SlideShare a Scribd company logo
Special Products and Factoring
Lecture 03 special products and factoring
Lecture 03 special products and factoring
Multiply: a Monomial and a Polynomial 
Multiply each polynomial term by that monomial: 
 Positive numbers – law of distribution 
 3x2(6xy + 3y2) 
 3x2(6xy) + 3x2(3y2) 
 18x3y + 9x2y2 
 Negative coefficients – be careful! 
 -2ab2(3bz – 2az + 4z3) 
 -2ab2(3bz) – (-2ab2)(2az) + (-2ab2)(4z3) 
 -6ab2z + 4a2b2z – 8ab2z3 
 Number following polynomial – other distributive law 
 (2x3 – 3x2 – 5)(3x) 
 3x(2x3) – (3x)(3x2) – (3x)(5) 
 6x4 – 9x3 – 15x
Multiply: Two Polynomials 
Horizontal Method: (use the distributive property repeatedly) 
(2a + b)(3a – 2b) 
= (2a + b)(3a) – (2a + b)(2b) 
= 6a2 + 3ab – (4ab + 2b2) 
= 6a2 + 3ab – 4ab – 2b2 
= 6a2 – ab – 2b2 
Vertical Method: 3x2 + 2x – 5 
4x + 2 Multiply top by rightmost 
6x2 + 4x – 10 Then by term to the left 
12x3 + 8x2 – 20x____ Lastly, add like terms 
12x3 + 14x2 – 16x – 10
Concept: Similar Binomials 
 Any pair of binomials with matching variable parts 
 When multiplied, they produce a trinomial or 
binomial 
 Examples: 
x and x 
(3 5) ( 2) 
  
x x x x 
2      
(3 5)( 2) 3 10 
a b and a b 
     
(  ) (  
2 ) 
a b a b a ab b 
x y and x Not Similar 
( 5 )( 7) 7 5 35 
( 5 ) ( 7) 
2 2 ( )( 2 ) 3 2 
2 
  
2       
x y x x x xy y 
a b and b a 
( ) ( 2 ) 
a b b a a a b b 
x and x Not Similar 
(2  3) (2  
3) 
2 3 2 
x x x x x 
2 2 
(2  3)(2  3)  4  3  6  
9 
  
