SlideShare a Scribd company logo
Nature | Vol 576 | 12 December 2019 | 223
Article
Probingtheenergeticparticleenvironment
neartheSun
D. J. McComas1
*, E. R. Christian2
, C. M. S. Cohen3
, A. C. Cummings3
, A. J. Davis3
, M. I. Desai4,5
,
J. Giacalone6
, M. E. Hill7
, C. J. Joyce1
, S. M. Krimigis7
, A. W. Labrador3
, R. A. Leske3
,
O. Malandraki8
, W. H. Matthaeus9
, R. L. McNutt Jr7
, R. A. Mewaldt3
, D. G. Mitchell7
, A. Posner10
,
J. S. Rankin1
, E. C. Roelof7
, N. A. Schwadron1,11
, E. C. Stone3
, J. R. Szalay1
, M. E. Wiedenbeck12
,
S. D. Bale13,14
, J. C. Kasper15
, A. W. Case16
, K. E. Korreck16
, R. J. MacDowall2
, M. Pulupa13
,
M. L. Stevens16
& A. P. Rouillard17
NASA’sParkerSolarProbemission1
recentlyplungedthroughtheinnerheliosphereof
theSuntoitsperihelia,about24millionkilometresfromtheSun.Previousstudies
fartherfromtheSun(performedmostlyatadistanceof1astronomicalunit)indicate
thatsolarenergeticparticlesareacceleratedfromafewkiloelectronvoltsuptonear-
relativisticenergiesviaatleasttwoprocesses:‘impulsive’events,whichareusually
associatedwithmagneticreconnectioninsolarflaresandaretypicallyenrichedin
electrons,helium-3andheavierions2
,and‘gradual’events3,4
,whicharetypically
associatedwithlargecoronal-mass-ejection-drivenshocksandcompressionsmoving
throughthecoronaandinnersolarwind andare the dominant sourceofprotonswith
energiesbetween 1and10megaelectronvolts.However,someeventsshowaspectsof
bothprocessesandtheelectron–protonratioisnotbimodallydistributed,aswould
beexpectediftherewereonlytwopossibleprocesses5
.Theseprocesseshavebeen
verydifficulttoresolvefrompriorobservations,owingtothevarioustransporteffects
thataffecttheenergeticparticlepopulationenroutetomoredistantspacecraft6
.
Herewereportobservationsofthenear-Sunenergeticparticleradiationenvironment
overthefirsttwoorbitsoftheprobe.Wefindavarietyofenergeticparticleevents
acceleratedbothlocallyandremotelyincludingbycorotatinginteractionregions,
impulsiveeventsdrivenbyaccelerationneartheSun,andaneventrelatedtoacoronal
massejection.Weprovidedirectobservationsoftheenergeticparticleradiation
environmentintheregionjustabovethecoronaoftheSunanddirectlyexplorethe
physicsofparticleaccelerationandtransport.
OnboardtheParkerSolarProbe(PSP),theinstrumentsuiteoftheInte-
gratedScienceInvestigationoftheSun(IS☉IS)7
hasmadethefirstnear-
Sunmeasurementsofsolarenergeticparticles(SEPs).IS☉IScomprises
twoenergeticparticleinstrumentswithoverlappingcoverage,EPI-Hi
and EPI-Lo, measuring higher- and lower-energy particles7
. Together
they enable IS☉IS to explore the near-Sun environment by measuring
thefluxes,energyspectra,anisotropy,andcompositionofsuprather-
malandenergeticionswithenergiesfromabout0.02to200 MeV per
nucleon and electrons with energies from about 0.05 to 6 MeV. Here
weexaminethisenergeticparticleenvironmentinthecontextofin situ
solar wind8
and magnetic field9
conditions and surrounding density
structures10
measured by other instruments onboard PSP.
Figure 1 summarizes IS☉IS observations of energetic particles over
PSP’sfirsttwoorbits.Higher-(1–2 MeV)andlower-energy(30–200 keV)
H+
ion count rates are plotted on the outside and inside of the orbital
trajectory, respectively. Intensifications indicate energetic particle
events, with some seen only at higher energies, some only at lower
energies,andotherssimultaneouslyacrossthecombinedenergyrange.
Figure 1indicateshowrichtheIS☉ISobservationsare:abroadarrayof
different types of particle events are seen at all distances.
The first large intensification occurred during orbit 1 at higher
energies with PSP inbound (during interval a, 2018-287 18:00 to
2018-297 08:20 universal time (ut)) at about 0.5 astronomical units
(au). Although not obvious from Fig. 1, this is a corotational event
also seen when PSP was outbound at about 0.65 au (during interval
b, 2018-330 23:20 to 2018-341 15:00 ut). Corotating interaction
regions (CIRs) form as faster solar wind piles up behind slower wind,
forming a compression11,12
. Because these faster solar wind streams
https://doi.org/10.1038/s41586-019-1811-1
Received: 28 June 2019
Accepted: 5 September 2019
Published online: 4 December 2019
1
Department of Astrophysical Sciences, Princeton University, Princeton, NJ, USA. 2
Goddard Space Flight Center, Greenbelt, MD, USA. 3
California Institute of Technology, Pasadena, CA, USA.
4
Southwest Research Institute, San Antonio, TX, USA. 5
University of Texas at San Antonio, San Antonio, TX, USA. 6
University of Arizona, Tucson, AZ, USA. 7
Johns Hopkins University Applied
Physics Laboratory, Laurel, MD, USA. 8
National Observatory of Athens, IAASARS, Athens, Greece. 9
University of Delaware, Newark, DE, USA. 10
NASA HQ, Washington, DC, USA. 11
University of
New Hampshire, Durham, NH, USA. 12
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA. 13
University of California at Berkeley, Berkeley, CA, USA. 14
The Blackett
Laboratory, Imperial College London, London, UK. 15
University of Michigan, Ann Arbor, MI, USA. 16
Smithsonian Astrophysical Observatory, Cambridge, MA, USA. 17
CNRS, Toulouse, France.
*e-mail: dmccomas@princeton.edu
224 | Nature | Vol 576 | 12 December 2019
Article
emanate from coronal holes at the Sun, CIRs map to nearly fixed
solar longitudes.
Figure 2showsintervalsaandbasafunctionofthelongitudeofthe
solar surface ‘foot point’ magnetically connected to the spacecraft,
calculated for a nominal Parker spiral with a fixed solar wind speed of
350 km s−1
.ThiscalculationcombinestherotationoftheSunandspace-
craftlocationtoshowthatbotheventsarisefromthesame,singleCIR
structure. These events are ‘dispersionless’—all ions arrive at roughly
the same time and fluctuations in intensity are consistent across ion
speeds.SucheventsindicatethatPSPpassedacrossmagneticfluxtubes
thatwerealreadyfilledwithhigh-energy(>1 MeV)particlesthatmove
quicklyalongmagneticfieldlines.Theintensitiesofsunward-andanti-
sunward-moving particles in intervals a and b were similar (Fig. 2a),
consistent with a corotating structure that traps particles between a
0.2 AU
0.4 AU
0.6 AU
0.8 AU
–0.2 0.0 0.2 0.4 0.6 0.8
0.2 AU
0.4 AU
0.6 AU
0.8 AU
–0.2 0.0 0.2 0.4 0.6 0.8
–0.6
–0.4
–0.2
0.0
0.2
X (AU)
Y(AU)
2018-280
(7 Oct)
2018-290
(17 Oct)
2018-300
(27 Oct)
2018-310
(6 Nov)
2018-320
(16 Nov)
2018-330
(26 Nov)
2018-340
(6 Dec)
2018-350
(16 Dec)
2019-010
(10 Jan)
2019-020
(20 Jan)
Hi
Lo
Lo,H+~30–200keV(cps)
Hi,H+~1.0–1.8MeV(cps)
10–4
10–3
10–2
10–1
100
10–2
10–1
100Perihelion
2019-040
(9 Feb)
2019-050
(19 Feb)
2019-060
(1 Mar)
2019-070
(11 Mar)
2019-080
(21 Mar)
2019-090
(31 Mar)
2019-100
(10 Apr)
2019-110
(20 Apr)
2019-120
(30 Apr)
2019-130
(10 May)
X (AU)
Hi
Lo
Perihelion
a
b
d
ba
c
Fig.1|Observationsofenergeticparticlesduringorbits1and2.a, b,
Observationsofenergeticparticles(primarilyH+
)atlower(Lo,about30–
200 keV;insidetrack)andhigherenergies(Hi,about1–2 MeV;outsidetrack)
fromPSP’sorbit1(a)andorbit2(b).Intervalswithoutdataareindicatedbythe
blackorbitaltrack.Particleintensityisindicatedbyboththecolourandthe
lengthofthebars.Intervalsa–dareearmarkedfordetailedstudy.Thescale
indicatedbywhiterectanglesontheoutertrackismeasuredindaysut,from
2018-280(7October2018)to2019-020(20January2019).
