SlideShare a Scribd company logo
Radar
 Simulation
    Techniques
A   Revision of an Integral
Backscatter Calculation Method

                   Greg Togtema
     H. El-Ocla, S. Pichardo, C. Christoffersen


                                                  1
Radar: The Basics




                                              2

                    Image: sciencephoto.com
Radar: The Basics

        PHASE                        FREQ.



            MEASUREMENT




        DELAY         REFLECTION
                      INTENSITY [1]
                 [1] Richards 2005
                                        3
Areas of Focus
                                                                   RE-
                                                                ASU T
                                                              ME EN
                                                                M
                                                  HER
                                            W EAT
                                 NSE
                           D EFE

                ati o ns
      Ap plic




                              Img src: Raytheon           4

                              newspaper.li, Peteryu.com
For this Presentation:


                         1. WHY SIMULATE?


                         2. HOW TO SIMULATE
      Outline
                         3. A NEW WAY TO SIMULATE


                         4. PROVING THE METHOD



                                    5
1. WHY SIMULATE?
                           1.1 System Complexity
                           1.2 Target Complexity

2. HOW TO SIMULATE
                           2.1   The Scattering Process
                           2.2   Current Density
                           2.3   Physical Optics
                           2.4   Finite Differences
                           2.5   Integral Equations / M.O.M.
                           2.6   Linear Solutions

3. A NEW WAY TO SIMULATE
                           3.1   The Current Generator Method
                           3.2   Spherical Harmonics
                           3.3   Formulation
                           3.4   Random Media

4. PROVING THE METHOD
                           4.1 Thesis Roadmap

                                                    6
Part 1: Motivation of Simulation Project




                                 7
1.1 Advanced Measurement
    System




                SYSTEM
BEAM FORMING   COMPLEXITY   CLUTTER




                             8
1.2 Target Complexity

                          MULTIPLE
                         SCATTERING
             RESONANCE
             PHENOMENA
 SPECULAR
                                                  oreex
                                                 M pl
REFLECTION                                      Com
    1




                     Williams et. al. (Ansys)    9
                     Microwave Journal, 2012
Part 2: Existing Simulation Techniques




                               10
2.1 The Scattering Process


 WAVE INCIDENCE



CURRENT DENSITY



  RE-RADIATION



                  Image Source:                      11

                  Smart Fish™ Promotional Material
2.2 Finding The Current




     PHYSICAL    INTEGRAL   FINITE
      OPTICS    EQUATIONS    DIFF.




                                12
2.3 Physical Optics




  J=nxH   J = zero




                     See Ishimaru 1991   13
2.3 Physical Optics



         KIRCHOFF APPROXIMATION          [Asvestas ’79]
                                          [Ufimtsev ’78 /
         PHYS. THEORY OF DIFF.              Michaeli 95]
Phys.
Optics   TIME DOMAIN PO                        [Sun ’94]

         ANTENNA PATTERNS                [Ishimaru
         1991]
         µ-WAVE INTERCONNECTS     [Obelleirobasteiro ’95]




                                    14
2.4 Finite Difference Time Domain



          COMPLEX SHAPES

          IMPERFECT CONDUCTORS
FINITE
 DIFF.
          RESISTIVE MATERIALS            [Ge ’08]

          ROUGH SURFACES              [Zeng 2010]




                                 15
2.4 Insufficient Methods




                    Poor
                Performance


    ACCURACY                       SPEED
      (PO)                          (FD)




                              16
2.5 Integral Equations

             Integral Equation Types




     Electric      COMBINED                 Magnetic
    (E.F.I.E.)      (C.F.I.E.)              (M.F.I.E.)