2 2 4 2 2 
( )( 2 ) 2 3 
     
x y and x y 
      
(  ) (   
) 
x y x y x y 
2 2 ( )( )
The FOIL Method 
Useful for Multiplying Two Similar Binomials 
(x + 8)(x - 5) = x2 – 5x + 8x – 40 
(4t2 + 5)(3t2 - 2) = 12t4 – 8t2 + 15t2 – 10 
(y – 8)(y2 + 5) = y3 + 5y – 8y2 – 40
Practice 
Using the FOIL Method in Your Head 
If the polynomials are similar, combine the middle 
terms 
(x + 2)(x – 5) = x2 – 3x – 10 
(2y + 3)(4y + 1) = 8y2 + 14y + 3 
(m – 3n)(m – 2n) = m2 – 5mn + 6n2 
(2x + 3y2)(x – 7y2) = 2x2 – 11xy2 – 21y4 
(a + b)(c + d) = ac + ad + bc + bd
Multiplying 3 or more 
Polynomials 
 Use same technique as you use for numbers: 
 Multiply any 2 together and simplify the temporary 
product 
 Multiply that temporary product times any 
remaining polynomial and simplify 
-2r(r – 2s)(5r – s) = (use foil on the binomials) 
-2r(r2 – 11rs + s2) = (distribute the monomial) 
-2r3 – 22r2s – 2rs2
The Product of Conjugates 
(F + L)(F – L) = F2 – L2 
 The middle term disappears ONLY when the binomials are 
conjugates: identical except for different operations 
 Multiplying these is easier than using FOIL! 
 (x + 4)(x – 4) = x2 – 42 = x2 – 16 
 (5 + 2w)(5 – 2w) = 25 – 4w2 
 (3x2 – 7)(3x2 + 7) = 9x4 – 49 
 (-4x – 10)(-4x + 10) = 16x2 – 100 
 (6 + 4y)(6 – 4x) = use the foil method 
= 36 – 24x + 24y – 16xy
Squaring a Binomial Sum 
(F + L)(F + L) = F2 + 2FL + L2 
Square the 1st term 
Multiply 1st times 2nd, 
double it, add it 
Square the 2nd term 
Try: 
(2x + 3)2 
(2x)2 + 2(6x) + 32 
4x2 + 12x + 9 
(½x + 5)2 
(½x)2 + 2(5x/2) + 52 
¼x2 + 5x + 25
Squaring a Binomial Difference 
(F – L)(F – L) = F2 – 2FL + L2 
Square the 1st term 
Multiply 1st times 2nd, 
double it, subtract it 
Square the 2nd term and add it 
Try: 
(3x - 4)2 = 
(3x)2 – 2(12x) + 42 = 
9x2 – 24x + 16 
(5a – 2b)2 = 
(5a)2 – 2(10ab) + (2b)2 = 
25a2 – 20ab + 4b2
Practice 
Binomial Conjugates and Squares 
(F + L)(F – L) = F2 – L2 
(F + L)2 = F2 + 2FL + L2 
(F – L)2 = F2 – 2FL + L2 
 (x + 3)(x – 3) = x2 – 9 
 (2y – 5)(2y – 5) = 4y2 – 20y + 25 
 (m + 3n)2 = m2 + 6mn + 9n2 
 (2y – 5)(2y + 5) = 4y2 – 25 
 (a + b)(a + b) = a2 + 2ab + b2 
 (3x – 7y)2 = 9x2 – 42xy + 49y2
 Find the product of the following:
Lecture 03 special products and factoring
Find the product
Find the product 
Use the FOIL method
Find the product
Find the product .
Find the product 
Use Dist. Prop. twice
Find the product
Factoring by Grouping 
 video
Factoring Trinomials 
 Video1 
 video2
Perfect Square Trinomial 
 video
Perfect Square Factoring 
 video
 FACTORING IS THE REVERSE of multiplying. 
2x² + 9x − 5 
(2x ?)(x ?) 
(2x 5)(x 1) 
or with x -- 
(2x 1)(x 5) ? 
(2x − 1)(x + 5) = 2x² + 9x − 5.
Problem 1. Place the correct signs to give the middle 
term. 
a) 2x² + 7x − 15 = (2x − 3)(x + 5) 
b) 2x² − 7x − 15 = (2x + 3)(x − 5) 
c) 2x² − x − 15 = (2x + 5)(x − 3) 
d) 2x² − 13x + 15 = (2x − 3)(x − 5)
Problem 2. Factor these trinomials. 
a) 3x² + 8x + 5 = (3x + 5)(x + 1) 
b) 3x² + 16x + 5 = (3x + 1)(x + 5) 
c) 2x² + 9x + 7 = (2x + 7)(x + 1) 
d) 2x² + 15x + 7 = (2x + 1)(x + 7) 
e) 5x² + 8x + 3 = (5x + 3)(x + 1) 
f) 5x² + 16x + 3 = (5x + 1)(x + 3)
Problem 3. Factor these trinomials. 
a) 2x² − 7x + 5 = (2x − 5)(x − 1) 
b) 2x² − 11x + 5 = (2x − 1)(x − 5) 
c) 3x² + x − 10 = (3x − 5)(x + 2 ) 
d) 2x² − x − 3 = (2x − 3)(x + 1) 
e) 5x² − 13x + 6 = (5x − 3)(x − 2)
Factor completely 6x8 + 30x7 + 36x6. 
To factor completely means to first remove any common 
factor. 
6x8 + 30x7 + 36x6 = 6x6(x² + 5x + 6). 
Now continue by factoring the trinomial: 
= 6x6(x + 2)(x + 3).
Problem 4. Factor completely. First remove any common 
factors. 
a) x3 + 6x² + 5x = x(x2 + 6x + 5) = x(x + 5)(x + 1) 
b) x5 + 4x4 + 3x3 = x3(x2 + 4x + 3) = x3(x + 1)(x + 3) 
c) x4 + x3 − 6x² = x²(x² + x − 6) = x²(x + 3)(x − 2) 
d) 4x² − 4x − 24 = 4(x² − x − 6) = 4(x + 2)(x − 3) 
e) 2x3 − 14x² − 36x = 2x(x2 − 7x − 18) = 2x(x + 2)(x − 9) 
f) 12x10 + 42x9 + 18x8 = 6x8(2x² + 7x + 3) = 6x8(2x + 1)(x + 3).
Quadratics in different arguments 
Here is the form of a quadratic trinomial with argument x : 
ax² + bx + c. 
The argument is whatever is being squared. x is 
being squared. x is called the argument. The 
argument appears in the middle term. 
a, b, c are called constants. 
In this quadratic, 
3x² + 2x − 1, 
the constants are 3, 2, −1.
Now here is a quadratic whose argument is x3: 
3x6 + 2x3 − 1. 
x6 is the square of x3.
Now, since the quadratic with argument x can be factored 
in this way: 
3x² + 2x − 1 = (3x − 1)(x + 1), 
then the quadratic with argument x3 is factored in the 
same way: 
3x6 + 2x3 − 1 = (3x3 − 1)(x3 + 1). 
Whenever a quadratic has constants 3, 2, −1, then for any 
argument, the factoring will be 
(3 times the argument − 1)(argument + 1).
Problem 5. Multiply out each of the following, which have 
the same constants, but different argument. 
a) (z + 3)(z − 1) = z² + 2z − 3 
b) (y + 3)(y − 1) = y² + 2y − 3 
c) (y6 + 3)(y6 − 1) = y12 + 2y6 − 3 
d) (x5 + 3)(x5 − 1) = x10 + 2x5 − 3
Problem 6. Factor each quadratic. 
a) x² − 6x + 5 = (x − 1)(x − 5) 
b) z² − 6z + 5 = (z − 1)(z − 5) 
c) x8 − 6x4 + 5 = (x4 − 1)(x4 − 5) 
d) x10 − 6x5 + 5 = (x5 − 1)(x5 − 5) 
e) x6y6 − 6x3y3 + 5 = (x3y3 − 1)(x3y3 − 5)
Problem 7. Factor each quadratic. 
a) x4 − x² − 2 = (x² − 2)(x² + 1) 
b) y6 + 2y3 − 8 = (y3 + 4)(y3 − 2) 
c) z8 + 4z4 + 3 = (z4 + 1)(z4 + 3) 
d) 2x10 + 5x5 + 3 = (2x5 + 3)(x5 + 1) 
e) x4y² − 3x²y − 10 = (x²y + 2)(x²y − 5) 
f) cos²x − 5 cos x + 6 = (cos x − 3)(cos x − 2)
 Additional
Lecture 03 special products and factoring
Reference 
 http://cnx.org/content/m21901/latest/
 The following are some of the products which occur frequently in 
Mathematics. 
  
