SlideShare a Scribd company logo
Engineering Software
P.O. Box 2134
Kensington, MD 20891
Phone: (301) 919-9670
E-Mail: info@engineering-4e.com
http://www.engineering-4e.com
Copyright © 1996
Carnot Cycle Analysis
Here are some of the basic Carnot Cycle data tables
and plots.
Carnot Cycle Schematic Layout
Compressor
Heat Exchanger
Gas Turbine
1
32
4
Heat Addition
Heat Exchanger
Heat Rejection
Carnot Cycle T - s Diagram
1
32
4
Temperature--T[K]
Entropy -- s [kJ/kg*K]
Input and Output Data
Heat addition temperature [K]: 600
Heat rejection temperature [K]: 298
Delta temperature step [K]: 1
Delta temperature range [K]: 10
Step Tin Tout Efficiency
[/] [K] [K] [/]
1 590 298 0.494915
2 591 298 0.49577
3 592 298 0.496622
4 593 298 0.49747
5 594 298 0.498317
6 595 298 0.49916
7 596 298 0.5
8 597 298 0.500838
9 598 298 0.501672
10 599 298 0.502504
11 600 298 0.503333
12 601 298 0.50416
13 602 298 0.504983
14 603 298 0.505804
15 604 298 0.506623
16 605 298 0.507438
17 606 298 0.508251
18 607 298 0.509061
19 608 298 0.509868
20 609 298 0.510673
21 610 298 0.511475
Carnot Cycle Effciency
0.00
0.25
0.50
0.75
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
Heat Addition Temperature [K]
CarnotCycleEfficiency[/][/]
Efficiency [/]
Heat Rejection Temperature: 298 [K]
Input and Output Data
Heat addition temperature [K]: 600
Heat rejection temperature [K]: 298
Delta temperature step [K]: 1
Delta temperature range [K]: 10
Step Tin Tout Efficiency
[/] [K] [K] [/]
1 600 288 0.52
2 600 289 0.518333
3 600 290 0.516667
4 600 291 0.515
5 600 292 0.513333
6 600 293 0.511667
7 600 294 0.51
8 600 295 0.508333
9 600 296 0.506667
10 600 297 0.505
11 600 298 0.503333
12 600 299 0.501667
13 600 300 0.5
14 600 301 0.498333
15 600 302 0.496667
16 600 303 0.495
17 600 304 0.493333
18 600 305 0.491667
19 600 306 0.49
20 600 307 0.488333
21 600 308 0.486667
Carnot Cycle Effciency
0.00
0.25
0.50
0.75
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
Heat Rejection Temperature [K]
CarnotCycleEfficiency[/][/]
Efficiency [/]
Heat Addition Temperature: 600 [K]
Brayton Cycle (Gas Turbine)
Analysis
Here are some of the basic Brayton Cycle (Gas
Turbine) data tables and plots for power applications.
Brayton Cycle (Gas Turbine) Schematic Layout
Working Fluid In Working Fluid Out
Combustor
Gas Turbine
1
32
4
Fuel
Compressor
Brayton Cycle (Gas Turbine) T - s Diagram
1
3
2
4
Temperature--T[K]
Entropy -- s [kJ/kg*K]
Input and Output Data
Compression initial inlet pressure [atm]: 1
Compression final outlet pressure [atm]: 25
Working fluid kappa [/]: 1.4
Step pin pout Efficiency
[/] [atm] [atm] [/]
1 1 1 0
2 1 2 0.179665
3 1 3 0.2694
4 1 4 0.32705
5 1 5 0.368615
6 1 6 0.400663
7 1 7 0.426487
8 1 8 0.447955
9 1 9 0.466224
10 1 10 0.482053
11 1 11 0.495967
12 1 12 0.508343
13 1 13 0.519459
