SlideShare a Scribd company logo
Exploration of diversity and biocatalytic potential of
microorganisms from the saline habitats: Approaches
and dimensions
Presentation as the Invited Talk at the SKILL ( Scientific Knowledge
and Intelligent Logic Laboratory Practices) –Workshop: September
2021, Held at the Department of Microbiology & Biotechnology, Gujarat
University, Ahmedabad on 16 September 2021
Prof. Satya P. Singh
UGC BSR Faculty
(Formerly Professor & Head)
UGC-CAS Department of Biosciences
Saurashtra University, Rajkot, Gujarat, India
Email: satyapsingh@yahoo.com satyapsingh125@gmail.com spsingh@sauuni.ac.in
LinkedIn: https://www.linkedin.com/in/satya-singh-2285a5144/
ResearchGate: https://www.researchgate.net/profile/Satya_Singh5
Google Scholar: https://scholar.google.com/citations?hl=en&user=jiAzOcgAAAAJ
UGC: https://vidwan.inflibnet.ac.in//profile/68903/Njg5MDM%3D
ORICID Id https://orcid.org/0000-0002-7531-2872
The Framework of the Talk
•Exploration & Limitations
• Extreme Habitats and Extremophiles
•Diversity based on Morphological/Cultural/Metabolic Traits
• Diversity based on Molecular Traits
•Biochemical & Genetic Characteristics of Enzymes
•Metagenomics and non cultivable microorganisms
Microbes: The Master Chemists
Anton van Leeuwenhoek
Pasteur
Watson &Crick
Genetic Engineering & Molecular
Biology
Microbes
Versatility
Diversity
Fast Growth
Easy to manipulate
Impact & Applications
Medicine : Disease, Vaccines,
Health& Hygiene
Agriculture: Soil Fertility& disease
Control
Industries : Production of value
based products
Environment : Monitoring &
Management
Domesticating Microbes
Newer Applications Got into the Way
•Central Dogma of Life: the fundamental Processes of Life
•Ability to manipulate Genes and Genomes
Biological factories & Expression of Foreign Genes
•Tools to rapidly sequence the DNA and proteins
•PCR
•Search for New Microbial Potential
•Access to Non-Cultivables
Limitations
Microbial activities- limited by certain conditions
Only fraction (1-5%) of the microbial world-
Cultivable and hence explored and investigated
Majority Applications under Natural
Environmental Conditions- limited
Need of the Hour
Exploration of newer habitats- Extremophiles in
particular/Newer approaches of cultivation
Evolving the known microbial potential: Gene
shuffling and Directed evolution
Evolving unique & novel biocatalytic capabilities
for industrial & Environmental applications
Why Extreme Environments and
Extremophiles???
Evolutional aspects
Living fossils, Origin of Life, Life on other planets, Ultra extreme
habitats on earth
Biodiversity
Extreme environments represent large proportion of the planet,
Only Limited studies
Commercial Aspects
Metabolisms, Metabolites, Biomolecules- Polluted environments are
extreme
Ultra- Extreme, Extreme, Moderately
Extreme Environments
Microbial diversity- static or variable ???
Ultra-Extreme Habitats
Prevent growth of the majority of the microorganisms
Harbor true extremophiles, Limited diversity- but static/stable
Moderate-Extreme Habitats
Not static, keeps changing, microbial diversity fluctuates
Adaptations to the Extremity
At Various levels
Cell Morphology
Cell envelops & Appendages: CW, CM, Flagella, Capsule
Membrane Transport
Metabolism
Structure & Stability of Macromolecules
Thermodynamic adaptations
Adaptation to Extremely High Temperature
•Adaptation to Extremely High Temperature: Genetically Encoded
•Sequence Modifications : Replacing confirmationally constrained
residues, such as glycine
•Addition of Salt Bridges
•Enhanced Hydrophobic Interactions
•Additional Ion pairing and H-bonding
•Improved core packing
•Shortening of Loops
EXTREMOPHILES:MOLECUALR BIOLOGY
Genomes, Genome Organizations and Gene Expressions
Gene organization and regulation:
 Analogous genes is co-liner in archaea and eubacteria
 Functionally Related genes are organized in polycistronic transcriptional unit.
 Regulation of Gene Expression and Operons does not reflect the similarity with eubacteria.
Chromosome structure:
 Archaea: single, circular DAN molecules
 Histone like proteins
 Relatively compact structure similar to eukaryal neculosome.
DNA binding protein:
 HTa (DNA binding protein ) from Thermoplasma acidophilium.
 Sequence similarities to the HU family of eubacterial histone like protein
 Protecting DNA against thermal denaturation and degradation.
Topoisomerase:
 A novel DNA topoisomerase activity (reverse gyrase) from thermophilic Archaea
 Catalyses positive super coiling
 Widely distributed among Archaea
 Role in the stabilization of DNA at high temperature.
Mechanism of DNA replication
 Not completely known. In Archaea
 DNA polymerase from several thermophilc extensively characterized
 In-vitro DNA synthesis at high temperature like PCR and sequencing reaction.
Some Saline Habitats
Some Other
Extreme
Environments
Prof.s.p.sing. guj univ.talk. 16 sept 2021.final
Prof.s.p.sing. guj univ.talk. 16 sept 2021.final
The vivid red brine (teaming with halophilic archaebacteria) of
Owens Lake contrasts sharply with the gleaming white deposits of
soda ash (sodium carbonate). The picturesque Inyo Range can be
seen in the distance.
Prof.s.p.sing. guj univ.talk. 16 sept 2021.final
HALOALAKLIPHILIC BACTERIA & ARCHAEBACTERIA
Molecular Phylogeny:
Extensive work is going on Halalakliphilic bacteria & archaea, mostly from soda lakes
Biochemical basis of salt tolerance & dependence: Halobacterium salinarum,
Salinibacter ruber
 Amino acid composition of bulk protein
 High intracellular salt levels
 Intercellular osmolytes
Protein stability & salt dependence:
 Few enzymes are purified and characterized
 Salt dependence assessed- varies extensively
 Comparison of crude, purified and recombinant glucoglycerol phosphate synthase
(Synchocystis sp.)
Regulation of gene expression
Salt dependent Gene expression Marine Cyanobacterium (Synechococcus sp ) Hegemann ,J.
Bact., 2002
Denaturation & Protein folding
 Susceptibility of salt tolerant proteins to denaturants- some are highly resistant to urea
denaturation
 Renaturation under in-vitro conditions
 Role of molecular chaperones in salt stress cellular conditions
Haloalkaliphilic bacteria
& Archaebacteria
Phylogeny, Diversity,
Enzymatic potential
Molecular Phylogeny
16S rRNA Sequencing
DNA-DNA Hybridization
Real Time PCR
Diversity Based on:
Morphology
Gram Reaction
Sugar Utilization
Enzyme secretion
Protein folding
Studies on Growth & Enzyme
Secretion as a function of:
Salt
PH
Nutritional factor
Purification& Characterization of
alkaline Protease
Effect of salt on pH and thermal
stability
Protein Denaturation & Renaturation
Cloning & Sequencing of
alkaline Protease
Salt & Regulation of
gene Expression
Metagenomics of
saline Habitats :
Phylogeny & Retrieval
of Novel genes for
biocatalysts
Prof.s.p.sing. guj univ.talk. 16 sept 2021.final
Haloalkaliphilic/Salt-tolerant Alkaliphilic
actinomycetes
Actinomycetes
• Gram positive, high G+C %
• Spore forming bacteria; having thin, long,
branched mycelia.
• About 40 families, 170 Generas, 2000 species
• Thermophilic actinomycetes are omnipresent; but
are widely found in compost and hay
• Halophilic actinomycetes are less explored
Light and Electron microscopic
examinations
Cultural characterization of actinomycetes
Comparative outline of the morphological features of the isolates
Mit-1 RJT-1 RJT-2 Diu-1 Diu-2 Diu-3 Diu-4 Di-J-1
Mycelial structure
 filamentous + + + + + + + +
 Curved, hook
Shaped mycelia - - + - - - - -
 Fragmentation + - - + - + - -
Sporulation
starts After…. 5 >9 6 7 >9 7 >9 >9
(days)
Morphology of spores
 Shape Elongated - Oval Spherical - Elongated - -
 Surface Smooth - Smooth Smooth - Smooth - -
 Number in long chain - 4-5 8-10 - - 1-3 -
chain
Light microscopic examinations (1000x)
of isolates form Okha Madhi after
Gram’s staining
SEM analysis of actinomycetes from
different sites demonstrating a) vegetative
mycelia of OM-4; b, c, d)
Sheikh, M., Rathore, D.S., Gohel, S.D. and Singh
S.P. 2019. Indian Journal of Geo-Marine Sciences
(CSIR-NISCARE), In Press
Gohel, S. D. and Singh S.P. 2018. Geomicrobiology
Journal, 35:9, 775-789
Thumar, J.T. and Singh S.P. 2011. Biotechnology
Bioprocess Engineering, 16, 6:1180-1186
In situ observation of the isolates using slide culture technique
Cell morphology and Gram reaction Cultural characterization
Pigmentation profile
0 10 20 30 40 50
H2S Production
Indole
Oxidase
Nitrate
Catalase
Urea Utilization
MR
VP
Phenyl alanine
Isolates
Biochemical fingerprinting
0 5 10 15 20 25 30 35
Arabinose
Rhamnose
Xylose
Raffinose
Mannose
Inositol
Lactose
Fructose
Trehalose
Cellobiose
Maltose
Mannitol
Isolates
Sugar utilization profile
30
Production of NH3 from rhizospheric isolates from H. indicum and
T.portulacastrum
( Paragi Jadav, M. Phil Thesis, Saurashtra University, 2020)
(Paragi Jadav, Abstract Book, National Conference on National Conference on Innovations in
Biological Sciences, 10 January 2020)
Solubilization of P from rhizospheric isolates from H. indicum and T.portulacastrum (Top)
from L. stocksii and I.pes-caprea (Below)
( Paragi Jadav, M. Phil Thesis, Saurashtra University, 2020)
(Paragi Jadav, Abstract Book, National Conference on National Conference on Innovations in
Biological Sciences, 10 January 2020)
Antibiotics sensitivity & resistance profile
Antimicrobial activity against pathogens
Strains
No. of antibiotics
Resistant (a) Tested (b) MAR index (a/b)
Ok-1 12 31 0.387
Ok-2 7 31 0.225
Ok-4 7 31 0.225
Ok-6 12 31 0.387
Ok-8 6 31 0.193
Ok-10 6 31 0.193
Ok-13 9 31 0.290
Ok-14 12 31 0.387
Ok-17 9 31 0.290
Ok-18 14 31 0.451
Ok-19 15 31 0.483
Ok-20 12 31 0.387
Ok-22 12 31 0.387
Ok-23 10 31 0.322
Ok-24 13 31 0.419
D-2 13 31 0.419
D-5 19 31 0.612
D-8 11 31 0.354
S-1 11 31 0.354
S-2 25 31 0.806
Sampling site wise MAR Indices
Total
strains (c)
Aggregate
antibiotic resistance
score (a)
No. of antibiotics
tested (b)
MAR index
a/(b × c)
Okha
Port (15)
143 31 0.307
Dwarka
beach (3)
43 31 0.462
Somnath
beach (2)
36 31 0.580
MAR (Multiple Antibiotic Resistances) Indices of different marine actinomycetes
Sharma, A.K. Kikani, B.A. and Singh S.P. 2020, Geomicrobiology Journal,
DOI:10.1080/01490451.2020.1860165
Antibiotic sensitivity profile on the basis of mode of action (a:
U- I, b: U- II and c: U- III)
Install PAST software
1) Creation of binary data sheet in PAST software
• “Binary Matrix: ”Phenotypic data (Biochemical tests, Sugar utilization tests, Enzyme
secretion, Antibiotic sensitivity profile) is converted to
• Columns: Phenotypic tests, Rows: Isolates
• Presence of phenotype: 1, Absence of phenotype: 0
2) Construction of phenogram
• Select all cells with data
• Select Multivariate analysis  Select Cluster analysis  Unweighted Pair Group Mean
Averages (UPGMA) algorithm  Jaccard Similarity measure
Numerical taxonomy: Step for cluster analysis and
phenogram construction
Nature | Vol 582 | 11 June 2020 | 301
ADVENTURES IN MICROBIOLOGY: Cultivability ????
Researchers designing technologies to find and grow microbes
that have never before survived in the lab. By Amber Dance
Chip to incubate pure cultures of microorganisms in soil
Prof.s.p.sing. guj univ.talk. 16 sept 2021.final
Molecular Approaches to study Actinomycetes
Gohel, S. D. and Singh S.P. 2018. Molecular phylogeny and diversity of the salt-tolerant alkaliphilic
actinobacteria inhabiting Coastal Gujarat, India. Geomicrobiology Journal, 35:9, 775-789
Dangar, K. G., Kalasava,A. B., Dave, A. V. and Singh S.P. 2018. Molecular diversity of Nocardiopsis
alba sp. isolated from the coastal region of Gujarat, India. Journal of Cell &Tissue Research, 18(3)
6559-6570.
Thakrar, F.J., Kikani, B.A., Sharma, A.K. and Singh S.P. 2018. Stability of alkaline proteases from
haloalkaliphilic actinobacteria probed by circular dichroism spectroscopy. Applied Biochemistry and
Microbiology (Russia), 54(6), 591-602
Sheikh, M., Rathore, D. S., Gohel, S. D. and Singh S.P. 2018. Marine actinobacteria associated with
the invertebrate hosts: a rich source of bioactive compounds: A Review. (Invited contribution) Journal
of Cell &Tissue Research, 18 (01), 6361-6374.