0.2
0.3
0.4
0.5
0.6
0.7
a
b
c
d
R(AU)
10–4
10–3
10–2
10–1
H+R1rate
0 100 200 300
10–4
10–3
10–2
10–1
H+R1rate
(s–1)
10–4
10–3
10–2
H+outward(s–1)
1
2
5
H+(MeV)
Foot-point solar longitude (°)
a b
a
b
a b
Before or after
2018-310
288 290 292
Day of year 2018 (UT)
294 296 332 334 336
Day of year 2018 (UT)
338 340
From Sun
Towards Sun
10–1
10–2
1–9MeVH+
(cm–2sr–1s–1MeV–1)
10–3
(s–1)
Fig.2|Recurringcorotatingenergeticparticleevents.a–d,Corotatingion
eventsobservedinintervalsa(blue)andb(red)representedbysunward/anti-
sunwardfluxtimeseries(a),acount-ratespectrogram(b), thefluxasa
functionofthemagneticfootpointinCarringtonlongitudeandradiusfrom
theSun(c),andthe1–2 MeVH+
rateversusfoot-pointlongitude(d).Inc, d,
vsw = 350 km s−1
isanominalsolarwindspeed.
Nature | Vol 576 | 12 December 2019 | 225
source more distant than the spacecraft and the increasing magnetic
field strength closer to the Sun. The particle acceleration probably
occursatreverseshocks,whichtypicallyformbeyondabout2 aufrom
compressions in such CIRs.
Theinboundlegtowardsperihelion1(whichoccurredat0.17au,at
03:28 6 November 2018 ut) was extremely quiet from about 0.4 au,
providinganidealopportunityforotherPSPinstruments13,14
toobserve
veryquietsolarwindconditionswithessentiallynoSEP-producedpen-
etrating backgrounds. IS☉IS began to observe lower-energy SEPs just
beforeperihelion1,whichthenincreased.Figure 3showstheeventsin
intervalc,includinglow-energyionsaheadofacoronalmassejection
(CME;Fig. 3b,f,g),thepassageofacompressionwaveafterit(Fig. 3c),
and a subsequent higher-energy particle event (Fig. 3a).
IS☉ISobservationsshowanSEPeventstartingearlyon2018-315and
extendingtoaboutwhentheCMEarrivedatPSPon2018-316.Particle
anisotropies (Fig. 3f) demonstrate that these particles are streaming
outwardfromtheSun.Thefasterparticlesarrivefirst,characteristicof
a‘dispersive’SEPevent(Fig. 3g)withthedifferingarrivaltimesgiving
an estimate of the distance along the magnetic field to the source of
their acceleration. For the time–energy slope in Fig. 3g, we estimate
a path length3
longer than that of the Parker spiral from PSP at about
0.25 au, which might be explained by a longer path length associated
with magnetic field ‘switchbacks’ observed by PSP in situ14
.
Solarobservationsfromthewhite-lightcoronagraphonthe‘A’space-
craft of NASA’s Solar Terrestrial Relations Observatory (STEREO-A)
indicatethattheSEP-associatedCMEstartedliftingofffromtheSunon
2018-314atabout18:00 ut(ExtendedDataFig. 1).DerivationoftheCME
speedfromSTEREO-Aimaging(ExtendedDataFig. 2)revealsthatthe
CMEwasmovingslowly(<400 km s−1
)fromtheSuntoPSP,verysimilar
tothesurroundingsolarwindspeed.BypropagatingthisCMEfluxrope
ataconstantspeedof380 km s−1
fromneartheSuntoPSP,wefindgood
agreement with the in situ magnetic field observations. Preliminary
analysisofthiseventusingshock-modellingtechniques15
suggeststhat
there was probably no shock on the field lines well connected to PSP.
However,aquasi-perpendicularsub-criticalshock(Machnumber<3)
couldhaveformedoveranextendedregionofthefluxropeandperhaps
accelerated the protons measured by PSP (A. Kouloumvakos, private
communication). This energetic particle event was not seen at any of
the1 auspacecraft,sosuchsmalleventsmayonlybeobservableclose
totheSunandthereforemuchmorecommonthanpreviouslythought.
At the end of 2018-318, the solar wind speed increased from about
300toabout500 km s−1
(ref.13
),indicativeofastrongdynamicpressure
10–4
10–3
10–2
0.3
a
b
c
d
e
f
g
h
0.4
10–2
10–1
100
101
102
103
H+flux
102
10
100
400
600
–50.0
0.0
50.0
100.0
315 316 317 318 319 320 321 322 323 324
Magneticfield
vector
(nT)
Magneticfield
vector
(nT)
Solarwind
velocity
(kms–1)
Solarwind
density
(cm–3)
Energy
(keV)
Energy
(keV)
1–9MeVH+
(cm–2sr–1s–1MeV–1)
30–500keVH+
(cm–2sr–1s–1keV–1)
Day of year 2018 (UT)
H+, Lo
H+, Lo
Compression
From Sun
Towards Sun
From Sun
Towards Sun
|B| BRBTBN
0.24 0.260.25
100
200
50
10–2
10–1
100
101
–50.0
0.0
50.0
100.0
4:00 8:00 12:00 16:00 20:00 0:00 4:00 8:00
Time + 2018-315 (UT)
H+, Hi
H+, Lo
R (AU)
(cm–2sr–1s–1keV–1)
10–2
10–1
100
101
102
103
H+flux
(cm–2sr–1s–1keV–1)
R (AU)
Fig.3|CME-relatedlow-energyeventandsubsequenthigh-energyevent.
a–e,Timeseriesofprimarilyprotonfluxat>1 MeV(a),H+
fluxaround30–
500 keV(b),solarwinddensity(c)andradialspeed13
(d),andmagneticfield
vectorandmagnitude14
(e)overintervalc.f–h,Magnificationofthedispersive
SEPeventandCMEforH+
fluxaround30–500 keV.
226 | Nature | Vol 576 | 12 December 2019
Article
wave in the solar wind. IS☉IS observed a small enhancement in very-
low-energyparticles(<50 keV)asthiscompressionalwavepassed.This
event is the first direct observation of local energization in the IS☉IS
observations. Shocks are not required for particle acceleration16
and
plasmacompressionscanaccelerateparticlesprovidedthattheparti-
clesareabletopropagateacross,butremaincloseto,thecompression17
.
Thelargetwo-stepincreaseinspeedon2018-318showsthatthiscom-
pressionwavewaswellonitswaytosteepeningintoaforward–reverse-
shock pair, which probably accelerates the higher-energy (>1 MeV)
particles observed from 2018-320 to 2018-324. This is not a CIR as in
intervals a and b, because it has a much narrower range of foot-point
longitudes (see H+
count rate at about 300° in Fig. 2c, d) and does not
recur, but instead indicates the interaction of a single fast solar wind
stream,possiblyassociatedwithorevenmagneticallyinitiatedbythe
precedingCME.Inanycase,aswithCIR-associatedparticleevents,the
particle isotropy indicates that these ions are trapped on flux tubes,
probably with a source more distant than PSP. In fact, at the time the
secondeventwasseen,about1–6daysafterthepassageofthecompres-
sion at PSP, the pressure front had expanded outward to heliocentric
distances of about 0.6–2 au, where the shocks probably formed.
Very near perihelion (about 35 solar radii, R☉) during PSP orbit 2
(intervald),IS☉ISobservedauniquepairofSEPevents(Fig. 4).AsPSP
isnearlycorotationalwiththeSunnearperihelion,thetwoeventsare
magnetically connected to a common solar source <5° apart in lon-
gitude. First, on 2019-092 there was a low-energy dispersive event,
probably associated with an impulsive source in the low corona. Two
dayslater,on2019-094,therewasadifferenttypeofimpulsiveevent,
marked by a substantial increase in ions with >1-MeV energy. Both
eventsexhibitstrong,persistentmagnetic-field-alignedionsstream-
ing away from the Sun.
Thefirstevent,startingon2019-092,maybeassociatedwithdistur-
bancesalsoobservedinextremeultravioletimagesfromSTEREO-Ain
the vicinity of active region AR2738, as well as multiple type-III radio
burstsbybothSTEREO-AandFIELDS14
,themagneticfieldinstrument
aboard PSP. This small active region was about 70° off the nominal
magnetic connection of PSP to the Sun. The fluxes of high-energy
protons are near background, but we observed a substantial num-
ber of heavy high-energy ions and at low energies (about 30 keV per
nucleon). He/H is about 20 times higher than the event on 2019-094,
andincreasesinOandFeabundancesareevengreater.Theseresults
suggest that this may be a ‘Z-rich’ event18
; such events are relatively
rare at 1 au.
The second SEP event on 2019-094 also exhibits velocity disper-
sion and outward streaming, but has many fewer ions <1 MeV and a
100
10–1
10–2
102
10–3
10–4
0.1
1.0
10.0
100.0
–150
–50
50
150
92 93 94 95
0.18 0.17
From Sun
Towards Sun
From Sun
Towards Sun
R (AU)Magneticfield
vector
(nT)
Energy
(keV)
Energy
(MeV)
1–9MeVH+
(cm–2sr–1s–1MeV–1)
30–500keVH+
(cm–2sr–1s–1keV–1)
H+, Hi
H+, Hi
H+, Lo
H+, Lo
Day of year 2019 (UT)
10–2
10–1
100
H+flux
(cm–2sr–1s–1MeV–1)
102
101
100
10–1
103
104
H+flux
(cm–2sr–1s–1keV–1)
|B| BN
BTBR
Fig.4|Pairofimpulsiveeventsnearsecondperihelion.a–e,Twoimpulsive
SEPevents(duringintervald)nearthesecondperihelionofPSP(<40R☉)at
higherenergies(a, b),lowerenergies(c, d),andthemagneticfieldmeasured
duringtheevents(e).|B|isthemagnitudeofthemagneticfieldandBR, BT andBN
aretheradial,transverseandnormalcomponentsofthemagneticfield,
respectively.