                        Source:                17

                        Gibson Text, 2008
2.5 Method of Moments (MOM)


                  ZIJ

                                      MATRIX
                  ZIJ                 (Za = b)



                          Z:      Transfer Fcn Matrix
                  ZIJ     a:      Current Density
                          b:      Incident Field
                          i,j:    Matrix Indices

                                 18
2.5 Method of Moments:
    Applications


          SEMINAL       PAPER   [GLISSON 1982]
           WIRES & SURFACES          [Gibson 2008]
           ACCURACY                  [Wernick ‘00]
LITER-
ATURE
          STEALTH AIRCRAFTS             [Liu 2010]
           PRINTED ANTENNAS          [Alatan 1999]

          G.P.R.
          [Chen 2007]


                                19
2.6 Solving System ( Z a = b )
                                  BiCG
        GAUSS                      [3]
         ELIM.                                  AIM
                   Conj.                            [6]
                  Gradient
                    [1] [2]
                                  CGS
                                   [4]
SOLUTION
                                               FMM
                                                    [7]
                                                          MLFMA
          LU                                               [8]
        DECOMP.
                                         FFT
                                         [5]
    N   3
                         N    2                     N logN
                              N - # patches    20
2.6 Solving System ( Z a = b )
                                     BiCG
            GAUSS                     [3]
                                             [1] Stratton ’81
             ELIM.                                     AIM
                      Conj.
                     Gradient                [2] Sarkar [6]
                                                         ’86
                       [1] [2]
                                     CGS [3] Lanczos ’52
                                      [4]
SOLUTION                                     [4] Sonneveld ‘89
                                                      FMM
                                             [5] Sarkar [7]
                                                        ’86
                                                                MLFMA
          LU                                 [6] Bleszynski ‘96   [8]
        DECOMP.
                                            FFT Coifman ’93
                                             [7]

    N   3                   N    2          [5]
                                                        N
                                             [8] Song ‘97   logN

                                 N - # patches        21
Part 3: A New Way to Simulate:
The Current Generator Method




                                 22
3.1 The Current Generator Method




                Wave
      R        Equation           θ




                             23
3.1 The Current Generator Method

        R                   θ
                Wave
               Equation




                  φ

                             24
3.2 Spherical Harmonic Decomposition




                  See Q. Wang, 2008 for    25
                  rigorous decomposition
3.3 Current Generator Operator




Orthogonal    Huygen’s    Divergence              Harmonic
Harmonics        [1]       Theorem               Coefficients




             BOUNDARY                              INCIDENT
             CONDITIONS                              FIELD

                          [1] Ishimaru, 1991               26

                          Image: Wikipedia (ripple tank)
3.3 Final Result




    REVISED CURRENT GENERATOR METHOD

     G. Togtema, H. El-Ocla, “Fast Calculation of 3D Conductive Target
          Backscatter…” submitted to IEEE Antennas and Prop.

                                                               27
3.3 Others who have used
     Spherical Harmonics



             FMM + SPHER. HARM.           [Eibert 2005]


LITERATURE   PATTERN EQ’N METHOD      [Kyurkchan 00]


             APPLICATIONS OF MIE THEORY




                                     28
3.4 CGM and Random Media




                                                      K
                 ENCE                              ACTER
                                                  B T
            INCID                                SCA

                 ( To Coherent Detector )




                  See: Wolf 2002            29

                  (J. Opt. Soc. Am)
3.4 The Effects of Random Media
                          Gain due to R.M.

            SHAPE

    A
 Function
            POLAR-
   of…      IZATION




  CREEP.     R.M.
  WAVES                   Figure: Scattering
                         normalized w.r.t. no
                        random    media as a
                       function of wave number,
                      Image:      (k) 30

                      El-Ocla, 2007
Part 4:   Proving the Current
          Generator Method




                                31
4.1 CGM Roadmap


                  CGM Formulation

   Functional       Computation              Accuracy
  Demonstration       Time




                         Image: A. Sourin.      32

                         SV Journal (2010)
4.2 Potential Application
    & Future Work



   Tetrahedral
      Mesh




                       Image: Li 2003,        33

                       Comp. Env. Urb. Sys.
Thank you!