Dwivedi, Purna, Sharma, A. K. and Singh, S.P. 2021. Biochemical properties and repression studies of
an alkaline serine protease from a haloalkaliphilic actinomycete, Nocarpdiopsis dassonvillei subsp.
albirubida OK-14. Biocatalysis and Agricultural Biotechnology, Accepted. 07 June 2021 (Elsevier; IF:
0.90)
Rathore, D. R., Sheikh, M., Gohel G.D, and Singh, S.P. 2021. Genetic and phenotypic heterogeneity of
the Nocardiopsis alba strains of sea water. Current Microbiology, 78: 1377-1387 (Springer; IF: 1.75),
DOI: 10.1007/s00284-021-02420-0
primer sequence 1st step 2nd step 3rd step
No. of
cycles
Expected
bp
denatura
tion
annealing extention
U1 5’-AGAGTTTGATCCTGGCTCAG-3’
94ºc - 10
min.
94ºC – 30s
72ºc –
10min
30 1500 bp
AAGGAGGTGATCCAGCCGCA-3’ 56ºC – 30s
72ºC – 60s
U2 5’ CCAGCAGCCGCGGTAATACG-3’
94ºc –
5min
94ºc – 1min
72ºc –
10min
30 1000 bp
5’ ATCGGCTACCTTGTTACGACTTC 55ºc – 1min
72ºc – 1min
N -F/R 5’-CGCATAGGGTGCTGGTGGAAAG-3’
94ºc –
4min
94ºc – 30s
72ºc –
10min 30 1120 bp
5’-GAGGTCGGGTTGCAGACTTCG-3’ 56ºc – 30s
72ºc - 2min
Strep B/E 5’-ACAAGCCCTGGAAACGGGGT-3’
95ºc –
8min
95ºc – 1min
72ºc –
10min
30 520 bp
5’-CACCAGGAATTCCGATCT-3’ 54ºc – 40s
72ºc – 2min
Strep B/F
5’-ACAAGCCCTGGAAACGGGGT-3’
95ºc –
8min
95ºc – 1min
72ºc –
10min
30 1170 bp
5’-ACGTGTGCAGCCCAAGACA-3’
58ºc – 40s
0.8% agarose gel show PCR products of isolates from Okha Madhi amplified with (a) U1
primer at 52.3°C 55.3°C 59.4°C: lane-1 Medium range DNA ruler lane-2,3,4 OM-3, lane-5,6,7
OM-4 lane-8,9,10 OM-5 lane-11,12,13 OM-6 lane-14 Super Mix DNA ladder, lane-15,16,17
OM-8 lane-18,19,20 OM-9 lane-21,22,23 OM-11 (b) U2 primer at 52.7°C, 55.9°C, 59.2°C:
lane-1 High range DNA ruler lane-2,3,4 OM-1 lane-5,6,7 OM-3 lane-8,9,10 OM-4 lane-11
Super Mix DNA ladder, lane-12,13,14 OM-6 lane-15,16,17 OM-7 lane-18 High range DNA
ruler lane-19,20,21 OM-8 lane-22,23,24 OM-9 lane-25,26,27 OM-11
0.8% agarose gel show PCR products of isolates Okha Madhi amplified with (a) StrepB/E
(Lane 2-24) at 50.7°C, 53.9°C, 56.7°C and StrepB/F (Lane 26-28) at 54.1°C, 58.1°C, 60.0°C
lane-1 High range marker (10 kb), lane-2,3,4 OM-3 lane-5,6,7 OM-4 lane-8 High range
marker, lane-9,10,11 OM-5 lane-12 High range marker, lane-13,14,15 OM-8 lane-16,17,18
OM-9 lane-19,20,21 OM-10 lane-22,23,24 OM-11 lane-25: High range marker, lane-26,27,28
OM-2 (b) N F/R primer at 53.3°C, 56.4°C, 60.0°C lane-1 high range marker (10 kb), lane-2,3,4
OM-6 lane-5,6,7 OM-8 lane-8,9,10 OM-9 lane-11,12,13 OM-11 lane-14,15,16 OM-12
0.8% agarose gel show PCR products of isolates from Okha Madhi amplified with (a) U1
primer at 52.3°C 55.3°C 59.4°C: lane-1 Medium range DNA ruler lane-2,3,4 OM-3, lane-5,6,7
OM-4 lane-8,9,10 OM-5 lane-11,12,13 OM-6 lane-14 Super Mix DNA ladder, lane-15,16,17
OM-8 lane-18,19,20 OM-9 lane-21,22,23 OM-11 (b) U2 primer at 52.7°C, 55.9°C, 59.2°C:
lane-1 High range DNA ruler lane-2,3,4 OM-1 lane-5,6,7 OM-3 lane-8,9,10 OM-4 lane-11
Super Mix DNA ladder, lane-12,13,14 OM-6 lane-15,16,17 OM-7 lane-18 High range DNA
ruler lane-19,20,21 OM-8 lane-22,23,24 OM-9 lane-25,26,27 OM-11
Gohel, S. D. and Singh S.P. 2018. Molecular. Geomicrobiology Journal, 35:9, 775-789
0.8% agarose gel show PCR products of isolates Okha Madhi amplified with (a) StrepB/E
(Lane 2-24) at 50.7°C, 53.9°C, 56.7°C and StrepB/F (Lane 26-28) at 54.1°C, 58.1°C, 60.0°C
lane-1 High range marker (10 kb), lane-2,3,4 OM-3 lane-5,6,7 OM-4 lane-8 High range
marker, lane-9,10,11 OM-5 lane-12 High range marker, lane-13,14,15 OM-8 lane-16,17,18
OM-9 lane-19,20,21 OM-10 lane-22,23,24 OM-11 lane-25: High range marker, lane-26,27,28
OM-2 (b) N F/R primer at 53.3°C, 56.4°C, 60.0°C lane-1 high range marker (10 kb), lane-2,3,4
OM-6 lane-5,6,7 OM-8 lane-8,9,10 OM-9 lane-11,12,13 OM-11 lane-14,15,16 OM-12
16S rRNA amplification profile
of isolates from A) Okha Madhi
and B) Okha site
U1
U2
StrepB/E
StrepB/F
N-F/R
OK-1
OK-2
OK-3
OK-4
OK-5
OK-6
OK-7
OK-8
OK-9
OK-10
U1
U2
StrepB/
E
StrepB/
F
N-F/R
OM-1
OM-2
OM-3
OM-4
OM-5
OM-6
Gohel, S. D. and Singh S.P. 2018.
Molecular. Geomicrobiology
Journal, 35:9, 775-789
Primer Denaturation Annealing Extension No. of
cycles
F243 &
R513
94ºC - 5 min 94ºC-30s
56ºC-30s
72ºC-1min
72ºC-10 min 30
F984 &
R1378
94ºC - 5 min 96ºC-45s
56ºC-30s
72ºC-2min
72ºC-10 min 35
U1F & R 94ºC-10 min 94ºC-30s
56ºC-30s
72ºC-1min
72ºC-10 min 30
U2F & R 94ºC-10 min 94ºC-30s
56ºC-30s
72ºC-1min
72ºC-10 min 30
NF & R 94ºC - 5 min 94ºC-30s
60ºC-30s
72ºC-1min
72ºC-10 min 30
PCR amplification conditions
0
5
10
15
20
25
F243 &
R513
F984 &
R1378
U1F & R U2F& R NF & R
Total
no.
of
isolates
16S rDNA Based Profiling of the actinomycetes of water origin
16S rRNA gene amplification profile
Sharma, A.K. Kikani, B.A. and Singh S.P. 2020, Geomicrobiology Journal, DOI:
10.1080/01490451.2020.1860165
Chemotaxonomic features
Sharma, A.K. Kikani, B.A. and Singh S.P. 2020, Geomicrobiology Journal, DOI:
10.1080/01490451.2020.1860165
Amplified ribosomal DNA restriction analysis (ARDRA)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7
A B
Abbreviations:
A: 1- Marker, 2-D2, 3-OK-24, 4-OK-4, 5-OK-17,
6-OK-18, 7-OK-8, 8-D8, 9-OK-19, 10-OK-13, 11-
OK-22, 12-OK-20, 13-OK-1, 14-S1, 15-D-5
B: 1-Marker, 2-S2, 3-OK-23, 4-OK-10, 5-OK-2, 6-
OK-6, 7-OK-14 (Left to right position)
Sharma, A.K. Kikani, B.A. and Singh S.P. 2020, Geomicrobiology Journal, DOI:
10.1080/01490451.2020.1860165
Phylogenetic tree constructed by the neighbor-joining method conducted using
BioEdit version 7.2.5
Sharma, A.K. Kikani, B.A. and Singh S.P. 2020, Geomicrobiology Journal,
DOI:10.1080/01490451.2020.1860165
Step for constructing phylogenetic tree using MEGA
software
Step 1: Aligning sequences
• Retrieve 16S rRNA gene sequences (FASTA files) of the isolates
• Install MEGA X software
• Make one combine FASTA file for all isolates
• Open combined file on MEGA software: Go to Align (dropdown) --> Edit/Build Alignment -->
Retrieve sequences from a file --> OK.
• Select all sequence and Go to Alignment --> Align by ClustalW
• After processing, go to Data --> Save Session.
Step 2: Constructing the phylogenetic tree
• Open the session previously saved.
• Select the Neighbor-Joining method for tree construction.
• Finally, it will show you the constructed tree. You can save the tree session.
Novel Lineages & Whole genome
Sequences
Nowlan B., Dodia, M.S., Singh, S.P and Patel, B. K. C. 2006. Int J Syst Evol. Microbiol
56:1073-1077
TEM results fro Bacillus indiensis. a) Thin Film TEM. Bar represents 200nm. b)
Thin Film TEM demonstrating Gram-positive cell wall. Bar indicates 50nm. c and d)
Negative Stain TEM showing the rod shape of cell and flagella. Bar indicates 500nm
Phase contrast micrograph of strain KJ1-10-99T and strain
KJ1-10-93T showing endospores formation
Description of Desertibacillus haloalkaliphilus gen. nov. sp. nov.
Prof.s.p.sing. guj univ.talk. 16 sept 2021.final
Prof.s.p.sing. guj univ.talk. 16 sept 2021.final
Salient Features of Halophilic/Haloalkaliphilic Bacteria
•Wide occurrence of the bacteria with variable level of salt tolerance and salt needs
•The enzyme level- Varied levels from costal Gujarat
•Homology based on 16 S rRNA gene sequencing indicated presence of some novel strains
•Variation in optimum Salt, pH and temperature range for catalysis and for stability
•Denaturation of proteins- Extremely resistant against denaturation
•In-vitro protein folding: Renaturation varies and affected by pH, Salt, Temperature
•Salt -Dependence thermo stability and temperature profile
•Heterologous gene expression-Effect of salt
•Metagenomics-Exploration of novel genes
Ref:
 Dwivedi, Purna, Sharma, A. K. and Singh, S.P. 2021. Biocatalysis and Agricultural Biotechnology, 07 June 2021 (Elsevier; IF: 0.90)
 Kikani, B.A. and Singh, S.P. 2021.. Critical Reviews in Biotechnology, 2021 (Taylor & Francis; IF: 8.102)
 Rathore, D. R., Sheikh, M., Gohel G.D, and Singh, S.P. 2021. Genetic and phenotypic heterogeneity of the Nocardiopsis alba strains of sea water. Current
Microbiology, 78: 1377-1387 (Springer; IF: 1.75), DOI: 10.1007/s00284-021-02420-0
 Bhatt, H.B., Begum, M.A., Chintalapati, S., Chintalapati, V.R. and Singh, S.P. 2017. International Journal of Systematic & Evolutionary Microbiology
(IJSEM), 67(11):4435-4442 (IF 2.1)
 Gohel, S. D. and Singh S.P. 2018. Molecular phylogeny and diversity of the salt-tolerant alkaliphilic actinobacteria inhabiting Coastal Gujarat, India.
Geomicrobiology Journal, 35:9, 775-789
 Nowlan B., Dodia, M.S., Singh, S.P and Patel, B. K. C. 2006. Int J Syst Evol. Microbiol 56:1073-1077
 Dodia M. S., Rawal C. M., Bhimani H. G., Joshi R. H., Khare, S. K. and Singh, S. P. 2008. Journal of Industrial Microbiology & Biotechnology
35(2):121-132
 Raval, V. Rawal, C.M., Pillai, S. and Singh S.P. 2014. Process Biochemistry 49 (6): 955-962 (IF 2.63)
 Dodia M. S., Rawal C. M., Bhimani H. G., Joshi R. H., Khare, S. K. and Singh, S. P. 2008. Journal of Industrial Microbiology & Biotechnology
35(2):121-132
Production of Proteases
Extra cellular enzyme
detection
 Gohel, S. and Singh S.P. 2015. . International Journal
of Biological Macromolecules (IJBIOMAC). DOI:
10.1016/j.ijbiomac.2014.08.008, Vol 74: 421-429 (IF
3.00).
 Gohel, S. and Singh S.P. 2013. International Journal
of Biological Macromolecules (IJBIOMAC) 56: 20– 27
(IF 2.45).
 Gohel, S. and Singh S.P. 2012., J Chromatography-
B,889– 890, 61– 68 (IF 2.9).
 Gohel, S. and Singh S.P. 2012. International Journal
of Biological Macromolecules (IJBIOMAC) 50: 664–
671 (IF 2.45).