14 1 14 0.529527
15 1 15 0.53871
16 1 16 0.547138
17 1 17 0.554915
18 1 18 0.562124
19 1 19 0.568837
20 1 20 0.575109
21 1 21 0.580991
22 1 22 0.586524
23 1 23 0.591742
24 1 24 0.596676
25 1 25 0.601353
Brayton Cycle Efficiency
0.00
0.25
0.50
0.75
1.00
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Compresion Ratio [/]
BraytonCycleEfficiency[/][/]
Efficiency [/]
Working Fluid: Air
Compression Inlet Temperature: 298 [K] and Pressure: 1 [atm]
Otto Cycle Analysis
Here are some of the basic Otto Cycle data tables
and plots.
Otto Cycle p - V Diagram
1
3
2
4
Pressure--p[atm]
Volume -- V [m^3]
Otto Cycle T - s Diagram
1
3
2
4
Temperature--T[K]
Entropy -- s [kJ/kg*K]
Input and Output Data
Compression final volume [m^3]: 1
Compression initial volume [m^3]: 25
Compression delta volume step [m^3]: 1
Working fluid kappa [/]: 1.4
Step Vfinal Vinitial Efficiency
[/] [m^3] [m^3] [/]
1 1 1 0
2 1 2 0.242142
3 1 3 0.355606
4 1 4 0.425651
5 1 5 0.474694
6 1 6 0.511641
7 1 7 0.540843
8 1 8 0.564725
9 1 9 0.584756
10 1 10 0.601893
11 1 11 0.616785
12 1 12 0.629893
13 1 13 0.641555
14 1 14 0.652024
15 1 15 0.661496
16 1 16 0.670123
17 1 17 0.678026
18 1 18 0.685304
19 1 19 0.692037
20 1 20 0.698291
21 1 21 0.704122
22 1 22 0.709577
23 1 23 0.714695
24 1 24 0.719511
25 1 25 0.724054
Otto Cycle Efficiency
0.00
0.25
0.50
0.75
1.00
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Compresion Ratio [/]
OttoCycleEfficiency[/][/]
Efficiency [/]
Working Fluid: Air
Compression Inlet Temperature: 298 [K] and Pressure: 1 [atm]
Diesel Cycle Analysis
Here are some of the basic Diesel Cycle data tables
and plots.
Diesel Cycle p - V Diagram
1
32
4
Pressure--p[atm]
Volume -- V [m^3]
Diesel Cycle T - s Diagram
1
3
2
4
Temperature--T[K]
Entropy -- s [kJ/kg*K]
Input and Output Data
Compression final volume [m^3]: 1
Compression initial volume [m^3]: 25
Compression cutoff volume [m^3]: 1.5
Compression delta volume step [m^3]: 1
Working fluid kappa [/]: 1.4
Step Vfinal Vcutoff Vinitial Efficiency
[/] [m^3] [m^3] [m^3] [/]
1
2 1 1.5 2 0.172723
3 1 1.5 3 0.296581
4 1 1.5 4 0.373042
5 1 1.5 5 0.426578
6 1 1.5 6 0.466908
7 1 1.5 7 0.498786
8 1 1.5 8 0.524854
9 1 1.5 9 0.546721
10 1 1.5 10 0.565427
11 1 1.5 11 0.581683
12 1 1.5 12 0.595992
13 1 1.5 13 0.608722
14 1 1.5 14 0.620151
15 1 1.5 15 0.63049
16 1 1.5 16 0.639907
17 1 1.5 17 0.648534
18 1 1.5 18 0.656479
19 1 1.5 19 0.663828
20 1 1.5 20 0.670655
21 1 1.5 21 0.67702
22 1 1.5 22 0.682975
23 1 1.5 23 0.688562
24 1 1.5 24 0.693819
25 1 1.5 25 0.698778
Diesel Cycle Efficiency
0.00
0.25
0.50
0.75
1.00
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Compresion Ratio [/]
DieselCycleEfficiency[/][/]
Efficiency [/]
Working Fluid: Air
Compression Inlet Temperature: 298 [K] and Pressure: 1 [atm] – Cutoff Volume Ratio: 1.5 [/]