Nature | Vol 576 | 12 December 2019 | 227
substantialincreaseat>1 MeV.Aswiththeeventon2019-092,thereis
potentially related radio and extreme ultraviolet activity in AR2738.
However, the heavy ion abundances were similar to more typical SEP
events. The magnetic field observed at PSP (Fig. 4e) between the two
events was stronger and considerably smoother than before or after,
indicating that this was probably a single, lower β (particle pressure/
magnetic pressure) magnetic structure connecting the two events.
Further, these observations indicate that processes inside 0.17 au, as
suggestedbyearlymulti-spacecraftstudiesinsolarcycle20,aswellas
later Helios and STEREO studies19–22
, enable fast, direct access of SEPs
toawiderangeofsolarlongitudes.Laterstudiesthatcombinedin situ
data with solar source region observations showed that the smaller,
longitudinally distributed SEP events are associated with multiple
jet-likecoronalemissions23,24
closetothesourceregionaswellaswith
more spatially extended eruptions25
.
IS☉ISobservedaricharrayofenergeticparticlephenomenaduring
PSP’sfirsttwoorbits.Severaloftheseeventswerenotobservedby1 au
spacecraft, and so small events only observable close to the Sun may
bemuchmorecommonthanpreviouslythought.Withthesenewdata,
we are well on the way to resolving the fundamental questions of the
origin, acceleration, and transport of SEPs into the heliosphere. Over
the next five years, as we head towards solar maximum, PSP will orbit
progressivelyclosertotheSun,ultimatelyextendingourexploration
of these critical processes to less than 10R☉.
Onlinecontent
Anymethods,additionalreferences,NatureResearchreportingsum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
availabilityareavailableathttps://doi.org/10.1038/s41586-019-1811-1.
1.	 Fox, N. J. et al. The Solar Probe Plus mission: humanity’s first visit to our star. Space Sci.
Rev. 204, 7–48 (2016).
2.	 Mason, G. M. 3
He-rich solar energetic particle events. Space Sci. Rev. 130, 231–242
(2007).
3.	 Desai, M. I. & Giacalone, J. Large gradual solar energetic particle events. Living Rev. Sol.
Phys. 13, 3 (2016).
4.	 Reames, D. V. Solar Energetic Particles: A Modern Primer on Understanding Sources,
Acceleration and Propagation (Springer, 2017).
5.	 Cane, H. V., Richardson, I. G. & von Rosenvinge, T. T. A study of solar energetic particle
events of 1997–2006: their composition and associations. J. Geophys. Res. Space Phys.
115, A08101 (2010).
6.	 Wibberenz, G. & Cane, H. V. Multi-spacecraft observations of solar flare particles in the
inner heliosphere. Astrophys. J. 650, 1199–1207 (2006).
7.	 McComas, D. J. et al. Integrated Science Investigation of the Sun (ISIS): design of the
energetic particle investigation. Space Sci. Rev. 204, 187–256 (2016).
8.	 Kasper, J. C. et al. Solar Wind Electrons Alphas and Protons (SWEAP) investigation: design
of the solar wind and coronal plasma instrument suite for Solar Probe Plus. Space Sci.
Rev. 204, 131–186 (2016).
9.	 Bale, S. D. et al. The FIELDS instrument suite for Solar Probe Plus. Measuring the coronal
plasma and magnetic field, plasma waves and turbulence, and radio signatures of solar
transients. Space Sci. Rev. 204, 49–82 (2016).
10.	 Vourlidas, A. et al. The Wide-field Imager for Solar Probe Plus (WISPR). Space Sci. Rev.
204, 83–130 (2016).
11.	 Pizzo, V. A three-dimensional model of corotating streams in the solar wind, 1. Theoretical
foundations. J. Geophys. Res. 83, 5563 (1978).
12.	 Gosling, J. Corotating and transient solar wind flows in three dimensions. Annu. Rev.
Astron. Astrophys. 34, 35–73 (1996).
13.	 Kasper, J. C. et al. Alfvénic velocity spikes and rotational flows in the near-Sun solar wind.
Nature https://doi.org/10.1038/s41586-019-1813-z (2019).
14.	 Bale, S. D. et al. Highly structured slow solar wind emerging from an equatorial coronal
hole. Nature https://doi.org/10.1038/s41586-019-1818-7 (2019).
15.	 Kouloumvakos, A. et al. Connecting the properties of coronal shock waves with those of
solar energetic particles. Astrophys. J. 876, 80 (2019).
16.	 Chotoo, K. et al. The suprathermal seed population for corotating interaction region ions
at 1 au deduced from composition and spectra of H+
, He++
, and He+
observed on Wind.
J. Geophys. Res. Space Phys. 105, 23107–23122 (2000).
17.	 Giacalone, J., Jokipii, J. R. & Kota, J. Particle acceleration in solar wind compression
regions. Astrophys. J. 573, 845–850 (2002).
18.	 Zwickl, R. D., Roelof, E. C., Gold, R. E., Krimigis, S. M. & Armstrong, T. P. Z-rich solar particle
event characteristics 1972–1976. Astrophys. J. 225, 281–303 (1978).
19.	 Reinhard, R. & Wibberenz, G. Propagation of flare protons in the solar atmosphere. Sol.
Phys. 36, 473–494 (1974).
20.	 Kallenrode, M. B. Particle propagation in the inner heliosphere. J. Geophys. Res. Space
Phys. 98, 19037–19047 (1993).
21.	 Richardson, I. G., von Rosenvinge, T. T. & Cane, H. V. The properties of solar energetic
particle event-associated coronal mass ejections reported in different CME catalogs. Sol.
Phys. 290, 1741–1759 (2015).
22.	 Wiedenbeck, M. E. et al. Observations of solar energetic particles from 3
He-rich events
over a wide range of heliographic longitude. Astrophys. J. 762, 54 (2013).
23.	 Bučik, R. et al. 3
He-rich solar energetic particles from sunspot jets. Astrophys. J. Lett. 869,
21 (2018).
24.	 Bučik, R., et al. Multi-spacecraft observations of recurrent 3
He-rich solar energetic
particles. Astrophys. J. 786, 71 (2014).
25.	 Nitta, N. V., Mason, G. M., Wang, L., Cohen, C. M. S. & Wiedenbeck, M. E. Solar sources of
3
He-rich solar energetic particle events in solar cycle 24. Astrophys. J. 806, 235 (2015).
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.
© The Author(s), under exclusive licence to Springer Nature Limited 2019
Article
Dataavailability
All data used in this study is available to the public via NASA’s Space
Physics Data Facility (SPDF) at https://spdf.gsfc.nasa.gov/.
26.	 Howard, R. A. Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI).
Adv. Space Res. 29, 2017–2026 (2002).
27.	 Thernisien, A., Vourlidas, A. & Howard, R. Forward modeling of coronal mass ejections
using STEREO/SECCHI data. Sol. Phys. 256, 111 (2009).
28.	 Rouillard, A. P. et al. A solar storm observed from the Sun to Venus using the STEREO,
Venus Express, and MESSENGER spacecraft. J. Geophys. Res. 114, A07106 (2010).
29.	 Wood, B. & Howard, R. An empirical reconstruction of the 2008 April 26 coronal mass
ejection. Astrophys. J. 702, 901–910 (2009).
30.	 Isavnin, A. FRiED: a novel three-dimensional model of coronal mass ejections. Astrophys.
J. 833, 10 (2016).
Acknowledgements We are indebted to everyone who helped make the PSP mission possible.
In particular, we thank all of the scientists, engineers, technicians, and administrative support
people across all of the IS☉IS institutions that produced and supported the IS☉IS instrument
suite and support its operations and the scientific analysis of its data. This work was supported
as a part of the PSP mission under contract NNN06AA01C. S.D.B. acknowledges the support of
the Leverhulme Trust Visiting Professorship programme and A.P.R. acknowledges financial
support from the ANR project COROSHOCK ANR-17-CE31-0006-01 and from the ERC project
SLOW_SOURCE – DLV-819189.
Author contributions D.J.M. is IS☉IS Principal Investigator (PI) and led the data analysis and
writing of the study. E.R.C. is IS☉IS Deputy PI, helped develop EPI-Hi, and participated in the
data analysis. C.M.S.C. helped develop EPI-Hi and participated in the data analysis. A.C.C.
helped develop EPI-Hi and participated in the data analysis. A.J.D. helped develop EPI-Hi and
participated in the data analysis. M.I.D. participated in the data analysis. J.G. participated in the
data analysis. M.E.H. helped develop EPI-Lo and participated in the data analysis. C.J.J.
produced Figs. 3, 4 and participated in the data analysis. S.M.K. participated in the data
analysis. A.W.L. helped develop EPI-Hi and participated in the data analysis. R.A.L. helped
develop EPI-Hi and participated in the data analysis. O.M. participated in the data analysis.