Isolateion from Differnt sites
Okha
13
Jodiya
10
Diu
5
Mithapur
37
Enzyme producers from all site
Amylase
3
None
9
Lipase
40
Protease
42
Mithapur
Both
(Protease
and Lipase)
22
Amylase
1
None
3 Lipase
26
Protease
29
Okha
Protease
4
Lipase
5
None
4
Amylase
1
Both
(Protease
and Lipase)
2
Protease
7
Amylase
0
None
1
Lipase
8
Both
(Protease
and Lipase)
6
Jodiya
6
Diu
Protease
1
Lipase
1
None
3
Amylase
1
Both
(Protease
and Lipase)
0
Dodia, M. S., Joshi, R.H., Patel, R.K., Singh, S.P.. 2006 Brazilian Journal of
Microbiology. 37:276-282
Enzymes from the Actinomycetes of
Sea Origin
(MoES Net Working Project, Govt. of India)
Representative photos of Alang isolates
Sheikh M.A., Rathore D.S., Gohel S.D. and Singh S.P.(2019)
Sheikh M.A., Rathore D.S., Gohel S.D. and Singh S.P. Ind J of Geo-Marine
Sciences(2019)
Pre-monsoon Monsoon
Profile of the Extracellular Enzyme Secretion : Marine
Actinomycetes from Kachhigarhi
Post-monsoon
Amylase secretion is in majority followed by
Protease and Lipases among all seasons
Rathore, D. R., Sheikh, M., Gohel
G.D, and Singh, S.P. 2021. Current
Microbiology, 78: 1377-1387,
DOI: 10.1007/s00284-021-02420-0
Enzyme Secretion by Winter isolates of the actinomycetes
from Alang
0
10
20
30
40
50
60
Zone
of
hydrolysis(mm)
Isolates
Protease screening of Winter isolates
0
5
10
15
20
25
30
35
40
45
50
Zone
of
hydrolysis(mm)
isolates
Amylase screening of Winter isolates
Sheikh M.A., Rathore D.S., Gohel S.D. and Singh S.P.(2019)
Enzyme screening of Summer isolates of the actinomycetes from
Alang
0
5
10
15
20
25
30
35
40
45
AlS1 AlS2 AlS3 AlS4 AlS5 AlS7 AlS8 AlS9 AlS10 AlS11 AlS12
Zone
of
hydrolysis(mm)
Name of isolates
Protease screening of Summer isolates
0
5
10
15
20
25
30
35
AlS1 AlS2 AlS3 AlS4 AlS5 AlS7 AlS8 AlS9 AlS10 AlS11 AlS12
Zone
of
hydrolysis(mm)
Name of isolates
Amylase Enzyme screening of Summer isolates
Enzyme Secretion by Monsoon isolates of the actinomycetes
from Alang
0
5
10
15
20
25
30
35
40
45
50
Zone
of
hydrolysis(mm)
Name of isolates
Protease Production by Monsoon isolates
0
5
10
15
20
25
30
AlM1 AlM3 AlM4 AlM5 AlM6 AlM7 AlM9 AlM10 AlM11 AlM12 AlM13 AlM14 AlM15
Zone
of
hydrolysis(mm)
Name of isolates
Amylase Production by Monsoon isolates
Extent of alkaline proteases production from sea water
0
100
200
300
400
500
S-20-9 S-15-9 D-15-9 D-20-91
Ve2-15-91 Ve2-10-10 Ve2-20-92
Isolates
Activity
(U/ml/min)
Activity
Diversity among the Haloalkaliphilic bacteria with regards
to the extent of protease production
B
0
100
200
300
400
A
H
-
6
S
j
-
1
S
j
-
2
A
0
5
10
15
20
25
30
M
i30-3
M
i25-41
M
i20-42
M
i25-51
M
i10-31
M
i10-33
M
i10-63
Protease
activity
(U/ml)
Isolates Alkaline Proteases
Optimum pH Optimum Salt ,%(w/v)
Activity Stability Activity Stability
S3-20-5 9 9-9.5 10 0-10
Mi-15-4 8.5-10 9-10 0-15 0-10
Mi-15-3 9-9.5 9.5 0-15 0-10
Sj-1 9.5-11 7-11 0 0-20
Sj-2 10-11 7-11 0-1 0-10
AH-6 8.5-11 7-9.5 0-1 0-10
Ve1 10-11.5 9-10 0-0.5 0-1
Optimum salt requirement for Growth
and Enzyme Secreation
0
5
10
15
20
25
30
35
0 5 10 15 20 25
Salt (%, w/v)
Number
of
Isolates
Optimum pH require for Growth and
Enzyme Secreation
0
5
10
15
20
25
7 8 9 10
pH
Number
of
Isolates
Growth Enzyme secreation
Regulation of Enzyme Synthesis
2016 Dec; 12: 40–51.
Effect of amino acids on the repression of alkaline protease
synthesis in haloalkaliphilic Nocardiopsis dassonvillei
Amit K. Sharma and Satya P. Singh⁎
Repression of alkaline protease
0
20
40
60
80
100
120
0
0.5
1
1.5
2
2.5
3
0 1 2 3 4 5 6 7 8
OM-6
0
100
200
300
400
500
600
700
0
0.5
1
1.5
2
2.5
3
0 1 2 3 4 5 6 7 8
OK-5
Growth (■) and
protease production
(■) among OM-6
and OK-5 isolates at
increasing number
of amino acids at
1% concentration of
each
Growth
at
540nm
Protease
activity
(U/ml/min)
Protease
activity
(U/ml/min)
Growth
at
540nm
Increasing number of amino acids
Increasing number of amino acids
1. Phenylalanine,
2. Leucine
3. Methionine,
4. Tyrosine
5. Aspartic acid
6. Arginine
7. Histidine
8. Asparagine
Effect of combinations of amino acids on protease
production
0
0.5
1
1.5
2
2.5
0 1 2 3 4 5 6
No. of amino acids
Growth
(A
540
)
0
50
100
150
200
250
Activity
(U/ml)
Growth Activity
1) Phe ala
2) Phe ala + leu
3) Phe ala + leu + met
4) Phe ala + leu + met + tyr
5) Phe ala + leu + met + tyr + asp
6) Phe ala + leu + met + tyr + asp + arg
0
0.5
1
1.5
2
2.5
C
ontrol
M
et
A
la
H
is
Tyr
P
he
A
rg
Leu
A
sn
Amino acids (1%, w/v)
Growth
(A
540
)
0
20
40
60
80
100
120
140
Activity
(U/ml)
0
0.5
1
1.5
2
2.5
Control Molasses Wheat
flour
Whey
Crude source (1%, w/v)
Growth
(A
540
)
0
30
60
90
120
150
Activity
(U/ml)
Growth (■)
Activity
(■)
Effect of amino acids and crude nutritional
sources on growth and protease production
Amino acids
Crude sources
Effect of cations and media on protease production
0
1
2
3
4
GB SB CMB SCB AB GA GAB GCB GGB
Media
Growth
(A540)
0
25
50
75
100
125
150
Activity
(U/ml)
0
0.5
1
1.5
2
2.5
KCl MnCl2 MgCl2 CaCl2
Cations (0.5 %, w/v)
Growth
(A540)
0
100
200
300
400
Activity
(U/ml)
Growth (■)
Activity (■)
cations
Media
ALKALINE PROTEASE: PRODUCTION AND
CATALYSIS UNDER NON-AQUEOUS
CONDITIONS
Prof.s.p.sing. guj univ.talk. 16 sept 2021.final
Growth behavior of Mit-1 in the presence of Organic
solvents
Control Xylene
Butanol
Benzene
Comparison of specific enzyme production with
complex medium and with organic solvent as the
sole source of carbon (0.1%)
Medium Specific enzyme Comparative
production
fold
(Enzyme activity/growth)
Complex medium 49 1.0
(gelatin broth)
MM* + Butanol 2400
48.9
MM+ Xylene 1083 22.1
MM+ Acetone 268
5.5
MM+ Benzene 73.8
1.5
MM+ Ethanol 20.21
0.412
Purification & Characteristics of
Proteases
Prof.s.p.sing. guj univ.talk. 16 sept 2021.final
Prof.s.p.sing. guj univ.talk. 16 sept 2021.final
Prof.s.p.sing. guj univ.talk. 16 sept 2021.final
Organisms Gene Bank Number Cultural characteristics
Optimum pH
(Range)
Optimum
Temperature (
Range)
Optimum
Salt (Range)
Solvent tolerance Reference
Haloalkaliphilic bacterium S-
15-9
GU059918
Round, opaque, smooth,
regular
9.5-10.5 60 5-25%
Methanol,
Propanol,Xylene,
n-hexane
Joshi RH 2006
Haloalkaliphilic bacterium S-
20-9
EU118360
Round, opaque, smooth,
regular
10.5 50-60 5-25%
Methanol,Butanol
Propanol,Xylene,
n-hexane
Joshi et al 2008
Haloalkaliphilic bacterium D-
15-9
HM047795
Round, opaque, smooth,
regular
10 50-60 5-25% Methanol, propanol Joshi RH 2006
Oceanobacillus oncorhynchi
D-20-91
HM047798
Round, opaque, smooth,
regular
9.5-12.5 50-60 5-25% -- Joshi RH 2006
Haloalkaliphilic bacterium
Ve2-10-10
HM047799
Round, opaque, smooth,
regular
10.5 50-60 5-25% -- Joshi RH 2006
Oceanobacillus oncorhynchi
Ve2-15-91
HM047796
Round, opaque, smooth,
regular
9.5-13 50-60 5-25%
Methanol, Butanol
Propanol,n-hexane
Joshi RH 2006
Oceanobacillus iheyensis Ve2-
20-92
HM047797
Round, opaque, smooth,
regular
10-13 50-60 5-25% -- Joshi RH 2006
Haloalkaliphilic bacteria Ve2-
20-91
HM047794
Round, opaque, smooth,
regular
8-10 50-90 5-25%
n-heptane, toluene,
benzene, chloroform, ethyl
acetate, isopropyl alcohol,
isoamyl alcohol
Raval et al 2014
Haloalkaliphilic bacteria AH6 EU118361
Round, opaque, smooth,
regular
8-13 50-60 0-4 M
methanol, propanpl,
hexane, heptanes,
isooctane, dodecanes,
decane and
cuclohexane.
Dodia MS 2005
Pandey and
Singh 2013
Oceanobacillus sp. SJ1 GQ162111
Round, opaque, smooth,
regular
10 50-60 5-25%
Methanol, Butanol
Propanol,n-hexane
Pandey et al
2012
Bacillus pseudofirmus SJ2 EU090232
Round, opaque, smooth,
10 50-60 5-25%
Methanol, Butanol
Dodia MS 2005
Enzymatic Characteristics of Haloalkaliphilic
bacteria
0
100
200
300
400
500
600
37 50 60 70 80 90 100
Activity(U/ml)
Temp(oC)
Temperature optima
OM-4 OM-6 OM-11 Okha-5
Okha-7 Mit7 Tata-5 Tata-13
0
50
100
150
200
250
300
350
400
450
500
OM-4 OM-6 OM-11 Okha-1 Okha-5 Okha-7 Mit-7 Tata-5 Tata-
13
Activity(U/ml)
Optimum enzyme activity in different nine isolates
Activity(U/ml)
0
100
200
300
400
500
600
700
7 8 9 10 11
Activity(U/ml)
pH
pH optima
OM-6 OM-4 Okha-1 Okha-7 OM-11
Okha-5 Mit-7 Tata-5 Tata-13
0
100
200
300
400
500
37 50 60 70 80 90
%
Residual
activity
Temp (oC)
OM-6
0 2 5 7 10 20 50 100
0
100
200
300
400
500
600
700
800
900
37 50 60 70 80 90
%
Residual
activity
Temp (oC)
OK-5
0 2 5 7 10 20 50 100
Effect of Ca2+ on temperature optima and enzyme activity of
purified proteases from both OM-6 and OK-5 isolates at 0 - 100mM
concentration
Effect of osmolytes, inhibitors, metal ions, oxidizing and
reducing agents and surfactants
Gohel, S. D., & Singh, S. P. (2013). Characteristics and thermodynamics of a thermostable protease from a
salt-tolerant alkaliphilic actinomycete.International journal of biological macromolecules, 56, 20-27.
Effect of NaCl on Temperature Optima Ah-6 Alkaline Protease
0
50
100
150
200
250
0mM NaCl
0
50
100
150
200
250
300
Activity
(u/ml/min)
500mM NaCl
0
50
100
150
200
250
1500mM NaCl
0
50
100
150
200
250
30 40 50 60 70 80 90 100
Temperature (0
C)
2000mM NaCl
0
50
100
150
200
250
300
200mM NaCl
Dodia M. S., Rawal C.
M., Bhimani H. G.,
Joshi R. H., Khare, S.
K. and Singh, S. P.
2008. Journal of
Industrial
Microbiology &
Biotechnology
35(2):121-132
Effect of salt on Temperature optima
S-20-9 (seawater)
0
50
100
150
200
0mM NaCl
0
50
100
150
200
250mM NaCl
0
50
100
150
200
Activity
(U/ml/min)
500mM NaCl
0
50
100
150
200
1000mM NaCl
0
50
100
150
200
2000mM NaCl
0
50
100
150
200
30 40 50 60 70 80 90 100
Temperature (
.
C)
3000mM NaCl
0
10
20
30
40
50
60
70
80
90
100
37°C 50°C 60°C 70°C 80°C 90°C
Temperature
%
Relative
activity
0 M 0.25 M 0.5 M
1 M 2 M 3 M
Effect of NaCl on Ve2-20-91 Protease Temperature optima
Raval, V. Rawal, C.M., Pillai, S. and Singh S.P. 2014. Process Biochemistry 49 (6):
955-962 (IF 2.63)
Effect Of ca
+2
on temperature optima of
Ah-6 Protease
0
200
400
600
800
1000
1200
1400
20 30 40 50 60 70 80 90
Temperature (0
C)
Acivity
(U/ml)
0mM Ca+2 5mM Ca+2 10mM Ca+2
Effect of NaCl on partialy prufied Protease
activity at 37
o
C
40
60
80
100
120
140
160
0 50 100 150 200 250 300 350 400 450 500
NaCl (mM)
%
of
Residual
Activity
Gupta, A., Roy, I., Patel, R.K., Singh, S.P., Khare, S.K. and M.N. Gupta. 2005.
