( a + 2b) 2 − 25( a − 3b) 2 9. 8 x3 + 27 10. x 4 − 81 11. 27 − ( m + 2n)3 12. x 4 − 16 13. x4 − 5x2 + 4 42