SlideShare a Scribd company logo
2
Most read
7
Most read
11
Most read
LUNG CANCER DETECTION
1
CADI AYYAD UNIVERSITY
HIGH SCHOOL OF TECHNOLOGY SAFI
COMPUTER SCIENCE
Realized by:
Mohamed -Hamza Ait Benaissa
Mohamed Boussardi
Chaimae Gassir
Ayoub Essadeq
Supervised by:
Mr. Alaoui Fdili Othmane
Tutored by:
Gamal Mohamed
Plan
2
1
4
5
3
2
Introduction
The application
Theorical Concepts
Models
Conclusion
Introduction
According to a recent study, Doctors spend 75% of
each patient visit on consulting electronic medical records, and
they may made errors predicting them that’s why we include AI
in medical filed because it help to increase the levels of
accuracy in detecting and diagnosing disease.
In this presentation , we will present an application
that can detect lung cancer by selecting an X-ray or
histopathological image.
3
Theorical Concepts
Theorical Concepts : object detection
5
- What is Object detection
?
- How we can achieve this
operation ?
Theorical Concepts : CNN
6
• CNN is a deep learning
algorithm.
• Convolutional neural
networks are generally
composed of the following
layers:
Convolution
Max-pooling
Fully-connected
Theorical Concepts : input
7
 How computer see an
image?
• Machine sees the image
as a table of numbers
between 0 and 255.
• The numbers are called
pixels .
Theorical Concepts : convolution
8
• Extract the high-level
features such as edges
from the input image.
• Image multiplicate by a
filter.
Theorical Concepts : max pooling
9
• Uses the maximum
value from a cluster
of neurons at the
prior layer.
• Reduces the
dimensions of the
image.
Theorical Concepts : machine learning
10
• Supervised learning: train the
algorithm using data which is well
“labeled”.
• Unsupervised learning: analyze
and cluster unlabeled data.
Models
Models : project I
12
Data
• This Project is using a Kaggle dataset That
contains five classes :
- colon benign
- colon malignant
- lung benign
-lung malignant ACA
-lung malignant SCC
Data & Tools
Tools
• Pytorch
• Google colab
• spyder
Models : project I
13
1. Image Preprocessing
2. Histopathological lung vs
Others
3. Lung benign vs malignant
classification
4. Please insert a
Histopathological lung image
5. Lung malignant type
classification
Architecture
Models : project I
14
CNN 1
- 2 convolutional layers (Kernel 5x5)
- 2 Max Pool (Kernel 4x4)
- 3 convolutional layers (Kernel 4x4)
- 1 convolutional layers (Kernel 5x5)
- 1 Max Pool (Kernel 4x4)
CNN 3
CNN 2
- 2 convolutional layers (Kernel 5x5)
- 2 Max Pool (Kernel 2x2)
CNNs
Models : project I
15
Training
Loss
Validation
Loss
Training
Error
Validation
Error
Execution
time(s)
CNN 1: Lung
vs. Colon
0.043 0.074 0.017 0.024 1317.23
CNN 2: Lung
Benign vs.
Malignant
0.024 0.027 0.010 0.012 3532.80
CNN 3: Lung
SCC vs. ACA
0.098 0.355 0.033 0.106 3941.86
Training
Models
Project II
Models : project II
17
VGG 16 Architecture
• Architecture
• Modification
• Tools : keras & tensrflow
• Dataset : kaggle
• 2 categories : normal / peneumonia
- Load the training model.
- Take an image from the testing set.
18
Models : project II
Testing
Models : project II
19
Output
Application
conclusion
21
We have learned a lot of things in this project:
• How dangerous lung cancer is.
• New technologies and domain.
• How to work in groups.
• Any problem has a solution.
But generally, we achieved our goals and we developed our application
where detect lung cancer and returns the results.
22
Any questions?
Thanks for your
Attention :)