W.H.M. participated in the data analysis. R.L.M. led the development of EPI-Lo and participated
in the data analysis. R.A.M. helped develop EPI-Hi and participated in the data analysis. D.G.M.
helped develop EPI-Lo and participated in the data analysis. A.P. participated in the data
analysis. J.S.R. helped develop EPI-Hi and participated in the data analysis. E.C.R. participated
in the data analysis. N.A.S. led the development of the IS☉IS Science Operations Center and
participated in the data analysis. E.C.S. helped develop EPI-Hi and participated in the data
analysis. J.R.S. led the development of the analysis tool, produced Figs. 1, 2, and participated in
the data analysis. M.E.W. led the development of EPI-Hi and participated in the data analysis.
S.D.B. is FIELDS PI and participated in the data analysis. J.C.K. is SWEAP PI and participated in
the data analysis. A.W.C. helped develop SWEAP and participated in the data analysis. K.E.K.
helped develop SWEAP and participated in the data analysis. R.J.M. helped develop FIELDS
and participated in the data analysis. M.P. helped develop FIELDS and participated in the data
analysis. M.L.S. helped develop SWEAP and participated in the data analysis. A.P.R. led the
CME simulation work and participated in the data analysis.
Competing interests The authors declare no competing interests.
Additional information
Correspondence and requests for materials should be addressed to D.J.M.
Peer review information Nature thanks Hazel Bain and Monica Laurenza for their contribution
to the peer review of this work.
Reprints and permissions information is available at http://www.nature.com/reprints.
ExtendedDataFig.1|Viewinggeometryandobservationofcoronalmass
ejection.a,Aviewoftheeclipticplanefromsolarnorthat14:00 10 November
2018 utshowingtherelativepositionsofSTEREO-AandPSP.Thedashed
curves,frominnermosttooutermost,representtheorbitsofMercury,Venus
andEarth.TheredareashowsthefieldofviewoftheCOR-2instrument
onboardSTEREO-A.ACMEofftheeastlimboftheSunasviewedfrom
STEREO-AwouldberoughlypropagatingtowardsPSP.ThisCMEverygradually
enteredthefieldofviewofCOR-2,partoftheSECCHIsuiteofimaging
instruments26
aboardtheSTEREOspacecraft.b,Arunning-differenceimageof
theCMEtakenat02:39 uton11 November2018byCOR-2A(avisible-light
coronagraph),extendingintheplaneoftheskyfrom2R☉ to15R☉,provided
imagesduringtheentireaccelerationphaseoftheCME.ThisCMEentered
COR-2Aaround18:00 uton10 November2018andtransitedthroughtheCOR-2
fieldofviewoverabout12h.
Article
ExtendedDataFig.2|CMEmodelandcomparisontomagneticfielddata.
a,ThesameasinExtendedDataFig. 1bbutwithsuperposedfittedflux-rope
shapeoftheCMEat02:39 11 November2018 utwhentheCMEhadpassed
halfwaythroughtheCOR-2Afieldofview.TheCMEisveryweakandnoshock–
sheathstructurecanbeidentifiedintheseimages.Thetypicalaspectofthe
CMEintheimageresultsfromtheline-of-sightintegrationofplasma
distributiononabenttoroidsuchthatitsmajoraxisislocatedinaplane
containingtheobservingspacecraft(seeverysimilareventsinrefs.27,28
).b,The
position(red)andspeed(blue)oftheapexoftheflux-ropemodelwasderived
byiterativelycomparingeachsyntheticimageproducedbythethree-
dimensionalmodelwitheachavailableCOR-2Aimage.Afunctionalform
(arctangent)wasimposedforthefluxrope’svaryingspeed.ThefittedCME
structureassumedhereisabenttoroidwithanexponentialincreaseofits
cross-sectionalareafromfootpointtoapexasinref.29
.Thespeedwasderived
byfittingahyperbolictangenttothemodelledCMEposition.Thespeed
increasesrapidlyfromunder100 km s−1
at18:00 10 November2018 uttoover
350 km s−1
whenitexitedtheCOR-2Afieldofviewataround6:00 uton
11 November.c,Aninternalmagneticfieldstructurewasexpressedanalytically
insidetheenvelopeofthefittedCME(smoothcurves)asinref.30
,buthere
keepingasimplecircularcross-sectionofthefluxrope.Bypropagatingthis
fluxropeataconstantspeedof380 km s−1
fromthetimeitexitstheCOR-2field
ofview,wepredicttheCMEreachesPSPon12 November2018.Thepredicted
arrivaltimeandthemagneticpropertiesoftheCME(thicksmoothline)arein
goodagreementwiththosemeasuredin situbytheFIELDS(magneticfield
data;thinlines)andSWEAPinstruments(notshown).Wethereforeconclude
thatthefittingprocedurepresentedhereprovidesagooddescriptionofthe
evolutionoftheCMEfromtheuppercoronatoPSP.

More Related Content

PDF
Isotope ratios of_h_c_and_o_in_co2_and_h2o_of_the_martian_atmosphere
PDF
Full Bayesian comparative biogeography of Philippine geckos challenges predic...
PDF
Curriculum VITA as Assistant Professor
PDF
Analysis of-electrical-resistivity-data-for-the-determination-of-aquifer-dept...
PDF
Exploring the effects of climate change on marine species using linked data
PDF
Interevent triggering induced by wastewater injection in Oklahoma and souther...
PDF
ANDREW TONGUE SCCS15 POSTER
PDF
Climate change impact on seaweed meadow distribution in the North Atlantic ro...
Isotope ratios of_h_c_and_o_in_co2_and_h2o_of_the_martian_atmosphere
Full Bayesian comparative biogeography of Philippine geckos challenges predic...
Curriculum VITA as Assistant Professor
Analysis of-electrical-resistivity-data-for-the-determination-of-aquifer-dept...
Exploring the effects of climate change on marine species using linked data
Interevent triggering induced by wastewater injection in Oklahoma and souther...
ANDREW TONGUE SCCS15 POSTER
Climate change impact on seaweed meadow distribution in the North Atlantic ro...

Similar to Probing the energetic particle environment near the Sun (20)

PDF
A Search for Technosignatures Around 11,680 Stars with the Green Bank Telesco...
PDF
Alfvénic velocity spikes and rotational flows in the near-Sun solar wind
PDF
Alfvenic velocity spikes and rotational flows
PDF
Double “acct”: A Distinct Double-peaked Supernova Matching Pulsational Pair I...
PDF
The gravity fieldandinteriorstructureofenceladus
PDF
The gravity field_and_interior_structure_of_enceladus
PDF
The Green Monster Hiding in Front of CasA: JWST Reveals a Dense and Dusty Cir...
PDF
The ALMA Survey of Star Formation and Evolution in Massive Protoclusters with...
PDF
An infrared transient from a star engulfing a planet
PDF
Neowise observations of near earth objects- preliminary results
PDF
Telescópio James Webb Revela Evidências de Buraco Negro no Coração da Galáxia...
PDF
A close-in giant planet escapes engulfment by its star
PDF
Merging Gas-rich Galaxies That Harbor Low-luminosity Twin Quasars at z=6.05: ...
PDF
Two warm Neptunes transiting HIP 9618 revealed by TESS and Cheops
PDF
Discovery of a Hypervelocity L Subdwarf at the Star/Brown Dwarf Mass Limit
PDF
A rotating white dwarf shows different compositions on its opposite faces
PDF
Observations of ejecta_clouds_produced_by_impacts_onto_saturn_rings
PDF
Black hole feedback_in_the_luminous_quasar_pds_456
PDF
Near-Sun observations of an F-corona decrease and K-corona fine structure
PDF
A mildly relativistic wide-angle outflow in the neutron-star merger event GW1...
A Search for Technosignatures Around 11,680 Stars with the Green Bank Telesco...
Alfvénic velocity spikes and rotational flows in the near-Sun solar wind
Alfvenic velocity spikes and rotational flows
Double “acct”: A Distinct Double-peaked Supernova Matching Pulsational Pair I...
The gravity fieldandinteriorstructureofenceladus
The gravity field_and_interior_structure_of_enceladus
The Green Monster Hiding in Front of CasA: JWST Reveals a Dense and Dusty Cir...
The ALMA Survey of Star Formation and Evolution in Massive Protoclusters with...
An infrared transient from a star engulfing a planet
Neowise observations of near earth objects- preliminary results
Telescópio James Webb Revela Evidências de Buraco Negro no Coração da Galáxia...
A close-in giant planet escapes engulfment by its star
Merging Gas-rich Galaxies That Harbor Low-luminosity Twin Quasars at z=6.05: ...
Two warm Neptunes transiting HIP 9618 revealed by TESS and Cheops
Discovery of a Hypervelocity L Subdwarf at the Star/Brown Dwarf Mass Limit
A rotating white dwarf shows different compositions on its opposite faces
Observations of ejecta_clouds_produced_by_impacts_onto_saturn_rings
Black hole feedback_in_the_luminous_quasar_pds_456
Near-Sun observations of an F-corona decrease and K-corona fine structure
A mildly relativistic wide-angle outflow in the neutron-star merger event GW1...
Ad

More from Sérgio Sacani (20)

PDF
Warm, water-depleted rocky exoplanets with surfaceionic liquids: A proposed c...
PDF
Cosmic Outliers: Low-spin Halos Explain the Abundance, Compactness, and Redsh...
PDF
Placing the Near-Earth Object Impact Probability in Context
PDF
CAPERS-LRD-z9:AGas-enshroudedLittleRedDotHostingaBroad-lineActive GalacticNuc...