   
     
     
     
     
   
I a c  d  ac  
ad 
II a  b a  b  a  
b 
2 2 
2 2 2 
III a  b a  b  a  b  a  ab  
b 
2 2 2 
IV a b a b a b a ab b 
V x a x b x 2 
a b x ab 
VI ax b cx d acx 2 
ad bc x bd 
VII a b c d ac bc ad bd 
. 
. 
. 2 
. 2 
. 
. 
. 
       
      
      
     

More Related Content

PPTX
(New) children in difficult circumstances
PPT
Laws of exponents
PPTX
5 Basic Sentence Patterns.pptx
PPTX
HEOGRAPIYA AT MGA SINAUNANG KABIHASNAN SA DAIGDIG.pptx
PPT
Special Products
PPTX
Human evolution
PPTX
Teaching Learners in Difficult Circumstances.pptx
PPT
Music of MIndanao (Islam and non-Islam).ppt 1 k-12
(New) children in difficult circumstances
Laws of exponents
5 Basic Sentence Patterns.pptx
HEOGRAPIYA AT MGA SINAUNANG KABIHASNAN SA DAIGDIG.pptx
Special Products
Human evolution
Teaching Learners in Difficult Circumstances.pptx
Music of MIndanao (Islam and non-Islam).ppt 1 k-12

What's hot (20)