             34

More Related Content

PDF
Ls2520342037
PDF
Abstract from medical image to 3 d entities creation
PDF
Accelarating Optical Quadrature Microscopy Using GPUs
PDF
A Novel Model of Influence Function: Calibration of a Continuous Membrane Def...
PDF
WAVELET DECOMPOSITION AND ALPHA STABLE FUSION
PDF
Quadrupolar structures generated by chiral islands in freely suspended smecti...
PDF
PDF
Remotesensing 06-02069
Ls2520342037
Abstract from medical image to 3 d entities creation
Accelarating Optical Quadrature Microscopy Using GPUs
A Novel Model of Influence Function: Calibration of a Continuous Membrane Def...
WAVELET DECOMPOSITION AND ALPHA STABLE FUSION
Quadrupolar structures generated by chiral islands in freely suspended smecti...
Remotesensing 06-02069

What's hot (8)

PDF
Porter easterling phase transformations in metals and alloys 2th ed
PDF
Marking scheme-chemistry-perfect-score-module-form-4-set-5
PDF
FINGERPRINTS IMAGE COMPRESSION BY WAVE ATOMS
PDF
Highly Crystalline Surface Supported Metal Organic Thin Film Materials Based ...
PPT
Blurred image recognization system
PDF
Non-Blind Deblurring Using Partial Differential Equation Method
PDF
Bt24466477
PDF
Recent Advances in Object-based Change Detection.pdf
Porter easterling phase transformations in metals and alloys 2th ed
Marking scheme-chemistry-perfect-score-module-form-4-set-5
FINGERPRINTS IMAGE COMPRESSION BY WAVE ATOMS
Highly Crystalline Surface Supported Metal Organic Thin Film Materials Based ...
Blurred image recognization system
Non-Blind Deblurring Using Partial Differential Equation Method
Bt24466477
Recent Advances in Object-based Change Detection.pdf
Ad

Viewers also liked (20)

PPT
2010 A Strategic Year Of The Jubilee
PDF
JS patterns
PDF
Week10
PDF
Presentation
PDF
RAII and ScopeGuard
PDF
MedicReS Animal Experiments
PPT
2010 bodley and blackwells
PDF
Infographic: The Dutch Games Market
PPTX
FactorEx - электронный факторинг
PDF
James Caan Business Secrets App
PDF
Cat's anatomy
PPTX
Gor Nishanov, C++ Coroutines – a negative overhead abstraction
PDF
Estilos y paradigmas de la Interacción Humano-Computador
PDF
Cpp17 and Beyond
PDF
How to manage Hortonworks HDB Resources with YARN
PPTX
Unsupervised Feature Learning
PDF
EMRでスポットインスタンスの自動入札ツールを作成する
PDF
Как обосновать затраты на ИБ?
PDF
Microservice Architecture on AWS using AWS Lambda and Docker Containers
PPTX
Customer Success Strategy Template
2010 A Strategic Year Of The Jubilee
JS patterns
Week10
Presentation
RAII and ScopeGuard
MedicReS Animal Experiments
2010 bodley and blackwells
Infographic: The Dutch Games Market
FactorEx - электронный факторинг
James Caan Business Secrets App
Cat's anatomy
Gor Nishanov, C++ Coroutines – a negative overhead abstraction
Estilos y paradigmas de la Interacción Humano-Computador
Cpp17 and Beyond
How to manage Hortonworks HDB Resources with YARN
Unsupervised Feature Learning
EMRでスポットインスタンスの自動入札ツールを作成する
Как обосновать затраты на ИБ?
Microservice Architecture on AWS using AWS Lambda and Docker Containers
Customer Success Strategy Template
Ad

Similar to Presentation for Advanced Detection and Remote Sensing: Radar Systems (20)