More Related Content

PDF
Chicken swarm optimization (CSO)
PPTX
Présentation projet de fin d'étude
PPTX
Présentation PFE
PDF
Rapport PFE Lung Cancer Detection - MOHAMMED BOUSSARDI
PDF
Rapport pfe Oumaima AJBARA NAHY (1).pdf
PDF
Rapport de Stage PFE FSTBM /BAHTAT Ayoub
PDF
Rapport de stage PFE ( DUT) chez Synthèse Conseil - Jaiti Mohammed
PDF
Rapport Stage PFE Bureau D'étude Electricité : ÉTUDE DE L’INSTALLATION ÉLECTR...
Chicken swarm optimization (CSO)
Présentation projet de fin d'étude
Présentation PFE
Rapport PFE Lung Cancer Detection - MOHAMMED BOUSSARDI
Rapport pfe Oumaima AJBARA NAHY (1).pdf
Rapport de Stage PFE FSTBM /BAHTAT Ayoub
Rapport de stage PFE ( DUT) chez Synthèse Conseil - Jaiti Mohammed
Rapport Stage PFE Bureau D'étude Electricité : ÉTUDE DE L’INSTALLATION ÉLECTR...

What's hot (20)

PPTX
Rapport PFE : Développement D'une application de gestion des cartes de fidéli...
PDF
Rapport stage
PDF
Presentation (SOUTENANCE) : PFE
PDF
Rapport PFE : Développement D'une application de gestion des cartes de fidéli...
PPTX
Présentation pfe - Etude, conception et réalisation d'une application web de ...
PDF
Rapport de stage du fin d'étude
PDF
Pfe conception et réalisation d'une application de gestion des processus d'ac...
PDF
Conception et réalisation d'une application de gestion intégrée au sein de la...
PDF
RapportPFE_IngenieurInformatique_ESPRIT
PPSX
Presentation de soutenance du Projet Fin d'Etudes
PPTX
Projet de fin d’études
PPTX
Présentation pfe Conception et Réalisation application web
PPTX
Présentation PFE: SmartAudit
PPTX
Ma présentation PFE : Application Android & Site Web
PPTX
gestion de projet
PDF
Rapport Projet de Fin d'Etudes
PDF
Plateforme e-learning PHP
PPTX
Présentation de mon PFE
PDF
Soutenance PFE ingénieur génie logiciel
PDF
Soutenance de Mon PFE - Interaction Homme Machine par geste avec Python - Jai...
Rapport PFE : Développement D'une application de gestion des cartes de fidéli...
Rapport stage
Presentation (SOUTENANCE) : PFE
Rapport PFE : Développement D'une application de gestion des cartes de fidéli...
Présentation pfe - Etude, conception et réalisation d'une application web de ...
Rapport de stage du fin d'étude
Pfe conception et réalisation d'une application de gestion des processus d'ac...
Conception et réalisation d'une application de gestion intégrée au sein de la...
RapportPFE_IngenieurInformatique_ESPRIT
Presentation de soutenance du Projet Fin d'Etudes
Projet de fin d’études
Présentation pfe Conception et Réalisation application web
Présentation PFE: SmartAudit
Ma présentation PFE : Application Android & Site Web
gestion de projet
Rapport Projet de Fin d'Etudes
Plateforme e-learning PHP
Présentation de mon PFE
Soutenance PFE ingénieur génie logiciel
Soutenance de Mon PFE - Interaction Homme Machine par geste avec Python - Jai...
Ad

Similar to Presentation PFE (20)

