This document discusses the rise of predictive analytics and its value in enterprise decision making. It begins by explaining how predictive analytics has expanded from niche uses to a widely adopted competitive technique, fueled by big data, improved analytics tools, and demonstrated successes. A classic example given is credit scoring, which uses predictive models to assess credit risk. The document then provides examples of other areas where predictive models generate value, such as marketing, customer retention, pricing, and fraud prevention. It discusses how effective predictive models are built by using statistical techniques on data that describes predictive factors and outcomes. The document argues that predictive models provide the most value when applied to processes involving large volumes of similar decisions that have significant financial or other impacts, and where relevant electronic