PPT
Frequency and FDTD.ppt
PDF
Perfusion deconvolution via em algorithm
 
PDF
Segmentation Based Multilevel Wide Band Compression for SAR Images Using Coif...
PDF
Transom Stern High Speed Vessel - Thesis Presentation
PDF
Ls2520342037
PDF
An Advanced Implementation of a Digital Artificial Reverberator
PPS
ThesisPresentation
PDF
Hybrid Reverberation Algorithm: a Practical Approach
PPTX
Pres splds 2012
PDF
Sreu Jean Cortes
PDF
Ku2518881893
PDF
Ku2518881893
PDF
A Hybrid Approach for Real-time Room Acoustic Response Simulation
PPTX
Pore Geometry from the Internal Magnetic Fields
PDF
Binary sigma phases
DOCX
Dynamic magnification factor-A Re-evaluation
PDF
Bb2419581967
PDF
Geometric wavelet transform for optical flow estimation algorithm
PDF
Tdbasicsem
PDF
CMSI計算科学技術特論A (2015) 第13回 Parallelization of Molecular Dynamics
Frequency and FDTD.ppt
Perfusion deconvolution via em algorithm
 
Segmentation Based Multilevel Wide Band Compression for SAR Images Using Coif...
Transom Stern High Speed Vessel - Thesis Presentation
Ls2520342037
An Advanced Implementation of a Digital Artificial Reverberator
ThesisPresentation
Hybrid Reverberation Algorithm: a Practical Approach
Pres splds 2012
Sreu Jean Cortes
Ku2518881893
Ku2518881893
A Hybrid Approach for Real-time Room Acoustic Response Simulation
Pore Geometry from the Internal Magnetic Fields
Binary sigma phases
Dynamic magnification factor-A Re-evaluation
Bb2419581967
Geometric wavelet transform for optical flow estimation algorithm
Tdbasicsem
CMSI計算科学技術特論A (2015) 第13回 Parallelization of Molecular Dynamics