More Related Content

PPTX
Episode 59 : Introduction of Process Integration
PDF
Energy Conversion Analysis Webinar
PDF
Energy Conversion Ideal vs Real Operation Analysis Webinar
DOCX
Heat transfer area and Heat transfer cofficient (U)
PDF
Mist Extractor.pdf
PDF
30120130405031 2
PDF
02 part4 work heat transfer first law prob
Episode 59 : Introduction of Process Integration
Energy Conversion Analysis Webinar
Energy Conversion Ideal vs Real Operation Analysis Webinar
Heat transfer area and Heat transfer cofficient (U)
Mist Extractor.pdf
30120130405031 2
02 part4 work heat transfer first law prob

What's hot (17)

PPTX
Internal Combustion Engine Fundamental Concepts
PPTX
Turbo presentation 0505_s_p
DOCX
Heat simulator design Problem 1
PDF
1 ijebm jan-2018-1-combustion adjustment in a natural
PDF
30120130406006
DOCX
PLD-FINAL-REPORT
PPT
engine characteristics
PPT
TimWelk_Project08
PPTX
MBDA 13.03.13
PDF
2 ijcmp jan-2018-3-computing fluid dynamics on
PDF
Cee 311(4)
PPT
Cobb-douglas production function
PPT
selfstudy-1.ppt
PDF
EES for Thermodynamics
PDF
Thermal Analysis of the Wheel for Urban Rail Vehicle Considering Emergency Br...
PPTX
Pinch analysis technique to optimize heat exchanger
PPTX
Mathematical modelling of steam turbine
Internal Combustion Engine Fundamental Concepts
Turbo presentation 0505_s_p
Heat simulator design Problem 1
1 ijebm jan-2018-1-combustion adjustment in a natural
30120130406006
PLD-FINAL-REPORT
engine characteristics
TimWelk_Project08
MBDA 13.03.13
2 ijcmp jan-2018-3-computing fluid dynamics on
Cee 311(4)
Cobb-douglas production function
selfstudy-1.ppt
EES for Thermodynamics
Thermal Analysis of the Wheel for Urban Rail Vehicle Considering Emergency Br...
Pinch analysis technique to optimize heat exchanger
Mathematical modelling of steam turbine
Ad

Viewers also liked (7)

PDF
Compressible Flow
PPTX
FLUID MECHANICS
PPTX
Compressible flow basics
PDF
Cours thermodynamique
PDF
Gas dynamics and_jet_propulsion- questions & answes
PDF
Stirling Engine
Compressible Flow
FLUID MECHANICS
Compressible flow basics
Cours thermodynamique
Gas dynamics and_jet_propulsion- questions & answes
Stirling Engine
Ad

Similar to Power Cycles Tables and Plots (20)

PDF
Power Cycles and Combustion Analysis Webinar
PDF
Energy Conversion Analysis Webinar -- Long Version
PDF
Power Cycles
PDF
THERMODYNAMIC CYCLES.pdf
PDF
session-14444444444444444afddddddddddd444444.pdf
PPT
gas power cycle of the engine otto and die
PPT
Thermodynamic cycles4.ppt
PDF
GAS POWER CYCLES PRESENTATION FOR STUDENT UNIVERSITY
PPT
Principle of turbomachinery
PPTX
thermo presentation.pptx thermo presentation.pptx
PPTX
REVIEW OF POWER PLANT
PPT
Gas Power Cycles.ppt
PPT
Gas Power Cycles in Chemical Engineering Thermodynamics.ppt
PDF
Thermodynamic cycl
PPTX
Unit-1_PPT.pptx
PPT
Brayton cycle
PPT
thermo course.ppt
PDF
Thermodynamics chapter:7 Some Power and Refrigerator Cycle
PPTX
PDF
Power Cycle Components/Processes Tables and Plots
Power Cycles and Combustion Analysis Webinar
Energy Conversion Analysis Webinar -- Long Version
Power Cycles
THERMODYNAMIC CYCLES.pdf
session-14444444444444444afddddddddddd444444.pdf
gas power cycle of the engine otto and die
Thermodynamic cycles4.ppt
GAS POWER CYCLES PRESENTATION FOR STUDENT UNIVERSITY
Principle of turbomachinery
thermo presentation.pptx thermo presentation.pptx
REVIEW OF POWER PLANT
Gas Power Cycles.ppt
Gas Power Cycles in Chemical Engineering Thermodynamics.ppt
Thermodynamic cycl
Unit-1_PPT.pptx
Brayton cycle
thermo course.ppt
Thermodynamics chapter:7 Some Power and Refrigerator Cycle
Power Cycle Components/Processes Tables and Plots

More from Engineering Software (8)