PDF
An interstellar mission to test astrophysical black holes
PDF
Formation of Supersonic Turbulence in the Primordial Star-forming Cloud
PDF
Unveiling a 36 billion solar mass black hole at the centre of the Cosmic Hors...
PDF
MIRIDeepImagingSurvey(MIDIS)oftheHubbleUltraDeepField
PDF
Little Red Dots As Late-stage Quasi-stars
PDF
N-enhancement in GN-z11: First evidence for supermassive stars nucleosynthesi...
PDF
Paleoseismic activity in the moon’s Taurus-Littrowvalley inferred from boulde...
PDF
If quasars form from primordial black holes
PDF
JADESreveals a large population of low mass black holes at high redshift
PDF
A water-rich interior in the temperate sub-Neptune K2-18 b revealed by JWST
PDF
Multiwavelength Study of a Hyperluminous X-Ray Source near NGC6099: A Strong ...
PDF
A deep Search for Ethylene Glycol and Glycolonitrile in the V883 Ori Protopla...
PDF
High-definition imaging of a filamentary connection between a close quasar pa...
PDF
NSF-DOE Vera C. Rubin Observatory Observations of Interstellar Comet 3I/ATLAS...
PDF
Pulsar Sparking: What if mountains on the surface?
PDF
The steady state population of Earth’s minimoons of lunar provenance
Warm, water-depleted rocky exoplanets with surfaceionic liquids: A proposed c...
Cosmic Outliers: Low-spin Halos Explain the Abundance, Compactness, and Redsh...
Placing the Near-Earth Object Impact Probability in Context
CAPERS-LRD-z9:AGas-enshroudedLittleRedDotHostingaBroad-lineActive GalacticNuc...
An interstellar mission to test astrophysical black holes
Formation of Supersonic Turbulence in the Primordial Star-forming Cloud
Unveiling a 36 billion solar mass black hole at the centre of the Cosmic Hors...
MIRIDeepImagingSurvey(MIDIS)oftheHubbleUltraDeepField
Little Red Dots As Late-stage Quasi-stars
N-enhancement in GN-z11: First evidence for supermassive stars nucleosynthesi...
Paleoseismic activity in the moon’s Taurus-Littrowvalley inferred from boulde...
If quasars form from primordial black holes
JADESreveals a large population of low mass black holes at high redshift
A water-rich interior in the temperate sub-Neptune K2-18 b revealed by JWST
Multiwavelength Study of a Hyperluminous X-Ray Source near NGC6099: A Strong ...
A deep Search for Ethylene Glycol and Glycolonitrile in the V883 Ori Protopla...
High-definition imaging of a filamentary connection between a close quasar pa...
NSF-DOE Vera C. Rubin Observatory Observations of Interstellar Comet 3I/ATLAS...
Pulsar Sparking: What if mountains on the surface?
The steady state population of Earth’s minimoons of lunar provenance
Ad

Recently uploaded (20)

PDF
ELS_Q1_Module-11_Formation-of-Rock-Layers_v2.pdf
PDF
Biophysics 2.pdffffffffffffffffffffffffff
PPTX
ANEMIA WITH LEUKOPENIA MDS 07_25.pptx htggtftgt fredrctvg
DOCX
Q1_LE_Mathematics 8_Lesson 5_Week 5.docx
PDF
Mastering Bioreactors and Media Sterilization: A Complete Guide to Sterile Fe...
PPTX
Classification Systems_TAXONOMY_SCIENCE8.pptx
PPTX
cpcsea ppt.pptxssssssssssssssjjdjdndndddd
PPTX
EPIDURAL ANESTHESIA ANATOMY AND PHYSIOLOGY.pptx
PPTX
INTRODUCTION TO EVS | Concept of sustainability
PPTX
Microbiology with diagram medical studies .pptx
PPTX
SCIENCE10 Q1 5 WK8 Evidence Supporting Plate Movement.pptx
PPTX
2. Earth - The Living Planet Module 2ELS
PPTX
GEN. BIO 1 - CELL TYPES & CELL MODIFICATIONS
PDF
IFIT3 RNA-binding activity primores influenza A viruz infection and translati...
PPTX
ognitive-behavioral therapy, mindfulness-based approaches, coping skills trai...
PDF
Sciences of Europe No 170 (2025)
PPT
protein biochemistry.ppt for university classes
PDF
Phytochemical Investigation of Miliusa longipes.pdf
PPTX
Taita Taveta Laboratory Technician Workshop Presentation.pptx
PPTX
Comparative Structure of Integument in Vertebrates.pptx
ELS_Q1_Module-11_Formation-of-Rock-Layers_v2.pdf
Biophysics 2.pdffffffffffffffffffffffffff
ANEMIA WITH LEUKOPENIA MDS 07_25.pptx htggtftgt fredrctvg
Q1_LE_Mathematics 8_Lesson 5_Week 5.docx
Mastering Bioreactors and Media Sterilization: A Complete Guide to Sterile Fe...
Classification Systems_TAXONOMY_SCIENCE8.pptx
cpcsea ppt.pptxssssssssssssssjjdjdndndddd
EPIDURAL ANESTHESIA ANATOMY AND PHYSIOLOGY.pptx
INTRODUCTION TO EVS | Concept of sustainability
Microbiology with diagram medical studies .pptx
SCIENCE10 Q1 5 WK8 Evidence Supporting Plate Movement.pptx
2. Earth - The Living Planet Module 2ELS
GEN. BIO 1 - CELL TYPES & CELL MODIFICATIONS
IFIT3 RNA-binding activity primores influenza A viruz infection and translati...
ognitive-behavioral therapy, mindfulness-based approaches, coping skills trai...
Sciences of Europe No 170 (2025)
protein biochemistry.ppt for university classes
Phytochemical Investigation of Miliusa longipes.pdf
Taita Taveta Laboratory Technician Workshop Presentation.pptx
Comparative Structure of Integument in Vertebrates.pptx

Probing the energetic particle environment near the Sun

  • 1. Nature | Vol 576 | 12 December 2019 | 223 Article Probingtheenergeticparticleenvironment neartheSun D. J. McComas1 *, E. R. Christian2 , C. M. S. Cohen3 , A. C. Cummings3 , A. J. Davis3 , M. I. Desai4,5 , J. Giacalone6 , M. E. Hill7 , C. J. Joyce1 , S. M. Krimigis7 , A. W. Labrador3 , R. A. Leske3 , O. Malandraki8 , W. H. Matthaeus9 , R. L. McNutt Jr7 , R. A. Mewaldt3 , D. G. Mitchell7 , A. Posner10 , J. S. Rankin1 , E. C. Roelof7 , N. A. Schwadron1,11 , E. C. Stone3 , J. R. Szalay1 , M. E. Wiedenbeck12 , S. D. Bale13,14 , J. C. Kasper15 , A. W. Case16 , K. E. Korreck16 , R. J. MacDowall2 , M. Pulupa13 , M. L. Stevens16 & A. P. Rouillard17 NASA’sParkerSolarProbemission1 recentlyplungedthroughtheinnerheliosphereof theSuntoitsperihelia,about24millionkilometresfromtheSun.Previousstudies fartherfromtheSun(performedmostlyatadistanceof1astronomicalunit)indicate thatsolarenergeticparticlesareacceleratedfromafewkiloelectronvoltsuptonear- relativisticenergiesviaatleasttwoprocesses:‘impulsive’events,whichareusually associatedwithmagneticreconnectioninsolarflaresandaretypicallyenrichedin electrons,helium-3andheavierions2 ,and‘gradual’events3,4 ,whicharetypically associatedwithlargecoronal-mass-ejection-drivenshocksandcompressionsmoving throughthecoronaandinnersolarwind andare the dominant sourceofprotonswith energiesbetween 1and10megaelectronvolts.However,someeventsshowaspectsof bothprocessesandtheelectron–protonratioisnotbimodallydistributed,aswould beexpectediftherewereonlytwopossibleprocesses5 .Theseprocesseshavebeen verydifficulttoresolvefrompriorobservations,owingtothevarioustransporteffects thataffecttheenergeticparticlepopulationenroutetomoredistantspacecraft6 . Herewereportobservationsofthenear-Sunenergeticparticleradiationenvironment overthefirsttwoorbitsoftheprobe.Wefindavarietyofenergeticparticleevents acceleratedbothlocallyandremotelyincludingbycorotatinginteractionregions, impulsiveeventsdrivenbyaccelerationneartheSun,andaneventrelatedtoacoronal massejection.Weprovidedirectobservationsoftheenergeticparticleradiation environmentintheregionjustabovethecoronaoftheSunanddirectlyexplorethe physicsofparticleaccelerationandtransport. OnboardtheParkerSolarProbe(PSP),theinstrumentsuiteoftheInte- gratedScienceInvestigationoftheSun(IS☉IS)7 hasmadethefirstnear- Sunmeasurementsofsolarenergeticparticles(SEPs).IS☉IScomprises twoenergeticparticleinstrumentswithoverlappingcoverage,EPI-Hi and EPI-Lo, measuring higher- and lower-energy particles7 . Together they enable IS☉IS to explore the near-Sun environment by measuring thefluxes,energyspectra,anisotropy,andcompositionofsuprather- malandenergeticionswithenergiesfromabout0.02to200 MeV per nucleon and electrons with energies from about 0.05 to 6 MeV. Here weexaminethisenergeticparticleenvironmentinthecontextofin situ solar wind8 and magnetic field9 conditions and surrounding density structures10 measured by other instruments onboard PSP. Figure 1 summarizes IS☉IS observations of energetic particles over PSP’sfirsttwoorbits.Higher-(1–2 MeV)andlower-energy(30–200 keV) H+ ion count rates are plotted on the outside and inside of the orbital trajectory, respectively. Intensifications indicate energetic particle events, with some seen only at higher energies, some only at lower energies,andotherssimultaneouslyacrossthecombinedenergyrange. Figure 