PDF
Deep Learning Approach for Unprecedented Lung Disease Prognosis
PPTX
AI-powered Medical Imaging Analysis for Precision Medicine
PPTX
Breast-Cancer-Detection-final.pptx..............
PDF
Pneumonia Detection System using AI
PDF
Computer-aided diagnostic system kinds and pulmonary nodule detection efficacy
PDF
Covid-19 Detection using Chest X-Ray Images
PDF
Pneumonia Detection Using Deep Learning and Transfer Learning
PDF
Cervical Cancer Analysis
PDF
AN AUTOMATED FRAMEWORK FOR DIAGNOSING LUNGS RELATED ISSUES USING ML AND DATA ...
PPTX
Lung Cancer Detection using Deep Learning.pptx
PDF
Deep Learning-based Diagnosis of Pneumonia using X-Ray Scans
PDF
The Evolution and Impact of Medical Science Journals in Advancing Healthcare
PDF
journals on medical
PDF
Lung Cancer Detection using Convolutional Neural Network
PDF
Pneumonia Detection Using Convolutional Neural Network Writers
PDF
A Review Paper on Covid-19 Detection using Deep Learning
PPTX
Lung nodule diagnosis from CT images based on ensemble learning
PDF
NCERTE-2016_ResearchPaper
PPTX
Lung Conditions Prognosis Using CNN Model.pptx
Deep Learning Approach for Unprecedented Lung Disease Prognosis
AI-powered Medical Imaging Analysis for Precision Medicine
Breast-Cancer-Detection-final.pptx..............
Pneumonia Detection System using AI
Computer-aided diagnostic system kinds and pulmonary nodule detection efficacy
Covid-19 Detection using Chest X-Ray Images
Pneumonia Detection Using Deep Learning and Transfer Learning
Cervical Cancer Analysis
AN AUTOMATED FRAMEWORK FOR DIAGNOSING LUNGS RELATED ISSUES USING ML AND DATA ...
Lung Cancer Detection using Deep Learning.pptx
Deep Learning-based Diagnosis of Pneumonia using X-Ray Scans
The Evolution and Impact of Medical Science Journals in Advancing Healthcare
journals on medical
Lung Cancer Detection using Convolutional Neural Network
Pneumonia Detection Using Convolutional Neural Network Writers
A Review Paper on Covid-19 Detection using Deep Learning
Lung nodule diagnosis from CT images based on ensemble learning
NCERTE-2016_ResearchPaper
Lung Conditions Prognosis Using CNN Model.pptx
Ad

Recently uploaded (20)

PPTX
Internet of Things (IOT) - A guide to understanding
PDF
Unit I ESSENTIAL OF DIGITAL MARKETING.pdf
PDF
R24 SURVEYING LAB MANUAL for civil enggi
PPT
Project quality management in manufacturing
PPTX
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
PPTX
Fundamentals of safety and accident prevention -final (1).pptx
PPTX
Foundation to blockchain - A guide to Blockchain Tech
PDF
Operating System & Kernel Study Guide-1 - converted.pdf
PDF
III.4.1.2_The_Space_Environment.p pdffdf
PDF
Well-logging-methods_new................
PDF
Embodied AI: Ushering in the Next Era of Intelligent Systems
PDF
PREDICTION OF DIABETES FROM ELECTRONIC HEALTH RECORDS
PDF
Human-AI Collaboration: Balancing Agentic AI and Autonomy in Hybrid Systems
PDF
737-MAX_SRG.pdf student reference guides
PPTX
additive manufacturing of ss316l using mig welding
PDF
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
PPTX
Geodesy 1.pptx...............................................
PDF
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
PPTX
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
PDF
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
Internet of Things (IOT) - A guide to understanding
Unit I ESSENTIAL OF DIGITAL MARKETING.pdf
R24 SURVEYING LAB MANUAL for civil enggi
Project quality management in manufacturing
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
Fundamentals of safety and accident prevention -final (1).pptx
Foundation to blockchain - A guide to Blockchain Tech
Operating System & Kernel Study Guide-1 - converted.pdf
III.4.1.2_The_Space_Environment.p pdffdf
Well-logging-methods_new................
Embodied AI: Ushering in the Next Era of Intelligent Systems
PREDICTION OF DIABETES FROM ELECTRONIC HEALTH RECORDS
Human-AI Collaboration: Balancing Agentic AI and Autonomy in Hybrid Systems
737-MAX_SRG.pdf student reference guides
additive manufacturing of ss316l using mig welding
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
Geodesy 1.pptx...............................................
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT

Presentation PFE

  • 1. LUNG CANCER DETECTION 1 CADI AYYAD UNIVERSITY HIGH SCHOOL OF TECHNOLOGY SAFI COMPUTER SCIENCE Realized by: Mohamed -Hamza Ait Benaissa Mohamed Boussardi Chaimae Gassir Ayoub Essadeq Supervised by: Mr. Alaoui Fdili Othmane Tutored by: Gamal Mohamed
  • 3. Introduction According to a recent study, Doctors spend 75% of each patient visit on consulting electronic medical records, and they may made errors predicting them that’s why we include AI in medical filed because it help to increase the levels of accuracy in detecting and diagnosing disease. In this presentation , we will present an application that can detect lung cancer by selecting an X-ray or histopathological image. 3
  • 5. Theorical Concepts : object detection 5 - What is Object detection ? - How we can achieve this operation ?
  • 6. Theorical Concepts : CNN 6 • CNN is a deep learning algorithm. • Convolutional neural networks are generally composed of the following layers: Convolution Max-pooling Fully-connected
  • 7. Theorical Concepts : input 7  How computer see an image? • Machine sees the image as a table of numbers between 0 and 255. • The numbers are called pixels .
  • 8. Theorical Concepts : convolution 8 • Extract the high-level features such as edges from the input image. • Image multiplicate by a filter.
  • 9. Theorical Concepts : max pooling 9 • Uses the maximum value from a cluster of neurons at the prior layer. • Reduces the dimensions of the image.
  • 10. Theorical Concepts : machine learning 10 • Supervised learning: train the algorithm using data which is well “labeled”. • Unsupervised learning: analyze and cluster unlabeled data.
  • 12. Models : project I 12 Data • This Project is using a Kaggle dataset That contains five classes : - colon benign - colon malignant - lung benign -lung malignant ACA -lung malignant SCC Data & Tools Tools • Pytorch • Google colab • spyder
  • 13. Models : project I 13 1. Image Preprocessing 2. Histopathological lung vs Others 3. Lung benign vs malignant classification 4. Please insert a Histopathological lung image 5. Lung malignant type classification Architecture
  • 14. Models : project I 14 CNN 1 - 2 convolutional layers (Kernel 5x5) - 2 Max Pool (Kernel 4x4) - 3 convolutional layers (Kernel 4x4) - 1 convolutional layers (Kernel 5x5) - 1 Max Pool (Kernel 4x4) CNN 3 CNN 2 - 2 convolutional layers (Kernel 5x5) - 2 Max Pool (Kernel 2x2) CNNs
  • 15. Models : project I 15 Training Loss Validation Loss Training Error Validation Error Execution time(s) CNN 1: Lung vs. Colon 0.043 0.074 0.017 0.024 1317.23 CNN 2: Lung Benign vs. Malignant 0.024 0.027 0.010 0.012 3532.80 CNN 3: Lung SCC vs. ACA 0.098 0.355 0.033 0.106 3941.86 Training
  • 17. Models : project II 17 VGG 16 Architecture • Architecture • Modification • Tools : keras & tensrflow • Dataset : kaggle • 2 categories : normal / peneumonia
  • 18. - Load the training model. - Take an image from the testing set. 18 Models : project II Testing
  • 19. Models : project II 19 Output
  • 21. conclusion 21 We have learned a lot of things in this project: • How dangerous lung cancer is. • New technologies and domain. • How to work in groups. • Any problem has a solution. But generally, we achieved our goals and we developed our application where detect lung cancer and returns the results.
  • 22. 22 Any questions? Thanks for your Attention :)