PDF
Combustion Analysis Webinar
PDF
Power Cycle Components/Processes and Compressible Flow Analysis Webinar
PDF
Physical Properties Tables and Plots
PDF
Power Cycle Components/Processes
PDF
Engineering Energy Conversion Assumptions and Equations
PDF
Physical Properties
PDF
Compressible Flow Tables and Plots
PDF
Engineering Simulation
Combustion Analysis Webinar
Power Cycle Components/Processes and Compressible Flow Analysis Webinar
Physical Properties Tables and Plots
Power Cycle Components/Processes
Engineering Energy Conversion Assumptions and Equations
Physical Properties
Compressible Flow Tables and Plots
Engineering Simulation

Power Cycles Tables and Plots

  • 1. Engineering Software P.O. Box 2134 Kensington, MD 20891 Phone: (301) 919-9670 E-Mail: info@engineering-4e.com http://www.engineering-4e.com Copyright © 1996
  • 2. Carnot Cycle Analysis Here are some of the basic Carnot Cycle data tables and plots.
  • 3. Carnot Cycle Schematic Layout Compressor Heat Exchanger Gas Turbine 1 32 4 Heat Addition Heat Exchanger Heat Rejection
  • 4. Carnot Cycle T - s Diagram 1 32 4 Temperature--T[K] Entropy -- s [kJ/kg*K]
  • 5. Input and Output Data Heat addition temperature [K]: 600 Heat rejection temperature [K]: 298 Delta temperature step [K]: 1 Delta temperature range [K]: 10 Step Tin Tout Efficiency [/] [K] [K] [/] 1 590 298 0.494915 2 591 298 0.49577 3 592 298 0.496622 4 593 298 0.49747 5 594 298 0.498317 6 595 298 0.49916 7 596 298 0.5 8 597 298 0.500838 9 598 298 0.501672 10 599 298 0.502504 11 600 298 0.503333 12 601 298 0.50416 13 602 298 0.504983 14 603 298 0.505804 15 604 298 0.506623 16 605 298 0.507438 17 606 298 0.508251 18 607 298 0.509061 19 608 298 0.509868 20 609 298 0.510673 21 610 298 0.511475
  • 6. Carnot Cycle Effciency 0.00 0.25 0.50 0.75 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 Heat Addition Temperature [K] CarnotCycleEfficiency[/][/] Efficiency [/] Heat Rejection Temperature: 298 [K]
  • 7. Input and Output Data Heat addition temperature [K]: 600 Heat rejection temperature [K]: 298 Delta temperature step [K]: 1 Delta temperature range [K]: 10 Step Tin Tout Efficiency [/] [K] [K] [/] 1 600 288 0.52 2 600 289 0.518333 3 600 290 0.516667 4 600 291 0.515 5 600 292 0.513333 6 600 293 0.511667 7 600 294 0.51 8 600 295 0.508333 9 600 296 0.506667 10 600 297 0.505 11 600 298 0.503333 12 600 299 0.501667 13 600 300 0.5 14 600 301 0.498333 15 600 302 0.496667 16 600 303 0.495 17 600 304 0.493333 18 600 305 0.491667 19 600 306 0.49 20 600 307 0.488333 21 600 308 0.486667
  • 8. Carnot Cycle Effciency 0.00 0.25 0.50 0.75 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 Heat Rejection Temperature [K] CarnotCycleEfficiency[/][/] Efficiency [/] Heat Addition Temperature: 600 [K]
  • 9. Brayton Cycle (Gas Turbine) Analysis Here are some of the basic Brayton Cycle (Gas Turbine) data tables and plots for power applications.
  • 10. Brayton Cycle (Gas Turbine) Schematic Layout Working Fluid In Working Fluid Out Combustor Gas Turbine 1 32 4 Fuel Compressor
  • 11. Brayton Cycle (Gas Turbine) T - s Diagram 1 3 2 4 Temperature--T[K] Entropy -- s [kJ/kg*K]