1indicateshowrichtheIS☉ISobservationsare:abroadarrayof different types of particle events are seen at all distances. The first large intensification occurred during orbit 1 at higher energies with PSP inbound (during interval a, 2018-287 18:00 to 2018-297 08:20 universal time (ut)) at about 0.5 astronomical units (au). Although not obvious from Fig. 1, this is a corotational event also seen when PSP was outbound at about 0.65 au (during interval b, 2018-330 23:20 to 2018-341 15:00 ut). Corotating interaction regions (CIRs) form as faster solar wind piles up behind slower wind, forming a compression11,12 . Because these faster solar wind streams https://doi.org/10.1038/s41586-019-1811-1 Received: 28 June 2019 Accepted: 5 September 2019 Published online: 4 December 2019 1 Department of Astrophysical Sciences, Princeton University, Princeton, NJ, USA. 2 Goddard Space Flight Center, Greenbelt, MD, USA. 3 California Institute of Technology, Pasadena, CA, USA. 4 Southwest Research Institute, San Antonio, TX, USA. 5 University of Texas at San Antonio, San Antonio, TX, USA. 6 University of Arizona, Tucson, AZ, USA. 7 Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA. 8 National Observatory of Athens, IAASARS, Athens, Greece. 9 University of Delaware, Newark, DE, USA. 10 NASA HQ, Washington, DC, USA. 11 University of New Hampshire, Durham, NH, USA. 12 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA. 13 University of California at Berkeley, Berkeley, CA, USA. 14 The Blackett Laboratory, Imperial College London, London, UK. 15 University of Michigan, Ann Arbor, MI, USA. 16 Smithsonian Astrophysical Observatory, Cambridge, MA, USA. 17 CNRS, Toulouse, France. *e-mail: dmccomas@princeton.edu
  • 2. 224 | Nature | Vol 576 | 12 December 2019 Article emanate from coronal holes at the Sun, CIRs map to nearly fixed solar longitudes. Figure 2showsintervalsaandbasafunctionofthelongitudeofthe solar surface ‘foot point’ magnetically connected to the spacecraft, calculated for a nominal Parker spiral with a fixed solar wind speed of 350 km s−1 .ThiscalculationcombinestherotationoftheSunandspace- craftlocationtoshowthatbotheventsarisefromthesame,singleCIR structure. These events are ‘dispersionless’—all ions arrive at roughly the same time and fluctuations in intensity are consistent across ion speeds.SucheventsindicatethatPSPpassedacrossmagneticfluxtubes thatwerealreadyfilledwithhigh-energy(>1 MeV)particlesthatmove quicklyalongmagneticfieldlines.Theintensitiesofsunward-andanti- sunward-moving particles in intervals a and b were similar (Fig. 2a), consistent with a corotating structure that traps particles between a 0.2 AU 0.4 AU 0.6 AU 0.8 AU –0.2 0.0 0.2 0.4 0.6 0.8 0.2 AU 0.4 AU 0.6 AU 0.8 AU –0.2 0.0 0.2 0.4 0.6 0.8 –0.6 –0.4 –0.2 0.0 0.2 X (AU) Y(AU) 2018-280 (7 Oct) 2018-290 (17 Oct) 2018-300 (27 Oct) 2018-310 (6 Nov) 2018-320 (16 Nov) 2018-330 (26 Nov) 2018-340 (6 Dec) 2018-350 (16 Dec) 2019-010 (10 Jan) 2019-020 (20 Jan) Hi Lo Lo,H+~30–200keV(cps) Hi,H+~1.0–1.8MeV(cps) 10–4 10–3 10–2 10–1 100 10–2 10–1 100Perihelion 2019-040 (9 Feb) 2019-050 (19 Feb) 2019-060 (1 Mar) 2019-070 (11 Mar) 2019-080 (21 Mar) 2019-090 (31 Mar) 2019-100 (10 Apr) 2019-110 (20 Apr) 2019-120 (30 Apr) 2019-130 (10 May) X (AU) Hi Lo Perihelion a b d ba c Fig.1|Observationsofenergeticparticlesduringorbits1and2.a, b, Observationsofenergeticparticles(primarilyH+ )atlower(Lo,about30– 200 keV;insidetrack)andhigherenergies(Hi,about1–2 MeV;outsidetrack) fromPSP’sorbit1(a)andorbit2(b).Intervalswithoutdataareindicatedbythe blackorbitaltrack.Particleintensityisindicatedbyboththecolourandthe lengthofthebars.Intervalsa–dareearmarkedfordetailedstudy.Thescale indicatedbywhiterectanglesontheoutertrackismeasuredindaysut,from 2018-280(7October2018)to2019-020(20January2019). 0.2 0.3 0.4 0.5 0.6 0.7 a b c d R(AU) 10–4 10–3 10–2 10–1 H+R1rate 0 100 200 300 10–4 10–3 10–2 10–1 H+R1rate (s–1) 10–4 10–3 10–2 H+outward(s–1) 1 2 5 H+(MeV) Foot-point solar longitude (°) a b a b a b Before or after 2018-310 288 290 292 Day of year 2018 (UT) 294 296 332 334 336 Day of year 2018 (UT) 338 340 From Sun Towards Sun 10–1 10–2 1–9MeVH+ (cm–2sr–1s–1MeV–1) 10–3 (s–1) Fig.2|Recurringcorotatingenergeticparticleevents.a–d,Corotatingion eventsobservedinintervalsa(blue)andb(red)representedbysunward/anti- sunwardfluxtimeseries(a),acount-ratespectrogram(b), thefluxasa functionofthemagneticfootpointinCarringtonlongitudeandradiusfrom theSun(c),andthe1–2 MeVH+ rateversusfoot-pointlongitude(d).Inc, d, vsw = 350 km s−1 isanominalsolarwindspeed.
  • 3. Nature | Vol 576 | 12 December 2019 | 225 source more distant than the spacecraft and the increasing magnetic field strength closer to the Sun. The particle acceleration probably occursatreverseshocks,whichtypicallyformbeyondabout2 aufrom compressions in such CIRs. Theinboundlegtowardsperihelion1(whichoccurredat0.17au,at 03:28 6 November 2018 ut) was extremely quiet from about 0.4 au, providinganidealopportunityforotherPSPinstruments13,14 toobserve veryquietsolarwindconditionswithessentiallynoSEP-producedpen- etrating backgrounds. IS☉IS began to observe lower-energy SEPs just beforeperihelion1,whichthenincreased.Figure 3showstheeventsin intervalc,includinglow-energyionsaheadofacoronalmassejection (CME;Fig. 3b,f,g),thepassageofacompressionwaveafterit(Fig. 3c), and a subsequent higher-energy particle event (Fig. 3a). IS☉ISobservationsshowanSEPeventstartingearlyon2018-315and extendingtoaboutwhentheCMEarrivedatPSPon2018-316.Particle anisotropies (Fig. 3f) demonstrate that these particles are streaming outwardfromtheSun.Thefasterparticlesarrivefirst,characteristicof a‘dispersive’SEPevent(Fig. 3g)withthedifferingarrivaltimesgiving an estimate of the distance along the magnetic field to the source of their acceleration. For the time–energy slope in Fig. 3g, we estimate a path length3 longer than that of the Parker spiral from PSP at about 0.25 au, which might be explained by a longer path length associated with magnetic field ‘switchbacks’ observed by PSP in situ14 . Solarobservationsfromthewhite-lightcoronagraphonthe‘A’space- craft of NASA’s Solar Terrestrial Relations Observatory (STEREO-A) indicatethattheSEP-associatedCMEstartedliftingofffromtheSunon 2018-314atabout18:00 ut(ExtendedDataFig. 1).DerivationoftheCME speedfromSTEREO-Aimaging(ExtendedDataFig. 2)revealsthatthe CMEwasmovingslowly(<400 km s−1 )fromtheSuntoPSP,verysimilar tothesurroundingsolarwindspeed.BypropagatingthisCMEfluxrope ataconstantspeedof380 km s−1 fromneartheSuntoPSP,wefindgood agreement with the in situ magnetic field observations. Preliminary analysisofthiseventusingshock-modellingtechniques15 suggeststhat there was probably no shock on the field lines well connected to PSP. However,aquasi-perpendicularsub-criticalshock(Machnumber<3) couldhaveformedoveranextendedregionofthefluxropeandperhaps accelerated the protons measured by PSP (A. Kouloumvakos, private communication). This energetic particle event was not seen at any of the1 auspacecraft,sosuchsmalleventsmayonlybeobservableclose totheSunandthereforemuchmorecommonthanpreviouslythought. At the end of 2018-318, the solar wind speed increased from about 300toabout500 km s−1 (ref.13 ),indicativeofastrongdynamicpressure 10–4 10–3 10–2 0.3 a b c d e f g h 0.4 10–2 10–1 100 101 102 103 H+flux 102 10 100 400 600 –50.0 0.0 50.0 100.0 315 316 317 318 319 320 321 322 323 324 Magneticfield vector (nT) Magneticfield vector (nT) Solarwind velocity (kms–1) Solarwind density (cm–3) Energy (keV) Energy (keV) 1–9MeVH+ (cm–2sr–1s–1MeV–1) 30–500keVH+ (cm–2sr–1s–1keV–1) Day of year 2018 (UT) H+, Lo H+, Lo Compression From Sun Towards Sun From Sun Towards Sun |B| BRBTBN 0.24 0.260.25 100 200 50 10–2 10–1 100 101 –50.0 0.0 50.0 100.0 4:00 8:00 12:00 16:00 20:00 0:00 4:00 8:00 Time + 2018-315 (UT) H+, Hi H+, Lo R (AU) (cm–2sr–1s–1keV–1) 10–2 10–1 100 101 102 103 H+flux (cm–2sr–1s–1keV–1) R (AU) Fig.3|CME-relatedlow-energyeventandsubsequenthigh-energyevent. a–e,Timeseriesofprimarilyprotonfluxat>1 MeV(a),H+ fluxaround30– 500 keV(b),solarwinddensity(c)andradialspeed13 (d),andmagneticfield vectorandmagnitude14 (e)overintervalc.f–h,Magnificationofthedispersive SEPeventandCMEforH+ fluxaround30–500 keV.