Journal of Chromatography A 1075: 103-108
Urea Denaturation(8M) among haloalkaline proteases
Undialyzed Enzyme
0
20
40
60
80
100
control 0 1 2 24 48 72 96
Time(Hrs)
%
Residual
Activity
(U/ml/min)
S-20-9 S-15-9 D-15-9 D-20-91 Ve2-10-10 Ve2-15-91 Ve2-20-92
Dialysed Enzyme
0
20
40
60
80
100
Control 0 10 20 30 60 120
Time(min)
%
Residual
Activity
(U/ml/min)
S-20-9 S-15-9 D-15-9 D-20-91 Ve2-10-10 Ve2-15-91 Ve2-20-92
Effect of NaCl on Denaturation Kinetics Of
Ah-6 Protease
0
20
40
60
80
100
120
0 20 40 60 80 100 120 140 160 180
Time (h)
%,
Residual
Activity
dialysed 0mM NaCl 500mM NaCl 1000mM NaCl 2000mM NaCl
Dodia M. S., Bhimani H. G., Rawal C. M., Joshi R. H., and Singh, S. P. 2008. Bioresource
Technology 99:6223- 6227
Thermodynamics
of the Enzyme Catalysis and Denaturation
Isolates T (oC)
0 M NaCl 2 M NaCl 4 M NaCl
30%
Na-glutamate
Kd
( ×10-3)
t1/2
(min)
Kd
( ×10-3)
t1/2
(min)
Kd
( ×10-3)
t1/2
(min)
Kd
( ×10-3)
t1/2
(min)
OM-6
37 1.24 558.98 0.73 949.51 0.51 1359.11 0.42 1650.35
50 4.94 140.31 2.52 274.62 0.91 761.70 0.73 949.51
60 27.51 25.19 10.92 63.47 1.68 412.58 1.14 608.02
70 35.86 19.32 27.29 25.39 10.75 64.47 2.41 287.61
80 41.09 16.86 33.30 20.81 28.50 28.50 8.66 80.04
OK-5
37 1.55 447.19 1.47 471.52 1.08 641.80 0.99 700.14
50 2.30 301.36 2.01 344.84 1.20 577.62 0.826 839.16
60 19.15 36.19 2.37 292.46 1.69 433.21 0.77 900.19
70 22.4 30.94 18.38 37.71 6.23 111.25 2.50 277.25
80 37.2 18.63 24.31 28.51 8.29 83.61 4.11 168.64
Deactivation rate constant (Kd) and Half life (t1/2) of OM-6 and OK-5 purified
proteases in presence of 0 M NaCl, 2 M NaCl, 4 M NaCl and 30% Na-
glutamate at the range of 37oC-80oC temperature
1. Decrease in favorable electrostatic repulsion
2. Halophilic enzymes have high –ve charge with hydrated groups shielded by high
salt that avoids unfolding and maintain solubility of proteins
3. Lowering NaCl decrease stability of enzyme suggesting low water activity resulting
from high salt conc. required for conformational stability of enzyme
4. Effect of salt on stabilizing enzyme is related not only to the salt/solute conc but also
to the type of salt/solute
Isolates OM-6 OK-5
Treatment
∆H*
(KJ/mole)
∆S*
(J/mole)
E
(KJ/mole)
∆H*
(KJ/mole)
∆S*
(J/mole)
E
(KJ/mole)
0 M NaCl 111.26 57.03 113.92 71.33 -69.99 74.08
2 M NaCl 96.91 6.48 99.57 62.59 -152.72 65.34
4 M NaCl 41.34 -175.17 44.01 44.91 -160.12 47.66
30% Na-glutamate 34.47 -196.37 37.14 29.23 -211.83 31.97
Strains OM-6 OK-5
T (oC)
∆G* (KJ/mole) for deactivation of protease ∆G* (KJ/mole) for deactivation of protease
0 M
NaCl
2 M
NaCl
4 M
NaCl
30% Na-
glutamate
0 M
NaCl
2 M
NaCl
4 M
NaCl
30% Na-
glutamate
37 93.27 94.63 95.56 96.06 92.69 92.83 93.62 93.85
50 93.58 94.38 98.12 98.71 95.63 95.99 97.38 98.38
60 91.80 94.36 99.54 101.62 92.81 98.59 99.68 101.70
70 93.89 94.67 97.32 101.59 95.23 95.79 98.88 101.48
80 96.31 96.93 99.85 100.88 96.60 97.85 101.01 103.07
∆H*, ∆S* and activation energy for OM-6 and OK-5 proteases deactivation
∆G* for deactivation of OM-6 and OK-5 proteases
1. Low values of ∆H and ∆S reveled higher thermal stability of protease
2. –ve values of ∆S indicated ordered transition state of protease
3. ↑ salt/solute ----- stable conformation of protease ---- decreased entropy of
unfolding ---- thermodynamic
4. ↑ ∆G ----- thermal stability of protease ---- ↑ free energy --- as enzyme
could resist against unfolding of its transition state
NaCl
(M)
Kcat ( sec-1
)
370
C 500
C 600
C 700
C 800
C
0.0 6.18 3.36 0.45 0.234 0.0
0.5 4.08 9.30 10.26 5.82 3.78
1.0 1.98 5.64 7.62 11.28 9.6
1.5 0.66 4.08 4.92 9.90 4.8
2.0 0.12 2.28 3.00 7.32 3.42
Effect of NaCl on the catalytic constant Kcat
(sec-1) of purified AH-6 protease
Dodia M. S., Rawal C. M., Bhimani H. G., Joshi R. H., Khare, S. K. and Singh, S. P. 2008.
Journal of Industrial Microbiology & Biotechnology 35(2):121-132
CaCl2
(mM)
Kcat ( sec-1
)
370
C 500
C 600
C 700
C
0.0 4.86 3.24 0.66 0.84
2.0 4.92 10.02 5.16 1.44
5.0 4.98 8.1 5.88 1.56
8.0 4.2 7.32 5.16 1.62
10.0 3.3 6.72 3.54 1.32
Effect of Ca+2 on the catalytic constant Kcat
(sec-1) of purified AH-6 protease
Structure & Function analysis of the
enzymes
Here below are the predicted Sequence from De novo. The predicted sequences are Blasted against the NCBI
nr bacterial protein databases. The top matches are listed under the pictures of the spectrums.
#1: OBS MASS: 1271.5388 Charge : 2
Predicted Seq: SVNSNLSVPEAR or VSNSNLSVPEAR
Blast report:
gi|90327884|gb|EAS44215.1| hypothetical protein P3TCK_11048 [Photobacterium profundum 3TCK]Length=609 Score = 27.8 bits (58), EUS EAS44215
609 aa linear BCT 23-MAR-2006
DEFINITION hypothetical protein P3TCK_11048 [Photobacterium profundum 3TCK].
ACCESSION EAS44215
VERSION EAS44215.1 GI:90327884
DBSOURCE accession AAPH01000006.1
KEYWORDS .
SOURCE Photobacterium profundum 3TCK
ORGANISM Photobacterium profundum 3TCK
Bacteria; Proteobacteria; Gammaproteobacteria; Vibrionales;
Vibrionaceae; Photobacterium.
REFERENCE 1 (residues 1 to 609)
AUTHORS Bartlett,D.H., Valle,G., Lauro,F.M., Vezzi,A., Simonato,F.,
100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900
M/z
0
100
%
Pandey_100506 MaxEnt 3 35 [Ev-149431,It50,En1] (0.050,200.00,0.200,1400.00,2,Cmp) 2: TOF MSMS 636.78ES+
SV N S N L SVPEAR bMax
R A E P V S L N S N VS yMax
472.27
y4
246.17
y2
187.12
b2
159.12
a2
455.25
301.17
b3
370.20
658.37
y6
571.34
y5
484.24
771.45
y7
667.33
885.51
y8
783.44
972.54
y9
955.50
1086.57
y10
1315.93
1141.84
1367.83
N-Terminal amino acid sequencing of Ve2-20-91 Protease
Amide A
Amide B
Amide I
Amide II
Amide III
Amide IV, V
& VI
FTIR spectroscopic analysis of Ve2-20-91 Protease
-2
-1.6
-1.2
-0.8
-0.4
0
0.4
0.8
1.2
1.6
2
240
237
234
231
228
225
222
219
216
213
210
207
204
201
Wavelength (nm)
[θ]
x
10
-4
deg
cm
2
dmol
-1
Native Enzyme Denatured 50
Denatured 50 1 M Denature 50 2M
-2
-1.6
-1.2
-0.8
-0.4
0
0.4
0.8
1.2
1.6
2
2
4
0
2
3
7
2
3
4
2
3
1
2
2
8
2
2
5
2
2
2
2
1
9
2
1
6
2
1
3
2
1
0
2
0
7
2
0
4
2
0
1
Wavelength (nm)
[θ]
x
10-4
deg
cm2
dmol-1
Native Enzyme Denatured 70
Denature 70 2M Denature 70 1M
a
b
(NaCl,% w/v) Analysis by K2D2
50˚C 70˚C
α helix β strand α helix β strand
Native 1.58% 24.49% 1.81 36.24
Denature 4.44% 44.17% 1.81 36.25
With 1M NaCl 3.95% 44.11% 1.77 36.09
With 2M NaCl 4.44% 44.17% 1.82 36.07
CD spectroscopy analysis of Ve2-20-91 Protease
-2.5
-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
2.5
200 210 220 230 240
pH10 pH8
-3
-2
-1
0
1
2
3
200 210 220 230 240
50 70 90
-4
-3
-2
-1
0
1
2
3
4
200 210 220 230 240
50 1M 50 2 M 70 1M 90 1M
-2.5
-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
2.5
200 210 220 230 240
0M 4M 8M
Circular Dichroism (CD) spectroscopy
Wavelength (nm)
MRE
Urea
Prof.s.p.sing. guj univ.talk. 16 sept 2021.final
FT-IR analysis of the free and immobilized protease A:alkaline
protease, B: immobilized alkaline protease
A B
Structural topographies of the immobilized HTASP-FT-IR
Decrease in Amide A band, suggesting the
Interaction of the carriers with –NH groups in protease molecule while C=O
regions remain less affected
Thakrar, F. J., and Singh, S. P. (2019). Bioresource Technology. 278 150–158
FTIR spectra of (a) native alkaline protease (b) partially denatured enzyme (c) partially denatured enzyme along with 1M salt and (d) completely denatured
enzyme. The spectra were recorded in the range of 400-4000 cm-1.
a
b
c
d
Gene Profiling
Cloning, Expression and
Characterization of the Recombinant
Enzymes
Protease Gene Profiling
Cloning, Expression and Characterization of the Recombinant Enzymes
Protease gene amplification profile
0
1
2
3
4
5
6
7
8
9
BPAP1 BLIAP2 BAAP PCAP GMAP BPAP2
Number
of
isolates
Primers
No. Of isolates
0 1 2 3 4 5 6
BPAP1
BLIAP2
BAAP
PCAP
GMAP
BPAP2
Number of species
Primers
No. Of Species
Hitarth Bhat, Mausami Pandya,
Yogesh and S P Singh 2019
Haloalkaliphilic organism
Functional clones Recombinant CLONES
Vector construct
Organisms
NCBI
Accession
number
Gene cloned Host Reference
Haloalkaliphilic bacterium OME12 EU680960 Alkaline protease
BL21
(DE3)
Purohit and Singh
2013
Proc. Biochem
Metagenome from salt enriched
soil
--------------- Alkaline protease
BL21
(DE3)
Purohit and Singh
2013
IJBIOMAC
Oceanobacillus ihyehensis OME18 EU680961 Alkaline protease
BL21
(DE3)
Purohit and Singh
2013
Proc. Biochem
Alkalibacillus haloalkaliphilus C-5 --
Serine alkaline
protease
E.coli
(DH5α)
Rawal et al
2012/2014
Haloakaliphilic bacteria Ve2-20-91 JX296114
Serine alkaline
protease
E.coli
(DH5α)
Raval et al. 2015
Ann Microbiology
Haloalkaliphilic actinomycetes
Serine alkaline
protease
BL21
(DE3)
Gohel & Singh,
2012
IJBIOMAC
Bacillus lehensis JO-26 ----------
Serine alkaline
protease
BL21
(DE3)
Hitarth Bhatt and S
P Singh
( Frontiers in
Microbiology, 2020)
Cloning, Expression and structure and function
relationship
of proteases from Haloalkaliphilic bacteria & Actinobacteria
WP 026680332.1serineproteaseBacillus megaterium
WP 121604525.1serineproteaseVirgibacillus sp. Bac332
JO-21
WP 100011609.1serineproteaseLentibacillus sediminis
WP 088049911.1serineproteaseVirgibacillus dakarensis
WP 102415391.1serineproteaseCitricoccus massiliensis
Phylogenetic tree of the alkaline protease J-21 with its
closest phylogenetic relatives obtained from BLASTP using
Neighbour Joining Method of MEGA 6 software.