  • 12. Input and Output Data Compression initial inlet pressure [atm]: 1 Compression final outlet pressure [atm]: 25 Working fluid kappa [/]: 1.4 Step pin pout Efficiency [/] [atm] [atm] [/] 1 1 1 0 2 1 2 0.179665 3 1 3 0.2694 4 1 4 0.32705 5 1 5 0.368615 6 1 6 0.400663 7 1 7 0.426487 8 1 8 0.447955 9 1 9 0.466224 10 1 10 0.482053 11 1 11 0.495967 12 1 12 0.508343 13 1 13 0.519459 14 1 14 0.529527 15 1 15 0.53871 16 1 16 0.547138 17 1 17 0.554915 18 1 18 0.562124 19 1 19 0.568837 20 1 20 0.575109 21 1 21 0.580991 22 1 22 0.586524 23 1 23 0.591742 24 1 24 0.596676 25 1 25 0.601353
  • 13. Brayton Cycle Efficiency 0.00 0.25 0.50 0.75 1.00 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Compresion Ratio [/] BraytonCycleEfficiency[/][/] Efficiency [/] Working Fluid: Air Compression Inlet Temperature: 298 [K] and Pressure: 1 [atm]
  • 14. Otto Cycle Analysis Here are some of the basic Otto Cycle data tables and plots.
  • 15. Otto Cycle p - V Diagram 1 3 2 4 Pressure--p[atm] Volume -- V [m^3]
  • 16. Otto Cycle T - s Diagram 1 3 2 4 Temperature--T[K] Entropy -- s [kJ/kg*K]
  • 17. Input and Output Data Compression final volume [m^3]: 1 Compression initial volume [m^3]: 25 Compression delta volume step [m^3]: 1 Working fluid kappa [/]: 1.4 Step Vfinal Vinitial Efficiency [/] [m^3] [m^3] [/] 1 1 1 0 2 1 2 0.242142 3 1 3 0.355606 4 1 4 0.425651 5 1 5 0.474694 6 1 6 0.511641 7 1 7 0.540843 8 1 8 0.564725 9 1 9 0.584756 10 1 10 0.601893 11 1 11 0.616785 12 1 12 0.629893 13 1 13 0.641555 14 1 14 0.652024 15 1 15 0.661496 16 1 16 0.670123 17 1 17 0.678026 18 1 18 0.685304 19 1 19 0.692037 20 1 20 0.698291 21 1 21 0.704122 22 1 22 0.709577 23 1 23 0.714695 24 1 24 0.719511 25 1 25 0.724054
  • 18. Otto Cycle Efficiency 0.00 0.25 0.50 0.75 1.00 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Compresion Ratio [/] OttoCycleEfficiency[/][/] Efficiency [/] Working Fluid: Air Compression Inlet Temperature: 298 [K] and Pressure: 1 [atm]
  • 19. Diesel Cycle Analysis Here are some of the basic Diesel Cycle data tables and plots.
  • 20. Diesel Cycle p - V Diagram 1 32 4 Pressure--p[atm] Volume -- V [m^3]
  • 21. Diesel Cycle T - s Diagram 1 3 2 4 Temperature--T[K] Entropy -- s [kJ/kg*K]
  • 22. Input and Output Data Compression final volume [m^3]: 1 Compression initial volume [m^3]: 25 Compression cutoff volume [m^3]: 1.5 Compression delta volume step [m^3]: 1 Working fluid kappa [/]: 1.4 Step Vfinal Vcutoff Vinitial Efficiency [/] [m^3] [m^3] [m^3] [/] 1 2 1 1.5 2 0.172723 3 1 1.5 3 0.296581 4 1 1.5 4 0.373042 5 1 1.5 5 0.426578 6 1 1.5 6 0.466908 7 1 1.5 7 0.498786 8 1 1.5 8 0.524854 9 1 1.5 9 0.546721 10 1 1.5 10 0.565427 11 1 1.5 11 0.581683 12 1 1.5 12 0.595992 13 1 1.5 13 0.608722 14 1 1.5 14 0.620151 15 1 1.5 15 0.63049 16 1 1.5 16 0.639907 17 1 1.5 17 0.648534 18 1 1.5 18 0.656479 19 1 1.5 19 0.663828 20 1 1.5 20 0.670655 21 1 1.5 21 0.67702 22 1 1.5 22 0.682975 23 1 1.5 23 0.688562 24 1 1.5 24 0.693819 25 1 1.5 25 0.698778
  • 23. Diesel Cycle Efficiency 0.00 0.25 0.50 0.75 1.00 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Compresion Ratio [/] DieselCycleEfficiency[/][/] Efficiency [/] Working Fluid: Air Compression Inlet Temperature: 298 [K] and Pressure: 1 [atm] – Cutoff Volume Ratio: 1.5 [/]