  • 4. 226 | Nature | Vol 576 | 12 December 2019 Article wave in the solar wind. IS☉IS observed a small enhancement in very- low-energyparticles(<50 keV)asthiscompressionalwavepassed.This event is the first direct observation of local energization in the IS☉IS observations. Shocks are not required for particle acceleration16 and plasmacompressionscanaccelerateparticlesprovidedthattheparti- clesareabletopropagateacross,butremaincloseto,thecompression17 . Thelargetwo-stepincreaseinspeedon2018-318showsthatthiscom- pressionwavewaswellonitswaytosteepeningintoaforward–reverse- shock pair, which probably accelerates the higher-energy (>1 MeV) particles observed from 2018-320 to 2018-324. This is not a CIR as in intervals a and b, because it has a much narrower range of foot-point longitudes (see H+ count rate at about 300° in Fig. 2c, d) and does not recur, but instead indicates the interaction of a single fast solar wind stream,possiblyassociatedwithorevenmagneticallyinitiatedbythe precedingCME.Inanycase,aswithCIR-associatedparticleevents,the particle isotropy indicates that these ions are trapped on flux tubes, probably with a source more distant than PSP. In fact, at the time the secondeventwasseen,about1–6daysafterthepassageofthecompres- sion at PSP, the pressure front had expanded outward to heliocentric distances of about 0.6–2 au, where the shocks probably formed. Very near perihelion (about 35 solar radii, R☉) during PSP orbit 2 (intervald),IS☉ISobservedauniquepairofSEPevents(Fig. 4).AsPSP isnearlycorotationalwiththeSunnearperihelion,thetwoeventsare magnetically connected to a common solar source <5° apart in lon- gitude. First, on 2019-092 there was a low-energy dispersive event, probably associated with an impulsive source in the low corona. Two dayslater,on2019-094,therewasadifferenttypeofimpulsiveevent, marked by a substantial increase in ions with >1-MeV energy. Both eventsexhibitstrong,persistentmagnetic-field-alignedionsstream- ing away from the Sun. Thefirstevent,startingon2019-092,maybeassociatedwithdistur- bancesalsoobservedinextremeultravioletimagesfromSTEREO-Ain the vicinity of active region AR2738, as well as multiple type-III radio burstsbybothSTEREO-AandFIELDS14 ,themagneticfieldinstrument aboard PSP. This small active region was about 70° off the nominal magnetic connection of PSP to the Sun. The fluxes of high-energy protons are near background, but we observed a substantial num- ber of heavy high-energy ions and at low energies (about 30 keV per nucleon). He/H is about 20 times higher than the event on 2019-094, andincreasesinOandFeabundancesareevengreater.Theseresults suggest that this may be a ‘Z-rich’ event18 ; such events are relatively rare at 1 au. The second SEP event on 2019-094 also exhibits velocity disper- sion and outward streaming, but has many fewer ions <1 MeV and a 100 10–1 10–2 102 10–3 10–4 0.1 1.0 10.0 100.0 –150 –50 50 150 92 93 94 95 0.18 0.17 From Sun Towards Sun From Sun Towards Sun R (AU)Magneticfield vector (nT) Energy (keV) Energy (MeV) 1–9MeVH+ (cm–2sr–1s–1MeV–1) 30–500keVH+ (cm–2sr–1s–1keV–1) H+, Hi H+, Hi H+, Lo H+, Lo Day of year 2019 (UT) 10–2 10–1 100 H+flux (cm–2sr–1s–1MeV–1) 102 101 100 10–1 103 104 H+flux (cm–2sr–1s–1keV–1) |B| BN BTBR Fig.4|Pairofimpulsiveeventsnearsecondperihelion.a–e,Twoimpulsive SEPevents(duringintervald)nearthesecondperihelionofPSP(<40R☉)at higherenergies(a, b),lowerenergies(c, d),andthemagneticfieldmeasured duringtheevents(e).|B|isthemagnitudeofthemagneticfieldandBR, BT andBN aretheradial,transverseandnormalcomponentsofthemagneticfield, respectively.
  • 5. Nature | Vol 576 | 12 December 2019 | 227 substantialincreaseat>1 MeV.Aswiththeeventon2019-092,thereis potentially related radio and extreme ultraviolet activity in AR2738. However, the heavy ion abundances were similar to more typical SEP events. The magnetic field observed at PSP (Fig. 4e) between the two events was stronger and considerably smoother than before or after, indicating that this was probably a single, lower β (particle pressure/ magnetic pressure) magnetic structure connecting the two events. Further, these observations indicate that processes inside 0.17 au, as suggestedbyearlymulti-spacecraftstudiesinsolarcycle20,aswellas later Helios and STEREO studies19–22 , enable fast, direct access of SEPs toawiderangeofsolarlongitudes.Laterstudiesthatcombinedin situ data with solar source region observations showed that the smaller, longitudinally distributed SEP events are associated with multiple jet-likecoronalemissions23,24 closetothesourceregionaswellaswith more spatially extended eruptions25 . IS☉ISobservedaricharrayofenergeticparticlephenomenaduring PSP’sfirsttwoorbits.Severaloftheseeventswerenotobservedby1 au spacecraft, and so small events only observable close to the Sun may bemuchmorecommonthanpreviouslythought.Withthesenewdata, we are well on the way to resolving the fundamental questions of the origin, acceleration, and transport of SEPs into the heliosphere. Over the next five years, as we head towards solar maximum, PSP will orbit progressivelyclosertotheSun,ultimatelyextendingourexploration of these critical processes to less than 10R☉. Onlinecontent Anymethods,additionalreferences,NatureResearchreportingsum- maries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author con- tributions and competing interests; and statements of data and code availabilityareavailableathttps://doi.org/10.1038/s41586-019-1811-1. 1. Fox, N. J. et al. The Solar Probe Plus mission: humanity’s first visit to our star. Space Sci. Rev. 204, 7–48 (2016). 2. Mason, G. M. 3 He-rich solar energetic particle events. Space Sci. Rev. 130, 231–242 (2007). 3. Desai, M. I. & Giacalone, J. Large gradual solar energetic particle events. Living Rev. Sol. Phys. 13, 3 (2016). 4. Reames, D. V. Solar Energetic Particles: A Modern Primer on Understanding Sources, Acceleration and Propagation (Springer, 2017). 5. Cane, H. V., Richardson, I. G. & von Rosenvinge, T. T. A study of solar energetic particle events of 1997–2006: their composition and associations. J. Geophys. Res. Space Phys. 115, A08101 (2010). 6. Wibberenz, G. & Cane, H. V. Multi-spacecraft observations of solar flare particles in the inner heliosphere. Astrophys. J. 650, 1199–1207 (2006). 7. McComas, D. J. et al. Integrated Science Investigation of the Sun (ISIS): design of the energetic particle investigation. Space Sci. Rev. 204, 187–256 (2016). 8. Kasper, J. C. et al. Solar Wind Electrons Alphas and Protons (SWEAP) investigation: design of the solar wind and coronal plasma instrument suite for Solar Probe Plus. Space Sci. Rev. 204, 131–186 (2016). 9. Bale, S. D. et al. The FIELDS instrument suite for Solar Probe Plus. Measuring the coronal plasma and magnetic field, plasma waves and turbulence, and radio signatures of solar transients. Space Sci. Rev. 204, 49–82 (2016). 10. Vourlidas, A. et al. The Wide-field Imager for Solar Probe Plus (WISPR). Space Sci. Rev. 204, 83–130 (2016). 11. Pizzo, V. A three-dimensional model of corotating streams in the solar wind, 1. Theoretical foundations. J. Geophys. Res. 83, 5563 (1978). 12. Gosling, J. Corotating and transient solar wind flows in three dimensions. Annu. Rev. Astron. Astrophys. 34, 35–73 (1996). 13. Kasper, J. C. et al. Alfvénic velocity spikes and rotational flows in the near-Sun solar wind. Nature https://doi.org/10.1038/s41586-019-1813-z (2019). 14. Bale, S. D. et al. Highly structured slow solar wind emerging from an equatorial coronal hole. Nature https://doi.org/10.1038/s41586-019-1818-7 (2019). 15. Kouloumvakos, A. et al. Connecting the properties of coronal shock waves with those of solar energetic particles. Astrophys. J. 876, 80 (2019). 16. Chotoo, K. et al. The suprathermal seed population for corotating interaction region ions at 1 au deduced from composition and spectra of H+ , He++ , and He+ observed on Wind. J. Geophys. Res. Space Phys. 105, 23107–23122 (2000). 