1
M 1 2 3 4 5 6 7
A
1 kb
3 kb
1 kb
3 kb
B
PCR Amplification of Alkaline Protease Gene/s
1.2 kb
0.8 kb
Conformation of insert in pET 21a+
by digesting with Bam HI and Sal I
Colony #
1 kb
Ladder
Size (bp)
1 2 3 4 5 6
10,000
5,000
3,000
2,000
1,500
1,000
Vector
Insert
(Alkaline protease)
(~1.2 kb)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Protein expression and effect of IPTG induction
• Amplicon and pET 21a+ was Digested by BamH1
• Amplicon and pET 21a+ was Digested by Sal1
RE Digestion
• Double digested amplicon and vector was ligated in
ratio of 1:3
• Ligation carried by Quick Ligase, Fermentas
Ligation
• Ligated vector transformed to Top 10(E.coli Host
strain)
• 5 Poisitive clones for O.M.A18 and 7 positive clones
for O.M.E12 obtained on plate containing
LB+Ampicillin
Transformation-I
• Colony PCR
• To check for release of vector
Confirmation of
transformation
• Positive clone from both the strains vector
transformed in BL21 Host strain(Expression strain)
Transformation-II
THE MAJOR STEPS OF CLONING OF ALKALINE PROTEASE GENES…
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
0
1
2
3
4
5
6
7
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
0
1
2
3
4
5
6
7
8
9
10
1 2 3 4
Colony number
27oC and 1mM: Lane 1: Molecular
weight marker (Middle range, Merk
life science)
Lane 2: Pre-induction sample
Lane 3: 2 hours sample
Lane 4: 4 hours sample
Lane 5: 4 hours sample
Lane 6: 6 hours sample
Lane 7: 24 hours sample
1 2 3 4 5 6
7
Colony
Diameter
(mM)
Zone
Ratio
(m/z)
EFFECT OF TEMPERATURE AND IPTG
ON ENZYME INDUCTION EXPRESSION ANALYSIS
1 2 3 4 5
6 7
1 2 3 4 5
6 7
Soluble fraction: (27 oC;1mM )
Lane 1: PCR control
Lane 2: Molecular weight marker (Middle range
marker, Merk life science)
Lane 3: 24 hours sample
Lane 4: 6 hours sample;
Lane 5: 4 hours sample Lane 6: 2 hours sample
Lane 7: Pre-induction sample
Insoluble fraction: (27 oC;1mM )
Lane 1:Protein molecular weight marker (3500-
205000Da)
Lane 2: --
Lane 3: 0 hour
Lane 4:2 hours
Lane 5:4 hours
Lane 6: 6 hours
Lane 7: 24 hours
120
Over-Expression Analysis
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
0
20
40
60
80
100
120
140
160
180
200
0 0.5 1 2 4
Relative
enzyme
activity
(%)
NaCl concentration (% w/v)
Enzyme activity Growth
Growth
Bhatt, H.B. and Singh S.P. 2020, Frontiers in Microbiology, 11:1-
16, https://doi.org/10.3389/fmicb.2020.00941
Phylogenetic tree based on a comparison of the APrBL
amino acid sequence and some of their closest
phylogenetic relatives retrieved from NCBI database.
The tree was reconstructed by the neighbor joining method using MEGA
6 software. The numbers on the tree indicates the percentages of bootstrap
support derived from 1,000 replications. The scale bar corresponds to 0.1
substitutions per nucleotide position
Bhatt, H.B. and Singh S.P. 2020, Frontiers in Microbiology, 11:1-16,
https://doi.org/10.3389/fmicb.2020.00941
AprBL (Alkaline protease gene) (1.151 kbp) from Bacillus
lehensis JO-26 , ARID Zone
 ORF 1014 bp-337 amino acids: Cloned and expressed in E.coli BL21 (DE3)
 Optimum expression: 0.2 mM IPTG induction, 2% NaCl and 28°C at 20 hrs growth
 Subtilase S8 family of proteases: Asp 97, His 127 and Ser 280- catalytic triad
 31.75% α-helices, 22.55 % β-strands and 45.70% coils
 Broad pH (8–11) and temperature (30-70°C), Optima at pH 10 and 50°C
 Highly thermostable: 73% of the residual activity at 80°C up to 3 h
 Significantly stimulated by SDS, Ca2+, chloroform, toluene, n-butanol and benzene
 Completely inhibited by PMSF and Hg2+
 High glycine and low proline residues, a characteristic feature of the cold adapted
enzymes
 Hydrolysis of whey protein and detergent additive established
Bhatt, H.B. and Singh S.P. 2020, Frontiers in Microbiology, 11:1-16,
https://doi.org/10.3389/fmicb.2020.00941
Prof.s.p.sing. guj univ.talk. 16 sept 2021.final
125
Features
Oceanobacillus iheyensis
O.M.A18 enzyme
Haloalkaliphilic bacterium
O.M. E12 enzyme
Basis Information
N-terminal Sequence 5’MNPGSAWRSPVVPFSSLGMSPAYG 5’KLRVIIEFKEDAVEAGIQSTKQLMKK…
Homology(%) 100 100
Homologus protein
(BLAST analysis)
Bacillus sp.KP43, complete CDS gene-
protease gene
Bacillus pumulius SAFA-032 -protease
gene
NCBI Genbank ID: HM219179. HM219182
Physicochemical Properties
pI 5 5
instability index (II) 39.57 27.30
Stability Yes Yes
Aliphatic Index 65.60 42.94
Grand average of
hydropathicity
(GRAVY)
0.016 -0.747
Total numbers of
negatively charged
residues (Asp + Glu)
30 40
Total numbers of
positively charged
residues
30 40
SEQUENCE ANALYSIS OF RECOMBINANT ALKALINE
PROTEASES
HYDROPATHY DETERMINATION
Oceanobacillus iheyensis
O.M.A18
Haloalkaliphilic bacterium
O.M.E12
127
3D
Structure
Prediction
Oceanobacillus
iheyensis O.M.A18
Haloalkaliphilic
bacterium O.M.E12
128
O.M.A18 (Upper panel) and O.M.E12 (Lower Panel)
RAMACHANDRAN ANALYSIS
Metagenomics & Non Cultivable
Non-Cultivable and their
Hidden Potential
Metagenomics and Functional aspects
Functional novel Protease enzyme in E.coli Host
Characteristics of Haloalkaliphilic Protease
(Saline Habitat)
Expression and Purification of enzyme
Creation of Metagenomic library
Designing of Universal Degenerate Primers
Isolation of Total Metagenome from Saline Coastal
region of Okha,Gujarat
Mechanical Method Chemical method
0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%
AL1 AL3 KH1 KH3 AL KH
Relative
abundance
(%)
Phylum
Others
Unclassified
[Thermi]
Crenarchaeota
Nitrospirae
Cyanobacteria
Euryarchaeota
OD1
Chloroflexi
Acidobacteria
1. Nirali Raiyani & S P Singh Raiyani, Nirali and Singh S.P. 2020, Extraction of
environmental DNA, construction of metagenomic libraries and functional screening of
enzymes from salt pan soil, Indian Journal of Geo-Marine Sciences, Accepted
(NISCARE, CSIR, IF 0.50),
0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%
AL1 AL3 KH1 KH3 AL KH
Relative
abundance
(%)
Genus
Unclassified
Others
Fulvivirga
Idiomarina
Anaerospora
Rhodococcus
4-29
Bradyrhizobium
Deinococcus
Janibacter
Brevundimonas
Kaistobacter
Psychrobacter
Pseudomonas
Sediminibacterium
Methanosaeta
Acidiphilium
Sphingomonas
Hyphomicrobium
Gramella
Methylobacterium
Mycobacterium
Planctomyces
Halomonas
Pseudidiomarina
1. Raiyani, Nirali and Singh S.P. 2020, Taxonomic and functional
profiling of the microbial communities of Arabian Sea: A
Metagenomics approach Journal: Genomics (Elsevier, IF 6.20),
112:4361- 4369 https://doi.org/10.1016/j.ygeno.2020.07.024
135
2.3 kb
564bp
1 2 3 4 5 6 7
1 2 3 4 5 6 7 8 9 10 11 12 13
3kb
1kb
Isolation of metagenomic DNA by various
methods for saline soil sample O.M.6.2 and
O.M.6.5. Lane 1: Lamda DNA /HindIII Marker
(Banglo Genei), Lane 2: Soft Lysis, Lane 3: Bead
Beating, Lane 4 : Bead beating+Lysis, Lane 5 :
Sonication+Lysis Lane 6: Sonication Lane 7:
Sonication+Bead Beating
Lane 1: DNA ruler (Middle range marker, Merk life sciences, India), Lane 2: lysis buffer treatment
(sample-6.2), Lane-3: Lysis Buffer Treatment (sample-6.5), Lane 4: Bead Beating only (sample-6.2);
Lane 5: Bead Beating only (sample-6.5); Lane 6: Bead Beating + Lysis Buffer Treatment (sample-6.2),
Lane 7: Bead Beating + Lysis Buffer Treatment (sample-6.5); Lane 8: Bead Beating + sonication
treatment (sample-6.2); Lane 9: Bead Beating + sonication treatment (sample-6.5); Lane 10: lysis buffer
+ sonication treatment (sample-6.2); Lane 11: lysis buffer + sonication treatment (sample-6.5); Lane 12:
sonication treatment (sample-6.2); Lane 13: sonication treatment ( (sample-6.5) (Fig.6.1.3.2).
Isolation of Metagenomic (Environmental) DNA
136
1 2 3 4 5 6 7 8 9 10 11
12 13
1 2 3 4 5 6 7 1 2 3 4 5
6 7
Bead beating + Sonication Method
Lane 1: 0.2-10Kb ladder,
Lane 2: Site 6.2 (Ta=52.4),
Lane 3: Site 6.2 (Ta=55.7),
Lane 4 : Site 6.2(Ta=56.9),
Lane 5 : Site 6.5(Ta=52.4)
Lane 6 : Site 6.5 (Ta=55.7)
Lane 7 : Site 6.5 (Ta=56.9)
(Bead Beating Method)
Lane 1: 0.2-10Kb ladder,
Lane 2: Site 6.2 (Ta=52.4),
Lane 3: Site 6.2 (Ta=55.7),
Lane 4 : Site 6.2(Ta=56.9),
Lane 5 : Site 6.5(Ta=52.4),
Lane 6 : Site 6.5 (Ta=55.7),
Lane 7 : Site 6.5 (Ta=56.9)
16S rRNA Amplification from Total DNA of sample O.M.6.2 (Ta- 64oC)
Lane 1, smart ladder 0.2-10 kbp ladder (invitrogen); Lane 2, Lysis treatment; Lane 3, Soft Lysis + Bead
Beating; Lane 4, Soft Lysis +Sonication; Lane 5, Bead beating; Lane 6, Sonication; Lane 7, Sonication+
Bead Beating. 16S rRNA Amplification from Total DNA of sample O.M.6.5 (Ta- 64oC) Lane8, Lysis
treatment; Lane 9, Soft Lysis +Bead Beating; Lane 10, Soft Lysis +Sonication; Lane 11, Bead beating;
16S rRNA amplification of Total DNA isolated by
various method by using eubacterium universal primer
1500bp
1500bp
16S rRNA
DGGE
ANALYSIS
1 2 3 4 5 6
M
M 1 2 3 4 5 6
Megha Purohit and S. P. Singh ( 2009) Letters in Applied Microbiology , 49:338-344
138
SPS-
5F&R
SPS-
5F&6R
SPS-
5F&7R
SPS-
6F&R
SPS-
6F&5R
SPS-
6F&7R
SPS-
7F&R
SPS-
7F&6R
SPS-
7F&5R
Ok.M.6.2 0.5 0 0 0.5 0 1 0.5 0.7 2.8 1.1 1.2
Ok.M.6.5 0.7 1 1 0.5 0.5 0 1.2 1 1
0.5
0 0
0.5
0
1
0.5
0.7
2.8
1.1
1.2
0
0.5
1
1.5
2
2.5
3
Size
(kb) AMPLIFICATION PROFILE
OF O.M.6.2 AND O.M.6.5 SOIL SAMPLE
Ok.M.6.2 Ok.M.6.5
1 2 3 4 1 2 3 4
139
1 2 3 4 5 1 2 3 4 5
A
B
D
Protease gene
amplicons
PCR amplification of alkaline proteases genes
Protease gene
amplicons
C
1 2 3 4 5 1 2 3 4 5
D
C
1 2 3 4 5 1 2 3 4 5 6
D
B
C
A
PCR AMPLIFICATION OF ALKALINE PROTEASE GENE/S
Purohit, M. and Singh S.P. 2013. A metagenomic alkaline protease from saline habitat: cloning, over-
expression and functional attributes. International Journal of Biological Macromolecules (IJBIOMAC)
53: 138– 143 (IF 2.45).