PDF
Factoring Sum and Difference of Two Cubes
PPT
Direct Variation
PPTX
Factoring Polynomials
PDF
Solving Quadratic Equations
PPTX
Quadratic inequality
PDF
Direct Variation (Mathematics 9)
PDF
Solving Equations Transformable to Quadratic Equation Including Rational Alge...
PPTX
COMBINED VARIATION.pptx
PPT
Rational Exponents
PDF
Solving Problems Involving Radicals
PDF
2.7.5 Kites and Trapezoids
PPTX
direct variation grade9 module 3 by mr. joel garcia
PPT
Slope of a Line
PPTX
Quadratic functions
PPTX
Graphing polynomial functions (Grade 10)
DOC
Mathematics 9 Quadratic Functions (Module 1)
PPT
Multiplying polynomials
PDF
Mathematics 9 Variations
PPT
Direct variation power point
PPTX
Factoring Quadratic Trinomials
Factoring Sum and Difference of Two Cubes
Direct Variation
Factoring Polynomials
Solving Quadratic Equations
Quadratic inequality
Direct Variation (Mathematics 9)
Solving Equations Transformable to Quadratic Equation Including Rational Alge...
COMBINED VARIATION.pptx
Rational Exponents
Solving Problems Involving Radicals
2.7.5 Kites and Trapezoids
direct variation grade9 module 3 by mr. joel garcia
Slope of a Line
Quadratic functions
Graphing polynomial functions (Grade 10)
Mathematics 9 Quadratic Functions (Module 1)
Multiplying polynomials
Mathematics 9 Variations
Direct variation power point
Factoring Quadratic Trinomials
Ad

Viewers also liked (15)

PPTX
Lesson 1: Special Products
PDF
K to 12 - Grade 8 Math Learner Module
PDF
Special product
PPT
31 algebraic fractions (1)
PDF
SPECIAL PRODUCTS
PPTX
Life is a three ring circus.
PPTX
Factoring Strategies
PPT
Factoring polynomials
PPTX
Rational Expressions
PDF
Variance And Standard Deviation
PPTX
Rational Expressions
PPT
Area & Perimeter
PPTX
Standard Deviation and Variance
PDF
How to Make Awesome SlideShares: Tips & Tricks
PDF
Getting Started With SlideShare
Lesson 1: Special Products
K to 12 - Grade 8 Math Learner Module
Special product
31 algebraic fractions (1)
SPECIAL PRODUCTS
Life is a three ring circus.
Factoring Strategies
Factoring polynomials
Rational Expressions
Variance And Standard Deviation
Rational Expressions
Area & Perimeter
Standard Deviation and Variance
How to Make Awesome SlideShares: Tips & Tricks
Getting Started With SlideShare
Ad

Similar to Lecture 03 special products and factoring (20)

PPTX
lecture03specialproductsandfactoring-141110052759-conversion-gate01.pptx
PPTX
Multiplication of polynomials
PPT
Polynomial operations (1)
PPT
Multiplying Polynomials
PPT
Stacks image 1721_36
PPT
Algebra Revision.ppt
PPTX
1.2 algebraic expressions t
PPT
New stack
PPTX
Factoring polynomials
PPT
6 3 Add,Sub,Mult Polynomials
PPTX
1.2 algebraic expressions t
DOC
A2 ch6sg
DOC
A2 Chapter 6 Study Guide
PPT
Chapter 2.5
PPT
Algebra unit 8.8
PPTX
EPCA_MODULE-2.pptx
PPTX
General-Trinomials for public schoolpptx
PPT
Factoring and Box Method
PPT
Polynomial math
PPTX
Zeros of polynomial functions
lecture03specialproductsandfactoring-141110052759-conversion-gate01.pptx
Multiplication of polynomials
Polynomial operations (1)
Multiplying Polynomials
Stacks image 1721_36
Algebra Revision.ppt
1.2 algebraic expressions t
New stack
Factoring polynomials
6 3 Add,Sub,Mult Polynomials
1.2 algebraic expressions t
A2 ch6sg
A2 Chapter 6 Study Guide
Chapter 2.5
Algebra unit 8.8
EPCA_MODULE-2.pptx
General-Trinomials for public schoolpptx
Factoring and Box Method
Polynomial math
Zeros of polynomial functions

More from Hazel Joy Chong (20)

PPT
Writing objectives
PPT
Madelyn hunter
PPT
Effective lesson planning
DOC
ABCD model
PPT
Lect 2 the four pillars of learning (riza edited)
PDF
Learning to live 2 [smallpdf.com]
PDF
Learning to live
PDF
Learning to do
PPT
Fourpillarsofeducation 120810190042-phpapp02
PDF
Learning to be
PPT
The sociology of education
PPT
Social dimensions of_educatio_npart_1
PPTX
Socdimofeduc
PPT
conjuctions
PPTX
15 photosynthesis
PPTX
14 electron transport chain
PPTX
13 kreb cycle
PPTX
12 glycolysis
PPTX
11 introduction to cell biology 5
PPTX
10 introduction to cell biology 4
Writing objectives
Madelyn hunter
Effective lesson planning
ABCD model
Lect 2 the four pillars of learning (riza edited)
Learning to live 2 [smallpdf.com]
Learning to live
Learning to do
Fourpillarsofeducation 120810190042-phpapp02
Learning to be
The sociology of education
Social dimensions of_educatio_npart_1
Socdimofeduc
conjuctions
15 photosynthesis
14 electron transport chain
13 kreb cycle
12 glycolysis
11 introduction to cell biology 5
10 introduction to cell biology 4