17. Giacalone, J., Jokipii, J. R. & Kota, J. Particle acceleration in solar wind compression regions. Astrophys. J. 573, 845–850 (2002). 18. Zwickl, R. D., Roelof, E. C., Gold, R. E., Krimigis, S. M. & Armstrong, T. P. Z-rich solar particle event characteristics 1972–1976. Astrophys. J. 225, 281–303 (1978). 19. Reinhard, R. & Wibberenz, G. Propagation of flare protons in the solar atmosphere. Sol. Phys. 36, 473–494 (1974). 20. Kallenrode, M. B. Particle propagation in the inner heliosphere. J. Geophys. Res. Space Phys. 98, 19037–19047 (1993). 21. Richardson, I. G., von Rosenvinge, T. T. & Cane, H. V. The properties of solar energetic particle event-associated coronal mass ejections reported in different CME catalogs. Sol. Phys. 290, 1741–1759 (2015). 22. Wiedenbeck, M. E. et al. Observations of solar energetic particles from 3 He-rich events over a wide range of heliographic longitude. Astrophys. J. 762, 54 (2013). 23. Bučik, R. et al. 3 He-rich solar energetic particles from sunspot jets. Astrophys. J. Lett. 869, 21 (2018). 24. Bučik, R., et al. Multi-spacecraft observations of recurrent 3 He-rich solar energetic particles. Astrophys. J. 786, 71 (2014). 25. Nitta, N. V., Mason, G. M., Wang, L., Cohen, C. M. S. & Wiedenbeck, M. E. Solar sources of 3 He-rich solar energetic particle events in solar cycle 24. Astrophys. J. 806, 235 (2015). Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. © The Author(s), under exclusive licence to Springer Nature Limited 2019
  • 6. Article Dataavailability All data used in this study is available to the public via NASA’s Space Physics Data Facility (SPDF) at https://spdf.gsfc.nasa.gov/. 26. Howard, R. A. Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI). Adv. Space Res. 29, 2017–2026 (2002). 27. Thernisien, A., Vourlidas, A. & Howard, R. Forward modeling of coronal mass ejections using STEREO/SECCHI data. Sol. Phys. 256, 111 (2009). 28. Rouillard, A. P. et al. A solar storm observed from the Sun to Venus using the STEREO, Venus Express, and MESSENGER spacecraft. J. Geophys. Res. 114, A07106 (2010). 29. Wood, B. & Howard, R. An empirical reconstruction of the 2008 April 26 coronal mass ejection. Astrophys. J. 702, 901–910 (2009). 30. Isavnin, A. FRiED: a novel three-dimensional model of coronal mass ejections. Astrophys. J. 833, 10 (2016). Acknowledgements We are indebted to everyone who helped make the PSP mission possible. In particular, we thank all of the scientists, engineers, technicians, and administrative support people across all of the IS☉IS institutions that produced and supported the IS☉IS instrument suite and support its operations and the scientific analysis of its data. This work was supported as a part of the PSP mission under contract NNN06AA01C. S.D.B. acknowledges the support of the Leverhulme Trust Visiting Professorship programme and A.P.R. acknowledges financial support from the ANR project COROSHOCK ANR-17-CE31-0006-01 and from the ERC project SLOW_SOURCE – DLV-819189. Author contributions D.J.M. is IS☉IS Principal Investigator (PI) and led the data analysis and writing of the study. E.R.C. is IS☉IS Deputy PI, helped develop EPI-Hi, and participated in the data analysis. C.M.S.C. helped develop EPI-Hi and participated in the data analysis. A.C.C. helped develop EPI-Hi and participated in the data analysis. A.J.D. helped develop EPI-Hi and participated in the data analysis. M.I.D. participated in the data analysis. J.G. participated in the data analysis. M.E.H. helped develop EPI-Lo and participated in the data analysis. C.J.J. produced Figs. 3, 4 and participated in the data analysis. S.M.K. participated in the data analysis. A.W.L. helped develop EPI-Hi and participated in the data analysis. R.A.L. helped develop EPI-Hi and participated in the data analysis. O.M. participated in the data analysis. W.H.M. participated in the data analysis. R.L.M. led the development of EPI-Lo and participated in the data analysis. R.A.M. helped develop EPI-Hi and participated in the data analysis. D.G.M. helped develop EPI-Lo and participated in the data analysis. A.P. participated in the data analysis. J.S.R. helped develop EPI-Hi and participated in the data analysis. E.C.R. participated in the data analysis. N.A.S. led the development of the IS☉IS Science Operations Center and participated in the data analysis. E.C.S. helped develop EPI-Hi and participated in the data analysis. J.R.S. led the development of the analysis tool, produced Figs. 1, 2, and participated in the data analysis. M.E.W. led the development of EPI-Hi and participated in the data analysis. S.D.B. is FIELDS PI and participated in the data analysis. J.C.K. is SWEAP PI and participated in the data analysis. A.W.C. helped develop SWEAP and participated in the data analysis. K.E.K. helped develop SWEAP and participated in the data analysis. R.J.M. helped develop FIELDS and participated in the data analysis. M.P. helped develop FIELDS and participated in the data analysis. M.L.S. helped develop SWEAP and participated in the data analysis. A.P.R. led the CME simulation work and participated in the data analysis. Competing interests The authors declare no competing interests. Additional information Correspondence and requests for materials should be addressed to D.J.M. Peer review information Nature thanks Hazel Bain and Monica Laurenza for their contribution to the peer review of this work. Reprints and permissions information is available at http://www.nature.com/reprints.
  • 7. ExtendedDataFig.1|Viewinggeometryandobservationofcoronalmass ejection.a,Aviewoftheeclipticplanefromsolarnorthat14:00 10 November 2018 utshowingtherelativepositionsofSTEREO-AandPSP.Thedashed curves,frominnermosttooutermost,representtheorbitsofMercury,Venus andEarth.TheredareashowsthefieldofviewoftheCOR-2instrument onboardSTEREO-A.ACMEofftheeastlimboftheSunasviewedfrom STEREO-AwouldberoughlypropagatingtowardsPSP.ThisCMEverygradually enteredthefieldofviewofCOR-2,partoftheSECCHIsuiteofimaging instruments26 aboardtheSTEREOspacecraft.b,Arunning-differenceimageof theCMEtakenat02:39 uton11 November2018byCOR-2A(avisible-light coronagraph),extendingintheplaneoftheskyfrom2R☉ to15R☉,provided imagesduringtheentireaccelerationphaseoftheCME.ThisCMEentered COR-2Aaround18:00 uton10 November2018andtransitedthroughtheCOR-2 fieldofviewoverabout12h.
  • 8. Article ExtendedDataFig.2|CMEmodelandcomparisontomagneticfielddata. a,ThesameasinExtendedDataFig. 1bbutwithsuperposedfittedflux-rope shapeoftheCMEat02:39 11 November2018 utwhentheCMEhadpassed halfwaythroughtheCOR-2Afieldofview.TheCMEisveryweakandnoshock– sheathstructurecanbeidentifiedintheseimages.Thetypicalaspectofthe CMEintheimageresultsfromtheline-of-sightintegrationofplasma distributiononabenttoroidsuchthatitsmajoraxisislocatedinaplane containingtheobservingspacecraft(seeverysimilareventsinrefs.27,28 ).b,The position(red)andspeed(blue)oftheapexoftheflux-ropemodelwasderived byiterativelycomparingeachsyntheticimageproducedbythethree- dimensionalmodelwitheachavailableCOR-2Aimage.Afunctionalform (arctangent)wasimposedforthefluxrope’svaryingspeed.ThefittedCME structureassumedhereisabenttoroidwithanexponentialincreaseofits cross-sectionalareafromfootpointtoapexasinref.29 .Thespeedwasderived byfittingahyperbolictangenttothemodelledCMEposition.Thespeed increasesrapidlyfromunder100 km s−1 at18:00 10 November2018 uttoover 350 km s−1 whenitexitedtheCOR-2Afieldofviewataround6:00 uton 11 November.c,Aninternalmagneticfieldstructurewasexpressedanalytically insidetheenvelopeofthefittedCME(smoothcurves)asinref.30 ,buthere keepingasimplecircularcross-sectionofthefluxrope.Bypropagatingthis fluxropeataconstantspeedof380 km s−1 fromthetimeitexitstheCOR-2field ofview,wepredicttheCMEreachesPSPon12 November2018.Thepredicted arrivaltimeandthemagneticpropertiesoftheCME(thicksmoothline)arein goodagreementwiththosemeasuredin situbytheFIELDS(magneticfield data;thinlines)andSWEAPinstruments(notshown).Wethereforeconclude thatthefittingprocedurepresentedhereprovidesagooddescriptionofthe evolutionoftheCMEfromtheuppercoronatoPSP.