Singh S.P, M.K. Purohit, C. Aoyagi, M. Kitaoka and K. Hayashi. 2010. Biotechnology Bioprocess
Engineering, 15 (2):273-276 (IF 1.28)
Conclusion
•Enzyme: Wide occurrence and variation in levels & Characteristics
• Analysis based on 16 S rRNA genes: Phylogeny & Identification
•Analysis based on Phenotypic & Biochemical Traits: Phenograms
•pH, temperature and salt profiling: Growth and enzyme catalysis-stability
•Wide variation in optimum salt concentrations for catalysis and for stability
•Chemical Denaturation of Enzymes: Sensitivity/Resistance- highly unique Traits
•In-vitro protein folding: Denaturation/Renaturation- Highly specific & Variable,
affected by pH, Temperature, Salt, enzyme concentration, Redox conditions
•Salt -Dependence thermo stability and temperature profile
•Metagenomic & Non-Cultivability
•Exploration of novel genes
•Understanding the function of genes and proteins
• Above features/patterns : Could be developed and used as a marker to assess
diversity
Bio-databases designed
Prof.s.p.sing. guj univ.talk. 16 sept 2021.final
Prof.s.p.sing. guj univ.talk. 16 sept 2021.final
Prof.s.p.sing. guj univ.talk. 16 sept 2021.final
Prof.s.p.sing. guj univ.talk. 16 sept 2021.final
Research Team
Dr. Sangeeta Gohel, Assistant Professor
Dr. Vikram Raval, DST Young Scientist (Now at Gujarat University)
Dr. Aparna Singh, DST Women Scientist ( Now Asstt. Prof, Surat)
Dr. Kalpana Rakholiya, SERB- National Post-Doctoral Fellow
Ms. Kruti Dangar, DST Women Scientist (Now Asstt. prof,
Saurashtra University)
&
Ph.D./M.Phil/M.Sc. Students
Dr. Bharat Joshi (Canada)
Dr. Manish Bhatt ( Canada)
Dr. Rajesh K. Patel ( Professor, VNUSG, Surat)
Dr. Anju Mittal ( Scientist, USA)
Dr. Mital Dodia ( Scientist, Canada)
 Dr.. Jignasha Thumar ( Associate Prof. Gandhinagar)
Dr. Rupal Joshi (ZRC, Ahmedabad)
Dr. Chetna Rajyaguru (Associate Prof. Rajkot)
Ms. Geera Mankad ( Associate Prof. Rajkot)
Dr. Chirantan Raval ( Asst Prof., Govt College)
 Dr. Megha Purohit ( Scientist and Entrepreneur,
Canada)
Dr. Himanshu Bhimani ( Associate Prof. Navsari Ag
Univ,)
Dr. Bhavtosh Kikani (Asstt. Prof. CHARUSAT)
Dr. Vikram Raval (Asstt Prof. Gujarat University)
Dr. Sangeeta Gohel (Asstt Prof. Saurashtra University)
Dr. Sandeep Pandey (Scientist, Pharma, Daman)
Dr. Viral Akbari ( Self Employed)
Dr. Rushit Shukla (Asstt Prof. Christ College, Rajkot)
Dr. Amit Sharma (Scientist, ZRC, Ahmedabad)
Dr. Kruti Dangar (Asstt Prof. Saurashtra University)
Dr. Atman Vaidya ( Biology Teacher & Entrepreneur)
Dr.r. Hitarth Bhatt (Asstt Prof. Virani College, Rajkot)
Dr. Rupal Pandya (Scientist, USA)
Dr. Foram Thakrar ( Ahmedabad)
Dr. Dalip Singh Rathore ( GBRC, Gandhinagar)
Acknowledgements : Ph.D. Students
Financial Support
DBT, UGC, DST, MoES, GSBTM,
Saurashtra University, Rajkot
Research Collaborations
•IIT Delhi, New Delhi: Prof. S. K.Khare
•DUSC, New Delhi: Prof. Sanjay Kapoor
•NFRI, Tsukuba, Japan: Dr. Kiyoshi Hayashi ( Now at
Toyo University, Japan)
•Griffith University, Australia
•JNTU Hyderabad, Prof. Ch. Sasikala
•Central University of Hyderabad, Prof. Ch. Rama Rao
Prof.s.p.sing. guj univ.talk. 16 sept 2021.final
Recent Publications
( Cumulative Impact factor : 201, H-Index: 31)
2021
Dwivedi, Purna, Sharma, A. K. and Singh, S.P. 2021. Biochemical properties and repression
studies of an alkaline serine protease from a haloalkaliphilic actinomycete, Nocarpdiopsis
dassonvillei subsp. albirubida OK-14. Biocatalysis and Agricultural Biotechnology,
Accepted. 07 June 2021 (Elsevier; IF: 0.90)
Kikani, B.A. and Singh, S.P. 2021. Amylases from thermophilic bacteria: Structure and
Function Relationship. Critical Reviews in Biotechnology, In Press, 30 April 2021 (Taylor &
Francis; IF: 8.102)
Rathore, D. R., Sheikh, M., Gohel G.D, and Singh, S.P. 2021. Genetic and phenotypic
heterogeneity of the Nocardiopsis alba strains of sea water. Current Microbiology, 78: 1377-
1387 (Springer; IF: 1.75), DOI: 10.1007/s00284-021-02420-0
•
2021
•
Chauhan, J.V., Mathukiya, R. Singh, S.P. and Gohel, S.D. 2021. Two steps purification,
biochemical characterization, thermodynamics and structure elucidation of thermostable
alkaline serine protease from Nocardiopsis alba strain OM-5. International Journal of
Biological Macromolecules (IJBIOMAC), 169: 39-50 (Elsevier; IF: 5.16),
https://doi.org/10.1016/j.ijbiomac.2020.12.061 , Available On-Line 12 Dec 2020.
Rathore, D R and Singh, S.P. 2021. Kinetics of growth and co-production of amylase and
protease in novel marine actinomycete, Streptomyces lopnurensis KaM5. Folia
Microbiologica (Springer; IF: 1.70), https://doi.org/10.1007/s12223-020-00843-z
2020
Sharma, A.K. Kikani, B.A. and Singh S.P. 2020, Diversity and Phylogeny of Actinomycetes of
Arabian Sea along the Gujarat Coast. Geomicrobiology Journal (Taylor & Francis, IF 1.90),
DOI: 10.1080/01490451.2020.1860165
Raiyani, Nirali and Singh S.P. 2020, Extraction of environmental DNA, construction of
metagenomic libraries and functional screening of enzymes from salt pan soil, Indian Journal
of Geo-Marine Sciences, Accepted (NISCARE, CSIR, IF 0.50),
Raiyani, Nirali and Singh S.P. 2020, Taxonomic and functional profiling of the microbial
communities of Arabian Sea: A Metagenomics approach
Journal: Genomics (Elsevier, IF 6.20), 112:4361- 4369
https://doi.org/10.1016/j.ygeno.2020.07.024
Bhatt, H.B. and Singh S.P. 2020, Cloning, Expression and structural elucidation of a
biotechnologically potential alkaline serine protease from a newly isolated Haloalkaliphilic
Bacillus lehensis JO-26, Frontiers in Microbiology (IF 4.25), 11:1-16,
https://doi.org/10.3389/fmicb.2020.00941
2020
Sharma, A.K. Kikani, B.A. and Singh S.P. 2020, Biochemical, thermodynamic and structural
characteristics of a biotechnologically compatible alkaline protease from a haloalkaliphilic,
Nocardiopsis dassonvillei OK-18 International Journal of Biological Macromolecules
(IJBIOMAC), 153:680-696, DOI: 10.1016/j.ijbiomac.2020.03.006 (IF 5.16)
Pandya, Rupal D. and Singh S.P. 2020, Pigment production by an extreme halophilic archaeon
on Halorubrum sp. J4.2.2 from little Rann of Kutch, Gujarat, India. Research Journal of
Biotechnology, 15(1):88-100. E-ISSN: 2278-4535 Print ISSN: 0973-6263
2019
Thakrar, F.J. and Singh S.P. 2019. Catalytic, thermodynamic and structural properties of an
immobilized and highly thermostable alkaline protease from a haloalkaliphilic actinobacteria,
Nocardiopsis alba Tata-5. Bioresource Technology, 278:150-158 (IF 5.802)
Sheikh, M., Rathore, D.S., Gohel, S.D. and Singh S.P. 2019. Cultivation and characteristics of
the Marine Actinobacterial from the Sea water of Alang, Bhavnagar. Indian Journal of Geo-
Marine Sciences (CSIR-NISCARE), 48(12), 1896-1901(IF 0.4).
Rathore, D.S., Sheikh, M.A., Gohel, S.D. and Singh, S.P. (2019) Isolation strategies, abundance
and characteristics of the marine actinomycetes of Kachhighadi, Gujarat, India. Journal of
Marine Biological Association of India (JMBAI), CMFRI Cochin, India 61(1): 21-27
2018
Gohel, S. D. and Singh S.P. 2018. Thermodynamics of a Ca2+ dependent, highly thermostable
and detergent compatible purified alkaline serine protease from Nocardiopsis xinjiangensis
strain OM-6. International Journal of Biological Macromolecules (IJBIOMAC),
https://doi.org/10.1016/j.ijbiomac.2018.02.157, 113:565-574 (IF 3.00)
Gohel, S. D. and Singh S.P. 2018. Molecular phylogeny and diversity of the salt-tolerant
alkaliphilic actinobacteria inhabiting Coastal Gujarat, India. Geomicrobiology
Journal, DOI: 10.1080/01490451.2018.1471107, 35:9, 775-789 (IF 1.5)
Thakrar, F.J., Kikani, B.A., Sharma, A.K. and Singh S.P. 2018. Stability of alkaline proteases
from haloalkaliphilic actinobacteria probed by circular dichroism spectroscopy. Applied
Biochemistry and Microbiology (Russia), 54(6), 591-602 (IF 0.68)
Sheikh, M., Rathore, D. S., Gohel, S. D. and Singh S.P. 2018. Marine actinobacteria associated
with the invertebrate hosts: a rich source of bioactive compounds: A Review. (Invited
contribution) Journal of Cell &Tissue Research, 18 (01), 6361-6374.
2018
Dangar, K. G., Kalasava, A. B., Dave, A. V. and Singh S.P. 2018. Molecular diversity of
Nocardiopsis alba sp. isolated from the coastal region of Gujarat, India. Journal of Cell
&Tissue Research, 18(3) 6559-6570
Vaidya A., Nair, V. S., Georrge, J. and Singh S.P. 2018. Comparative analysis of
thermophilic proteases, Research Journal of Life Sciences, Bioinformatics, Pharaceutical
and Chemical Sciences (RJLBPCS) 4(6), P. 66. DOI: 10.26479/2018.0406.05
Pandey, S. Sharma, A.K., Solanki, Kiran P. and Singh S.P. January 2018. Catalysis and
stability of an extracellular α- amylase from a haloalkaliphilic bacterium as a function of the
organic solvents at different pH, salt concentrations and temperatures. Indian Journal of
Geo-Marine Sciences (CSIR-NISCARE), 47 (01), 240-248 (IF 0.4).
2018
Dangar, K. G., Kalasava, A. B., Dave, A. V. and Singh S.P. 2018. Molecular diversity of
Nocardiopsis alba sp. isolated from the coastal region of Gujarat, India. Journal of Cell
&Tissue Research, 18(3) 6559-6570
Vaidya A., Nair, V. S., Georrge, J. and Singh S.P. 2018. Comparative analysis of
thermophilic proteases, Research Journal of Life Sciences, Bioinformatics, Pharaceutical
and Chemical Sciences (RJLBPCS) 4(6), P. 66. DOI: 10.26479/2018.0406.05
Pandey, S. Sharma, A.K., Solanki, Kiran P. and Singh S.P. January 2018. Catalysis and
stability of an extracellular α- amylase from a haloalkaliphilic bacterium as a function of the
organic solvents at different pH, salt concentrations and temperatures. Indian Journal of
Geo-Marine Sciences (CSIR-NISCARE), 47 (01), 240-248 (IF 0.4).
2017
Bhatt, H.B., Gohel, S.D. and Singh, S.P. 2017. Phylogeny, Novel bacterial lineage and
enzymatic potential of haloalkaliphilic bacteria from the saline coastal desert of Little Rann of
Kutch, Gujarat, India. 3 Biotech, 8,53, https://doi.org/10.1007/s13205-017-1075-0 (IF 1.36)
Bhatt, H.B., Begum, M.A., Chintalapati, S., Chintalapati, V.R. and Singh, S.P.
2017. Desertibacillus haloalkaliphilus gen. nov.sp. nov., isolated from a salt desert.
International Journal of Systematic & Evolutionary Microbiology (IJSEM), 67(11):4435-
4442 (IF 2.1)
Kikani, B.A., Sharma, A.K. & Singh, S.P. 2017. Metagenomic and Culture-Dependent
Analysis of the Bacterial Diversity of a Hot Spring Reservoir as a Function of the Seasonal
Variation. International Journal of Environmental Research, 11: 25-38.
DOI:10.1007/s41742-017-0003-9 (IF 1.0).
Datta, A., Sharma, A., Kundu, R.S. and Singh S.P. 2017. Diversity and enzymatic profile of
bacterial flora in the gut of an estuarine fish, Mugil jerdoni. Indian Journal of Geo-Marine
Sciences (CSIR-NISCARE), 46(06): 1116-1127 (IF 0.4)
Richard Feynman
https://en.wikipedia.org/wiki/Richard_Feynman
Richard Phillips Feynman, an American theoretical physicist, known for
his work in the path integral formulation of quantum mechanics,
Prof.s.p.sing. guj univ.talk. 16 sept 2021.final
Assignment
Question -1: What are different reasons for the variability in publications
among the scientists/students. (One para or 5-7 Points)
Question-2: In the light of the historical background of the citations, discus its
implications (One para or 5-7 Points)
Question-3 Discuss the Impact factors of the journals in the context of the
assessment of the credentials of the scientists. (One-two para)
Question-4 Highlight the merits of H-Index? (up to 5 Points)
Question-5 List 10 Journals with Impact factors and publishers of your
research areas
Thank you

More Related Content

PPTX
Halophilic vibriosjp
PPTX
Extreme halophilic archea
PPT
Autotroph & heterotroph bacteria
PDF
Isolation and Characterization of Halophilic Bacteria from Sundarban Soil Deb...
PPT
Bio244 6
PPTX
Chemoautotrophs and photosynthetic eubacteria
PPTX
Bio 127 lec 4a Microbiology Topic: Nutrition and Cultivation of Microorganis...
PPTX
Halophile sfinal.pptx
Halophilic vibriosjp
Extreme halophilic archea
Autotroph & heterotroph bacteria
Isolation and Characterization of Halophilic Bacteria from Sundarban Soil Deb...
Bio244 6
Chemoautotrophs and photosynthetic eubacteria
Bio 127 lec 4a Microbiology Topic: Nutrition and Cultivation of Microorganis...