Recently uploaded (20)

PPTX
A powerpoint presentation on the Revised K-10 Science Shaping Paper
DOC
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
PPTX
Orientation - ARALprogram of Deped to the Parents.pptx
PDF
What if we spent less time fighting change, and more time building what’s rig...
PPTX
Digestion and Absorption of Carbohydrates, Proteina and Fats
PPTX
Chinmaya Tiranga Azadi Quiz (Class 7-8 )
PDF
A systematic review of self-coping strategies used by university students to ...
PDF
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
PDF
Trump Administration's workforce development strategy
PPTX
Cell Types and Its function , kingdom of life
PPTX
Lesson notes of climatology university.
PDF
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
PDF
Supply Chain Operations Speaking Notes -ICLT Program
PPTX
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx
PPTX
Introduction to Building Materials
PPTX
UV-Visible spectroscopy..pptx UV-Visible Spectroscopy – Electronic Transition...
PPTX
Unit 4 Skeletal System.ppt.pptxopresentatiom
PDF
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
PDF
Paper A Mock Exam 9_ Attempt review.pdf.
PDF
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
A powerpoint presentation on the Revised K-10 Science Shaping Paper
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
Orientation - ARALprogram of Deped to the Parents.pptx
What if we spent less time fighting change, and more time building what’s rig...
Digestion and Absorption of Carbohydrates, Proteina and Fats
Chinmaya Tiranga Azadi Quiz (Class 7-8 )
A systematic review of self-coping strategies used by university students to ...
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
Trump Administration's workforce development strategy
Cell Types and Its function , kingdom of life
Lesson notes of climatology university.
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
Supply Chain Operations Speaking Notes -ICLT Program
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx
Introduction to Building Materials
UV-Visible spectroscopy..pptx UV-Visible Spectroscopy – Electronic Transition...
Unit 4 Skeletal System.ppt.pptxopresentatiom
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
Paper A Mock Exam 9_ Attempt review.pdf.
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf

Lecture 03 special products and factoring

  • 4. Multiply: a Monomial and a Polynomial Multiply each polynomial term by that monomial:  Positive numbers – law of distribution  3x2(6xy + 3y2)  3x2(6xy) + 3x2(3y2)  18x3y + 9x2y2  Negative coefficients – be careful!  -2ab2(3bz – 2az + 4z3)  -2ab2(3bz) – (-2ab2)(2az) + (-2ab2)(4z3)  -6ab2z + 4a2b2z – 8ab2z3  Number following polynomial – other distributive law  (2x3 – 3x2 – 5)(3x)  3x(2x3) – (3x)(3x2) – (3x)(5)  6x4 – 9x3 – 15x
  • 5. Multiply: Two Polynomials Horizontal Method: (use the distributive property repeatedly) (2a + b)(3a – 2b) = (2a + b)(3a) – (2a + b)(2b) = 6a2 + 3ab – (4ab + 2b2) = 6a2 + 3ab – 4ab – 2b2 = 6a2 – ab – 2b2 Vertical Method: 3x2 + 2x – 5 4x + 2 Multiply top by rightmost 6x2 + 4x – 10 Then by term to the left 12x3 + 8x2 – 20x____ Lastly, add like terms 12x3 + 14x2 – 16x – 10
  • 6. Concept: Similar Binomials  Any pair of binomials with matching variable parts  When multiplied, they produce a trinomial or binomial  Examples: x and x (3 5) ( 2)   x x x x 2      (3 5)( 2) 3 10 a b and a b      (  ) (  2 ) a b a b a ab b x y and x Not Similar ( 5 )( 7) 7 5 35 ( 5 ) ( 7) 2 2 ( )( 2 ) 3 2 2   2       x y x x x xy y a b and b a ( ) ( 2 ) a b b a a a b b x and x Not Similar (2  3) (2  3) 2 3 2 x x x x x 2 2 (2  3)(2  3)  4  3  6  9   2 2 4 2 2 ( )( 2 ) 2 3      x y and x y       (  ) (   ) x y x y x y 2 2 ( )( )
  • 7. The FOIL Method Useful for Multiplying Two Similar Binomials (x + 8)(x - 5) = x2 – 5x + 8x – 40 (4t2 + 5)(3t2 - 2) = 12t4 – 8t2 + 15t2 – 10 (y – 8)(y2 + 5) = y3 + 5y – 8y2 – 40
  • 8. Practice Using the FOIL Method in Your Head If the polynomials are similar, combine the middle terms (x + 2)(x – 5) = x2 – 3x – 10 (2y + 3)(4y + 1) = 8y2 + 14y + 3 (m – 3n)(m – 2n) = m2 – 5mn + 6n2 (2x + 3y2)(x – 7y2) = 2x2 – 11xy2 – 21y4 (a + b)(c + d) = ac + ad + bc + bd
  • 9. Multiplying 3 or more Polynomials  Use same technique as you use for numbers:  Multiply any 2 together and simplify the temporary product  Multiply that temporary product times any remaining polynomial and simplify -2r(r – 2s)(5r – s) = (use foil on the binomials) -2r(r2 – 11rs + s2) = (distribute the monomial) -2r3 – 22r2s – 2rs2
  • 10. The Product of Conjugates (F + L)(F – L) = F2 – L2  The middle term disappears ONLY when the binomials are conjugates: identical except for different operations  Multiplying these is easier than using FOIL!  (x + 4)(x – 4) = x2 – 42 = x2 – 16  (5 + 2w)(5 – 2w) = 25 – 4w2  (3x2 – 7)(3x2 + 7) = 9x4 – 49  (-4x – 10)(-4x + 10) = 16x2 – 100  (6 + 4y)(6 – 4x) = use the foil method = 36 – 24x + 24y – 16xy
  • 11. Squaring a Binomial Sum (F + L)(F + L) = F2 + 2FL + L2 Square the 1st term Multiply 1st times 2nd, double it, add it Square the 2nd term Try: (2x + 3)2 (2x)2 + 2(6x) + 32 4x2 + 12x + 9 (½x + 5)2 (½x)2 + 2(5x/2) + 52 ¼x2 + 5x + 25
  • 12. Squaring a Binomial Difference (F – L)(F – L) = F2 – 2FL + L2 Square the 1st term Multiply 1st times 2nd, double it, subtract it Square the 2nd term and add it Try: (3x - 4)2 = (3x)2 – 2(12x) + 42 = 9x2 – 24x + 16 (5a – 2b)2 = (5a)2 – 2(10ab) + (2b)2 = 25a2 – 20ab + 4b2
  • 13. Practice Binomial Conjugates and Squares (F + L)(F – L) = F2 – L2 (F + L)2 = F2 + 2FL + L2 (F – L)2 = F2 – 2FL + L2  (x + 3)(x – 3) = x2 – 9  (2y – 5)(2y – 5) = 4y2 – 20y + 25  (m + 3n)2 = m2 + 6mn + 9n2  (2y – 5)(2y + 5) = 4y2 – 25  (a + b)(a + b) = a2 + 2ab + b2  (3x – 7y)2 = 9x2 – 42xy + 49y2
