1. The document discusses mixture models and the Expectation-Maximization (EM) algorithm. It covers K-means clustering, Gaussian mixture models, and applying EM to estimate parameters for these models.
2. EM is a general technique for finding maximum likelihood solutions for probabilistic models with latent variables. It works by iteratively computing expectations of the latent variables given current parameter estimates (E-step) and maximizing the likelihood function with respect to the parameters (M-step).
3. This process is guaranteed to increase the likelihood at each iteration until convergence. EM can be applied to problems like Gaussian mixtures, Bernoulli mixtures, and Bayesian linear regression by treating certain variables as latent.