Halophile sfinal.pptx

What's hot (18)

PPTX
Bacterial nutrition
PPTX
Mic 159 thiocapsa roseopersicina
PDF
Nutrition
DOCX
Extreme halophilic archea assignment
PDF
Biology 120 lectures for 2nd exam 2012 2012 (part 1 microbial growth)
PPTX
Bacteria growth and nutritional requirements.
PPTX
Basic requirements of microbial growth
PPT
Bacteriology physiology 1-mbbs-y2-5-oct2011---2
PPTX
Nitrogen metabolism and growth promoting bacteria
PDF
Isolation characterization and identification of high salinity tolerant
DOCX
Biosorbents
PPTX
Industrial and environmental applications of halophilic microorganisms
PPTX
Microbial diversity in extreme environments
PPTX
Bacterial physiology ppt
PPTX
Physiology of bacteria
PPTX
Halophiles (Introduction, Adaptations, Applications)
PPTX
Isolation Of Algae
PPT
Bacterial Physiology & Growth 2017
Bacterial nutrition
Mic 159 thiocapsa roseopersicina
Nutrition
Extreme halophilic archea assignment
Biology 120 lectures for 2nd exam 2012 2012 (part 1 microbial growth)
Bacteria growth and nutritional requirements.
Basic requirements of microbial growth
Bacteriology physiology 1-mbbs-y2-5-oct2011---2
Nitrogen metabolism and growth promoting bacteria
Isolation characterization and identification of high salinity tolerant
Biosorbents
Industrial and environmental applications of halophilic microorganisms
Microbial diversity in extreme environments
Bacterial physiology ppt
Physiology of bacteria
Halophiles (Introduction, Adaptations, Applications)
Isolation Of Algae
Bacterial Physiology & Growth 2017
Ad

Similar to Prof.s.p.sing. guj univ.talk. 16 sept 2021.final (20)

PPSX
Slide show..prof.s.p.singh.invited talk. udapur international conference.02 j...
PDF
Prof. satya p. singh.final ppt. 17 jan 2022. refresher course. jodhpur
PDF
Microbial food web manipulation in pond water for healthy shrimp
PDF
Abstracts from sps laboratory for the national conference in biosciences, sau...
PPTX
Citarasu holycross
PPT
Invited talk by prof. s.p.singh.international conference, bhavnagar uni conf....
PPTX
Exopolysaccharides of Extremophiles
PPTX
Nanoparticles are microscopic particles that are between 1 and 100 nanometers...
PDF
Drought tolerance genes and traits/Gene Index and markers
PDF
JBEI Research Highlights - April 2019
PPTX
Plant Vacuole Biogenesis / Bioengineering , their roles, their models and fun...
PDF
Job interview power Point
PPT
Environmental Biotechnology
PDF
18 -chapter_20_-_curved_gnb
PPT
Seminar Presentation-Moon
PPTX
Chula Presentation
PPTX
Ion Chromatography, Sedlock, Fall 2014
PPTX
Janet Seifert: What could a 'Whole Earth Stromatolite Catalogue' tell us?
PPTX
Horse gut microbiome
PPTX
Post genomic microbiology rodriguez valera
Slide show..prof.s.p.singh.invited talk. udapur international conference.02 j...
Prof. satya p. singh.final ppt. 17 jan 2022. refresher course. jodhpur
Microbial food web manipulation in pond water for healthy shrimp
Abstracts from sps laboratory for the national conference in biosciences, sau...
Citarasu holycross
Invited talk by prof. s.p.singh.international conference, bhavnagar uni conf....
Exopolysaccharides of Extremophiles
Nanoparticles are microscopic particles that are between 1 and 100 nanometers...
Drought tolerance genes and traits/Gene Index and markers
JBEI Research Highlights - April 2019
Plant Vacuole Biogenesis / Bioengineering , their roles, their models and fun...
Job interview power Point
Environmental Biotechnology
18 -chapter_20_-_curved_gnb
Seminar Presentation-Moon
Chula Presentation
Ion Chromatography, Sedlock, Fall 2014
Janet Seifert: What could a 'Whole Earth Stromatolite Catalogue' tell us?
Horse gut microbiome
Post genomic microbiology rodriguez valera
Ad

More from Saurashtra University (19)

PDF
Web of microbiologists.14 november 2021. inagural webinar and award distribution
PPT
Atmiya university. shree m n virani college of science 14 oct 2021. researc...
PDF
GiAN Program report: GIAN (GLOBAL INITIATIVES OF ACADEMIC NETWORK) SHORT-TERM...
PDF
Gian brochure for short term cource.biosc dept.pdf
PPT
Vnsgu.pre ph d.course work.27aug2021.a talk on 'quality evaluation and ethic...
PDF
Profile of ph d students in the lab of prof. satya p. singh
PDF
19 20 nov2018. visit of prof asit pattnaik from the university of nebraska, l...
PDF
Abstract satya p singh-asm.fems forum.confernce 2021.with acceptance from asm...
PPT
Prof. sp singh.ph d.course work.2020-21.citation index, journal impact factor...
PPT
Prof. satya p singh.july 2021. gene shuffling & molecular evolution. the...
PDF
Prof.s.p.singh.abstratc.udiapur conference.02 july 2021
PDF
One day international virtual conference.02 july 2021. botany department.mlsu...
PDF
International science symposium brochure. 8 9 april 2021
PPTX
Brochure bioscience national confernce.10 january 2020
PDF
Abstracts from sps laboratory for the national conference in biosciences, sau...
PDF
National conference.26 feb 2019 .biosci. brochure
PPT
Prof. s.p.singh.invited talk.n v patel conf. 26 feb 2020.actinobacteria from ...
PPT
Resources on halophilic.haloalaklaiphilic microorganisms.prof. s.p.singh.june...
PPT
Research proposal and assessment of outputs jan 2021. prof.s.p.singh
Web of microbiologists.14 november 2021. inagural webinar and award distribution
Atmiya university. shree m n virani college of science 14 oct 2021. researc...
GiAN Program report: GIAN (GLOBAL INITIATIVES OF ACADEMIC NETWORK) SHORT-TERM...
Gian brochure for short term cource.biosc dept.pdf
Vnsgu.pre ph d.course work.27aug2021.a talk on 'quality evaluation and ethic...
Profile of ph d students in the lab of prof. satya p. singh
19 20 nov2018. visit of prof asit pattnaik from the university of nebraska, l...
Abstract satya p singh-asm.fems forum.confernce 2021.with acceptance from asm...
Prof. sp singh.ph d.course work.2020-21.citation index, journal impact factor...
Prof. satya p singh.july 2021. gene shuffling & molecular evolution. the...
Prof.s.p.singh.abstratc.udiapur conference.02 july 2021
One day international virtual conference.02 july 2021. botany department.mlsu...
International science symposium brochure. 8 9 april 2021
Brochure bioscience national confernce.10 january 2020
Abstracts from sps laboratory for the national conference in biosciences, sau...
National conference.26 feb 2019 .biosci. brochure
Prof. s.p.singh.invited talk.n v patel conf. 26 feb 2020.actinobacteria from ...
Resources on halophilic.haloalaklaiphilic microorganisms.prof. s.p.singh.june...
Research proposal and assessment of outputs jan 2021. prof.s.p.singh

Recently uploaded (20)

PDF
Assessment of environmental effects of quarrying in Kitengela subcountyof Kaj...
PPTX
TORCH INFECTIONS in pregnancy with toxoplasma
PDF
Social preventive and pharmacy. Pdf
PPT
1. INTRODUCTION TO EPIDEMIOLOGY.pptx for community medicine
PPT
Enhancing Laboratory Quality Through ISO 15189 Compliance
PDF
BET Eukaryotic signal Transduction BET Eukaryotic signal Transduction.pdf
PPTX
A powerpoint on colorectal cancer with brief background
PPT
Biochemestry- PPT ON Protein,Nitrogenous constituents of Urine, Blood, their ...
PPTX
GREEN FIELDS SCHOOL PPT ON HOLIDAY HOMEWORK
PDF
CHAPTER 2 The Chemical Basis of Life Lecture Outline.pdf
PPT
veterinary parasitology ````````````.ppt
PDF
Worlds Next Door: A Candidate Giant Planet Imaged in the Habitable Zone of ↵ ...
PPT
THE CELL THEORY AND ITS FUNDAMENTALS AND USE
PDF
Is Earendel a Star Cluster?: Metal-poor Globular Cluster Progenitors at z ∼ 6
PPTX
BODY FLUIDS AND CIRCULATION class 11 .pptx
PPT
LEC Synthetic Biology and its application.ppt
PPTX
ap-psych-ch-1-introduction-to-psychology-presentation.pptx
PPTX
Introcution to Microbes Burton's Biology for the Health
PPTX
gene cloning powerpoint for general biology 2
PDF
Wound infection.pdfWound infection.pdf123
Assessment of environmental effects of quarrying in Kitengela subcountyof Kaj...
TORCH INFECTIONS in pregnancy with toxoplasma
Social preventive and pharmacy. Pdf
1. INTRODUCTION TO EPIDEMIOLOGY.pptx for community medicine
Enhancing Laboratory Quality Through ISO 15189 Compliance
BET Eukaryotic signal Transduction BET Eukaryotic signal Transduction.pdf
A powerpoint on colorectal cancer with brief background
Biochemestry- PPT ON Protein,Nitrogenous constituents of Urine, Blood, their ...
GREEN FIELDS SCHOOL PPT ON HOLIDAY HOMEWORK
CHAPTER 2 The Chemical Basis of Life Lecture Outline.pdf
veterinary parasitology ````````````.ppt
Worlds Next Door: A Candidate Giant Planet Imaged in the Habitable Zone of ↵ ...
THE CELL THEORY AND ITS FUNDAMENTALS AND USE
Is Earendel a Star Cluster?: Metal-poor Globular Cluster Progenitors at z ∼ 6
BODY FLUIDS AND CIRCULATION class 11 .pptx
LEC Synthetic Biology and its application.ppt
ap-psych-ch-1-introduction-to-psychology-presentation.pptx
Introcution to Microbes Burton's Biology for the Health
gene cloning powerpoint for general biology 2
Wound infection.pdfWound infection.pdf123

Prof.s.p.sing. guj univ.talk. 16 sept 2021.final

  • 1. Exploration of diversity and biocatalytic potential of microorganisms from the saline habitats: Approaches and dimensions Presentation as the Invited Talk at the SKILL ( Scientific Knowledge and Intelligent Logic Laboratory Practices) –Workshop: September 2021, Held at the Department of Microbiology & Biotechnology, Gujarat University, Ahmedabad on 16 September 2021 Prof. Satya P. Singh UGC BSR Faculty (Formerly Professor & Head) UGC-CAS Department of Biosciences Saurashtra University, Rajkot, Gujarat, India Email: satyapsingh@yahoo.com satyapsingh125@gmail.com spsingh@sauuni.ac.in LinkedIn: https://www.linkedin.com/in/satya-singh-2285a5144/ ResearchGate: https://www.researchgate.net/profile/Satya_Singh5 Google Scholar: https://scholar.google.com/citations?hl=en&user=jiAzOcgAAAAJ UGC: https://vidwan.inflibnet.ac.in//profile/68903/Njg5MDM%3D ORICID Id https://orcid.org/0000-0002-7531-2872
  • 2. The Framework of the Talk •Exploration & Limitations • Extreme Habitats and Extremophiles •Diversity based on Morphological/Cultural/Metabolic Traits • Diversity based on Molecular Traits •Biochemical & Genetic Characteristics of Enzymes •Metagenomics and non cultivable microorganisms
  • 3. Microbes: The Master Chemists Anton van Leeuwenhoek Pasteur Watson &Crick Genetic Engineering & Molecular Biology Microbes Versatility Diversity Fast Growth Easy to manipulate Impact & Applications Medicine : Disease, Vaccines, Health& Hygiene Agriculture: Soil Fertility& disease Control Industries : Production of value based products Environment : Monitoring & Management
  • 4. Domesticating Microbes Newer Applications Got into the Way •Central Dogma of Life: the fundamental Processes of Life •Ability to manipulate Genes and Genomes Biological factories & Expression of Foreign Genes •Tools to rapidly sequence the DNA and proteins •PCR •Search for New Microbial Potential •Access to Non-Cultivables
  • 5. Limitations Microbial activities- limited by certain conditions Only fraction (1-5%) of the microbial world- Cultivable and hence explored and investigated Majority Applications under Natural Environmental Conditions- limited
  • 6. Need of the Hour Exploration of newer habitats- Extremophiles in particular/Newer approaches of cultivation Evolving the known microbial potential: Gene shuffling and Directed evolution Evolving unique & novel biocatalytic capabilities for industrial & Environmental applications
  • 7. Why Extreme Environments and Extremophiles??? Evolutional aspects Living fossils, Origin of Life, Life on other planets, Ultra extreme habitats on earth Biodiversity Extreme environments represent large proportion of the planet, Only Limited studies Commercial Aspects Metabolisms, Metabolites, Biomolecules- Polluted environments are extreme
  • 8. Ultra- Extreme, Extreme, Moderately Extreme Environments Microbial diversity- static or variable ??? Ultra-Extreme Habitats Prevent growth of the majority of the microorganisms Harbor true extremophiles, Limited diversity- but static/stable Moderate-Extreme Habitats Not static, keeps changing, microbial diversity fluctuates
  • 9. Adaptations to the Extremity At Various levels Cell Morphology Cell envelops & Appendages: CW, CM, Flagella, Capsule Membrane Transport Metabolism Structure & Stability of Macromolecules Thermodynamic adaptations
  • 10. Adaptation to Extremely High Temperature •Adaptation to Extremely High Temperature: Genetically Encoded •Sequence Modifications : Replacing confirmationally constrained residues, such as glycine •Addition of Salt Bridges •Enhanced Hydrophobic Interactions •Additional Ion pairing and H-bonding •Improved core packing •Shortening of Loops
  • 11. EXTREMOPHILES:MOLECUALR BIOLOGY Genomes, Genome Organizations and Gene Expressions Gene organization and regulation:  Analogous genes is co-liner in archaea and eubacteria  Functionally Related genes are organized in polycistronic transcriptional unit.  Regulation of Gene Expression and Operons does not reflect the similarity with eubacteria. Chromosome structure:  Archaea: single, circular DAN molecules  Histone like proteins  Relatively compact structure similar to eukaryal neculosome. DNA binding protein:  HTa (DNA binding protein ) from Thermoplasma acidophilium.  Sequence similarities to the HU family of eubacterial histone like protein  Protecting DNA against thermal denaturation and degradation. Topoisomerase:  A novel DNA topoisomerase activity (reverse gyrase) from thermophilic Archaea  Catalyses positive super coiling  Widely distributed among Archaea  Role in the stabilization of DNA at high temperature. Mechanism of DNA replication  Not completely known. In Archaea  DNA polymerase from several thermophilc extensively characterized  In-vitro DNA synthesis at high temperature like PCR and sequencing reaction.