  • 14.  Find the product of the following:
  • 17. Find the product Use the FOIL method
  • 20. Find the product Use Dist. Prop. twice
  • 23. Factoring Trinomials  Video1  video2
  • 26.  FACTORING IS THE REVERSE of multiplying. 2x² + 9x − 5 (2x ?)(x ?) (2x 5)(x 1) or with x -- (2x 1)(x 5) ? (2x − 1)(x + 5) = 2x² + 9x − 5.
  • 27. Problem 1. Place the correct signs to give the middle term. a) 2x² + 7x − 15 = (2x − 3)(x + 5) b) 2x² − 7x − 15 = (2x + 3)(x − 5) c) 2x² − x − 15 = (2x + 5)(x − 3) d) 2x² − 13x + 15 = (2x − 3)(x − 5)
  • 28. Problem 2. Factor these trinomials. a) 3x² + 8x + 5 = (3x + 5)(x + 1) b) 3x² + 16x + 5 = (3x + 1)(x + 5) c) 2x² + 9x + 7 = (2x + 7)(x + 1) d) 2x² + 15x + 7 = (2x + 1)(x + 7) e) 5x² + 8x + 3 = (5x + 3)(x + 1) f) 5x² + 16x + 3 = (5x + 1)(x + 3)
  • 29. Problem 3. Factor these trinomials. a) 2x² − 7x + 5 = (2x − 5)(x − 1) b) 2x² − 11x + 5 = (2x − 1)(x − 5) c) 3x² + x − 10 = (3x − 5)(x + 2 ) d) 2x² − x − 3 = (2x − 3)(x + 1) e) 5x² − 13x + 6 = (5x − 3)(x − 2)
  • 30. Factor completely 6x8 + 30x7 + 36x6. To factor completely means to first remove any common factor. 6x8 + 30x7 + 36x6 = 6x6(x² + 5x + 6). Now continue by factoring the trinomial: = 6x6(x + 2)(x + 3).
  • 31. Problem 4. Factor completely. First remove any common factors. a) x3 + 6x² + 5x = x(x2 + 6x + 5) = x(x + 5)(x + 1) b) x5 + 4x4 + 3x3 = x3(x2 + 4x + 3) = x3(x + 1)(x + 3) c) x4 + x3 − 6x² = x²(x² + x − 6) = x²(x + 3)(x − 2) d) 4x² − 4x − 24 = 4(x² − x − 6) = 4(x + 2)(x − 3) e) 2x3 − 14x² − 36x = 2x(x2 − 7x − 18) = 2x(x + 2)(x − 9) f) 12x10 + 42x9 + 18x8 = 6x8(2x² + 7x + 3) = 6x8(2x + 1)(x + 3).
  • 32. Quadratics in different arguments Here is the form of a quadratic trinomial with argument x : ax² + bx + c. The argument is whatever is being squared. x is being squared. x is called the argument. The argument appears in the middle term. a, b, c are called constants. In this quadratic, 3x² + 2x − 1, the constants are 3, 2, −1.
  • 33. Now here is a quadratic whose argument is x3: 3x6 + 2x3 − 1. x6 is the square of x3.
  • 34. Now, since the quadratic with argument x can be factored in this way: 3x² + 2x − 1 = (3x − 1)(x + 1), then the quadratic with argument x3 is factored in the same way: 3x6 + 2x3 − 1 = (3x3 − 1)(x3 + 1). Whenever a quadratic has constants 3, 2, −1, then for any argument, the factoring will be (3 times the argument − 1)(argument + 1).
  • 35. Problem 5. Multiply out each of the following, which have the same constants, but different argument. a) (z + 3)(z − 1) = z² + 2z − 3 b) (y + 3)(y − 1) = y² + 2y − 3 c) (y6 + 3)(y6 − 1) = y12 + 2y6 − 3 d) (x5 + 3)(x5 − 1) = x10 + 2x5 − 3
  • 36. Problem 6. Factor each quadratic. a) x² − 6x + 5 = (x − 1)(x − 5) b) z² − 6z + 5 = (z − 1)(z − 5) c) x8 − 6x4 + 5 = (x4 − 1)(x4 − 5) d) x10 − 6x5 + 5 = (x5 − 1)(x5 − 5) e) x6y6 − 6x3y3 + 5 = (x3y3 − 1)(x3y3 − 5)
  • 37. Problem 7. Factor each quadratic. a) x4 − x² − 2 = (x² − 2)(x² + 1) b) y6 + 2y3 − 8 = (y3 + 4)(y3 − 2) c) z8 + 4z4 + 3 = (z4 + 1)(z4 + 3) d) 2x10 + 5x5 + 3 = (2x5 + 3)(x5 + 1) e) x4y² − 3x²y − 10 = (x²y + 2)(x²y − 5) f) cos²x − 5 cos x + 6 = (cos x − 3)(cos x − 2)
  • 41.  The following are some of the products which occur frequently in Mathematics.                             I a c  d  ac  ad II a  b a  b  a  b 2 2 2 2 2 III a  b a  b  a  b  a  ab  b 2 2 2 IV a b a b a b a ab b V x a x b x 2 a b x ab VI ax b cx d acx 2 ad bc x bd VII a b c d ac bc ad bd . . . 2 . 2 . . .                         