Presentation for Advanced Detection and Remote Sensing: Radar Systems

  • 1. Radar Simulation Techniques A Revision of an Integral Backscatter Calculation Method Greg Togtema H. El-Ocla, S. Pichardo, C. Christoffersen 1
  • 2. Radar: The Basics 2 Image: sciencephoto.com
  • 3. Radar: The Basics PHASE FREQ. MEASUREMENT DELAY REFLECTION INTENSITY [1] [1] Richards 2005 3
  • 4. Areas of Focus RE- ASU T ME EN M HER W EAT NSE D EFE ati o ns Ap plic Img src: Raytheon 4 newspaper.li, Peteryu.com
  • 5. For this Presentation: 1. WHY SIMULATE? 2. HOW TO SIMULATE Outline 3. A NEW WAY TO SIMULATE 4. PROVING THE METHOD 5
  • 6. 1. WHY SIMULATE? 1.1 System Complexity 1.2 Target Complexity 2. HOW TO SIMULATE 2.1 The Scattering Process 2.2 Current Density 2.3 Physical Optics 2.4 Finite Differences 2.5 Integral Equations / M.O.M. 2.6 Linear Solutions 3. A NEW WAY TO SIMULATE 3.1 The Current Generator Method 3.2 Spherical Harmonics 3.3 Formulation 3.4 Random Media 4. PROVING THE METHOD 4.1 Thesis Roadmap 6
  • 7. Part 1: Motivation of Simulation Project 7
  • 8. 1.1 Advanced Measurement System SYSTEM BEAM FORMING COMPLEXITY CLUTTER 8
  • 9. 1.2 Target Complexity MULTIPLE SCATTERING RESONANCE PHENOMENA SPECULAR oreex M pl REFLECTION Com 1 Williams et. al. (Ansys) 9 Microwave Journal, 2012
  • 10. Part 2: Existing Simulation Techniques 10
  • 11. 2.1 The Scattering Process WAVE INCIDENCE CURRENT DENSITY RE-RADIATION Image Source: 11 Smart Fish™ Promotional Material
  • 12. 2.2 Finding The Current PHYSICAL INTEGRAL FINITE OPTICS EQUATIONS DIFF. 12
  • 13. 2.3 Physical Optics J=nxH J = zero See Ishimaru 1991 13
  • 14. 2.3 Physical Optics KIRCHOFF APPROXIMATION [Asvestas ’79] [Ufimtsev ’78 / PHYS. THEORY OF DIFF. Michaeli 95] Phys. Optics TIME DOMAIN PO [Sun ’94] ANTENNA PATTERNS [Ishimaru 1991] µ-WAVE INTERCONNECTS [Obelleirobasteiro ’95] 14
  • 15. 2.4 Finite Difference Time Domain COMPLEX SHAPES IMPERFECT CONDUCTORS FINITE DIFF. RESISTIVE MATERIALS [Ge ’08] ROUGH SURFACES [Zeng 2010] 15
  • 16. 2.4 Insufficient Methods Poor Performance ACCURACY SPEED (PO) (FD) 16
  • 17. 2.5 Integral Equations Integral Equation Types Electric COMBINED Magnetic (E.F.I.E.) (C.F.I.E.) (M.F.I.E.) Source: 17 Gibson Text, 2008
  • 18. 2.5 Method of Moments (MOM) ZIJ MATRIX ZIJ (Za = b) Z: Transfer Fcn Matrix ZIJ a: Current Density b: Incident Field i,j: Matrix Indices 18
  • 19. 2.5 Method of Moments: Applications SEMINAL PAPER [GLISSON 1982] WIRES & SURFACES [Gibson 2008] ACCURACY [Wernick ‘00] LITER- ATURE STEALTH AIRCRAFTS [Liu 2010] PRINTED ANTENNAS [Alatan 1999] G.P.R. [Chen 2007] 19
  • 20. 2.6 Solving System ( Z a = b ) BiCG GAUSS [3] ELIM. AIM Conj. [6] Gradient [1] [2] CGS [4] SOLUTION FMM [7] MLFMA LU [8] DECOMP. FFT [5] N 3 N 2 N logN N - # patches 20
  • 21. 2.6 Solving System ( Z a = b ) BiCG GAUSS [3] [1] Stratton ’81 ELIM. AIM Conj. Gradient [2] Sarkar [6] ’86 [1] [2] CGS [3] Lanczos ’52 [4] SOLUTION [4] Sonneveld ‘89 FMM [5] Sarkar [7] ’86 MLFMA LU [6] Bleszynski ‘96 [8] DECOMP. FFT Coifman ’93 [7] N 3 N 2 [5] N [8] Song ‘97 logN N - # patches 21
  • 22. Part 3: A New Way to Simulate: The Current Generator Method 22
  • 23. 3.1 The Current Generator Method Wave R Equation θ 23
  • 24. 3.1 The Current Generator Method R θ Wave Equation φ 24
  • 25. 3.2 Spherical Harmonic Decomposition See Q. Wang, 2008 for 25 rigorous decomposition
  • 26. 3.3 Current Generator Operator Orthogonal Huygen’s Divergence Harmonic Harmonics [1] Theorem Coefficients BOUNDARY INCIDENT CONDITIONS FIELD [1] Ishimaru, 1991 26 Image: Wikipedia (ripple tank)
  • 27. 3.3 Final Result REVISED CURRENT GENERATOR METHOD G. Togtema, H. El-Ocla, “Fast Calculation of 3D Conductive Target Backscatter…” submitted to IEEE Antennas and Prop. 27
  • 28. 3.3 Others who have used Spherical Harmonics FMM + SPHER. HARM. [Eibert 2005] LITERATURE PATTERN EQ’N METHOD [Kyurkchan 00] APPLICATIONS OF MIE THEORY 28
  • 29. 3.4 CGM and Random Media K ENCE ACTER B T INCID SCA ( To Coherent Detector ) See: Wolf 2002 29 (J. Opt. Soc. Am)
  • 30. 3.4 The Effects of Random Media Gain due to R.M. SHAPE A Function POLAR- of… IZATION CREEP. R.M. WAVES Figure: Scattering normalized w.r.t. no random media as a function of wave number, Image: (k) 30 El-Ocla, 2007
  • 31. Part 4: Proving the Current Generator Method 31
  • 32. 4.1 CGM Roadmap CGM Formulation Functional Computation Accuracy Demonstration Time Image: A. Sourin. 32 SV Journal (2010)
  • 33. 4.2 Potential Application & Future Work Tetrahedral Mesh Image: Li 2003, 33 Comp. Env. Urb. Sys.