  • 16. The vivid red brine (teaming with halophilic archaebacteria) of Owens Lake contrasts sharply with the gleaming white deposits of soda ash (sodium carbonate). The picturesque Inyo Range can be seen in the distance.
  • 18. HALOALAKLIPHILIC BACTERIA & ARCHAEBACTERIA Molecular Phylogeny: Extensive work is going on Halalakliphilic bacteria & archaea, mostly from soda lakes Biochemical basis of salt tolerance & dependence: Halobacterium salinarum, Salinibacter ruber  Amino acid composition of bulk protein  High intracellular salt levels  Intercellular osmolytes Protein stability & salt dependence:  Few enzymes are purified and characterized  Salt dependence assessed- varies extensively  Comparison of crude, purified and recombinant glucoglycerol phosphate synthase (Synchocystis sp.) Regulation of gene expression Salt dependent Gene expression Marine Cyanobacterium (Synechococcus sp ) Hegemann ,J. Bact., 2002 Denaturation & Protein folding  Susceptibility of salt tolerant proteins to denaturants- some are highly resistant to urea denaturation  Renaturation under in-vitro conditions  Role of molecular chaperones in salt stress cellular conditions
  • 19. Haloalkaliphilic bacteria & Archaebacteria Phylogeny, Diversity, Enzymatic potential Molecular Phylogeny 16S rRNA Sequencing DNA-DNA Hybridization Real Time PCR Diversity Based on: Morphology Gram Reaction Sugar Utilization Enzyme secretion Protein folding Studies on Growth & Enzyme Secretion as a function of: Salt PH Nutritional factor Purification& Characterization of alkaline Protease Effect of salt on pH and thermal stability Protein Denaturation & Renaturation Cloning & Sequencing of alkaline Protease Salt & Regulation of gene Expression Metagenomics of saline Habitats : Phylogeny & Retrieval of Novel genes for biocatalysts
  • 22. Actinomycetes • Gram positive, high G+C % • Spore forming bacteria; having thin, long, branched mycelia. • About 40 families, 170 Generas, 2000 species • Thermophilic actinomycetes are omnipresent; but are widely found in compost and hay • Halophilic actinomycetes are less explored
  • 23. Light and Electron microscopic examinations
  • 25. Comparative outline of the morphological features of the isolates Mit-1 RJT-1 RJT-2 Diu-1 Diu-2 Diu-3 Diu-4 Di-J-1 Mycelial structure  filamentous + + + + + + + +  Curved, hook Shaped mycelia - - + - - - - -  Fragmentation + - - + - + - - Sporulation starts After…. 5 >9 6 7 >9 7 >9 >9 (days) Morphology of spores  Shape Elongated - Oval Spherical - Elongated - -  Surface Smooth - Smooth Smooth - Smooth - -  Number in long chain - 4-5 8-10 - - 1-3 - chain
  • 26. Light microscopic examinations (1000x) of isolates form Okha Madhi after Gram’s staining SEM analysis of actinomycetes from different sites demonstrating a) vegetative mycelia of OM-4; b, c, d) Sheikh, M., Rathore, D.S., Gohel, S.D. and Singh S.P. 2019. Indian Journal of Geo-Marine Sciences (CSIR-NISCARE), In Press Gohel, S. D. and Singh S.P. 2018. Geomicrobiology Journal, 35:9, 775-789 Thumar, J.T. and Singh S.P. 2011. Biotechnology Bioprocess Engineering, 16, 6:1180-1186
  • 27. In situ observation of the isolates using slide culture technique
  • 28. Cell morphology and Gram reaction Cultural characterization Pigmentation profile
  • 29. 0 10 20 30 40 50 H2S Production Indole Oxidase Nitrate Catalase Urea Utilization MR VP Phenyl alanine Isolates Biochemical fingerprinting 0 5 10 15 20 25 30 35 Arabinose Rhamnose Xylose Raffinose Mannose Inositol Lactose Fructose Trehalose Cellobiose Maltose Mannitol Isolates Sugar utilization profile
  • 30. 30 Production of NH3 from rhizospheric isolates from H. indicum and T.portulacastrum ( Paragi Jadav, M. Phil Thesis, Saurashtra University, 2020) (Paragi Jadav, Abstract Book, National Conference on National Conference on Innovations in Biological Sciences, 10 January 2020)
  • 31. Solubilization of P from rhizospheric isolates from H. indicum and T.portulacastrum (Top) from L. stocksii and I.pes-caprea (Below) ( Paragi Jadav, M. Phil Thesis, Saurashtra University, 2020) (Paragi Jadav, Abstract Book, National Conference on National Conference on Innovations in Biological Sciences, 10 January 2020)
  • 32. Antibiotics sensitivity & resistance profile Antimicrobial activity against pathogens Strains No. of antibiotics Resistant (a) Tested (b) MAR index (a/b) Ok-1 12 31 0.387 Ok-2 7 31 0.225 Ok-4 7 31 0.225 Ok-6 12 31 0.387 Ok-8 6 31 0.193 Ok-10 6 31 0.193 Ok-13 9 31 0.290 Ok-14 12 31 0.387 Ok-17 9 31 0.290 Ok-18 14 31 0.451 Ok-19 15 31 0.483 Ok-20 12 31 0.387 Ok-22 12 31 0.387 Ok-23 10 31 0.322 Ok-24 13 31 0.419 D-2 13 31 0.419 D-5 19 31 0.612 D-8 11 31 0.354 S-1 11 31 0.354 S-2 25 31 0.806 Sampling site wise MAR Indices Total strains (c) Aggregate antibiotic resistance score (a) No. of antibiotics tested (b) MAR index a/(b × c) Okha Port (15) 143 31 0.307 Dwarka beach (3) 43 31 0.462 Somnath beach (2) 36 31 0.580 MAR (Multiple Antibiotic Resistances) Indices of different marine actinomycetes Sharma, A.K. Kikani, B.A. and Singh S.P. 2020, Geomicrobiology Journal, DOI:10.1080/01490451.2020.1860165
  • 33. Antibiotic sensitivity profile on the basis of mode of action (a: U- I, b: U- II and c: U- III)
  • 34. Install PAST software 1) Creation of binary data sheet in PAST software • “Binary Matrix: ”Phenotypic data (Biochemical tests, Sugar utilization tests, Enzyme secretion, Antibiotic sensitivity profile) is converted to • Columns: Phenotypic tests, Rows: Isolates • Presence of phenotype: 1, Absence of phenotype: 0 2) Construction of phenogram • Select all cells with data • Select Multivariate analysis  Select Cluster analysis  Unweighted Pair Group Mean Averages (UPGMA) algorithm  Jaccard Similarity measure Numerical taxonomy: Step for cluster analysis and phenogram construction
  • 35. Nature | Vol 582 | 11 June 2020 | 301 ADVENTURES IN MICROBIOLOGY: Cultivability ???? Researchers designing technologies to find and grow microbes that have never before survived in the lab. By Amber Dance Chip to incubate pure cultures of microorganisms in soil
  • 37. Molecular Approaches to study Actinomycetes Gohel, S. D. and Singh S.P. 2018. Molecular phylogeny and diversity of the salt-tolerant alkaliphilic actinobacteria inhabiting Coastal Gujarat, India. Geomicrobiology Journal, 35:9, 775-789 Dangar, K. G., Kalasava,A. B., Dave, A. V. and Singh S.P. 2018. Molecular diversity of Nocardiopsis alba sp. isolated from the coastal region of Gujarat, India. Journal of Cell &Tissue Research, 18(3) 6559-6570. Thakrar, F.J., Kikani, B.A., Sharma, A.K. and Singh S.P. 2018. Stability of alkaline proteases from haloalkaliphilic actinobacteria probed by circular dichroism spectroscopy. Applied Biochemistry and Microbiology (Russia), 54(6), 591-602 Sheikh, M., Rathore, D. S., Gohel, S. D. and Singh S.P. 2018. Marine actinobacteria associated with the invertebrate hosts: a rich source of bioactive compounds: A Review. (Invited contribution) Journal of Cell &Tissue Research, 18 (01), 6361-6374. Dwivedi, Purna, Sharma, A. K. and Singh, S.P. 2021. Biochemical properties and repression studies of an alkaline serine protease from a haloalkaliphilic actinomycete, Nocarpdiopsis dassonvillei subsp. albirubida OK-14. Biocatalysis and Agricultural Biotechnology, Accepted. 07 June 2021 (Elsevier; IF: 0.90) Rathore, D. R., Sheikh, M., Gohel G.D, and Singh, S.P. 2021. Genetic and phenotypic heterogeneity of the Nocardiopsis alba strains of sea water. Current Microbiology, 78: 1377-1387 (Springer; IF: 1.75), DOI: 10.1007/s00284-021-02420-0
  • 38. primer sequence 1st step 2nd step 3rd step No. of cycles Expected bp denatura tion annealing extention U1 5’-AGAGTTTGATCCTGGCTCAG-3’ 94ºc - 10 min. 94ºC – 30s 72ºc – 10min 30 1500 bp AAGGAGGTGATCCAGCCGCA-3’ 56ºC – 30s 72ºC – 60s U2 5’ CCAGCAGCCGCGGTAATACG-3’ 94ºc – 5min 94ºc – 1min 72ºc – 10min 30 1000 bp 5’ ATCGGCTACCTTGTTACGACTTC 55ºc – 1min 72ºc – 1min N -F/R 5’-CGCATAGGGTGCTGGTGGAAAG-3’ 94ºc – 4min 94ºc – 30s 72ºc – 10min 30 1120 bp 5’-GAGGTCGGGTTGCAGACTTCG-3’ 56ºc – 30s 72ºc - 2min Strep B/E 5’-ACAAGCCCTGGAAACGGGGT-3’ 95ºc – 8min 95ºc – 1min 72ºc – 10min 30 520 bp 5’-CACCAGGAATTCCGATCT-3’ 54ºc – 40s 72ºc – 2min Strep B/F 5’-ACAAGCCCTGGAAACGGGGT-3’ 95ºc – 8min 95ºc – 1min 72ºc – 10min 30 1170 bp 5’-ACGTGTGCAGCCCAAGACA-3’ 58ºc – 40s
  • 39. 0.8% agarose gel show PCR products of isolates from Okha Madhi amplified with (a) U1 primer at 52.3°C 55.3°C 59.4°C: lane-1 Medium range DNA ruler lane-2,3,4 OM-3, lane-5,6,7 OM-4 lane-8,9,10 OM-5 lane-11,12,13 OM-6 lane-14 Super Mix DNA ladder, lane-15,16,17 OM-8 lane-18,19,20 OM-9 lane-21,22,23 OM-11 (b) U2 primer at 52.7°C, 55.9°C, 59.2°C: lane-1 High range DNA ruler lane-2,3,4 OM-1 lane-5,6,7 OM-3 lane-8,9,10 OM-4 lane-11 Super Mix DNA ladder, lane-12,13,14 OM-6 lane-15,16,17 OM-7 lane-18 High range DNA ruler lane-19,20,21 OM-8 lane-22,23,24 OM-9 lane-25,26,27 OM-11
  • 40. 0.8% agarose gel show PCR products of isolates Okha Madhi amplified with (a) StrepB/E (Lane 2-24) at 50.7°C, 53.9°C, 56.7°C and StrepB/F (Lane 26-28) at 54.1°C, 58.1°C, 60.0°C lane-1 High range marker (10 kb), lane-2,3,4 OM-3 lane-5,6,7 OM-4 lane-8 High range marker, lane-9,10,11 OM-5 lane-12 High range marker, lane-13,14,15 OM-8 lane-16,17,18 OM-9 lane-19,20,21 OM-10 lane-22,23,24 OM-11 lane-25: High range marker, lane-26,27,28 OM-2 (b) N F/R primer at 53.3°C, 56.4°C, 60.0°C lane-1 high range marker (10 kb), lane-2,3,4 OM-6 lane-5,6,7 OM-8 lane-8,9,10 OM-9 lane-11,12,13 OM-11 lane-14,15,16 OM-12
  • 41. 0.8% agarose gel show PCR products of isolates from Okha Madhi amplified with (a) U1 primer at 52.3°C 55.3°C 59.4°C: lane-1 Medium range DNA ruler lane-2,3,4 OM-3, lane-5,6,7 OM-4 lane-8,9,10 OM-5 lane-11,12,13 OM-6 lane-14 Super Mix DNA ladder, lane-15,16,17 OM-8 lane-18,19,20 OM-9 lane-21,22,23 OM-11 (b) U2 primer at 52.7°C, 55.9°C, 59.2°C: lane-1 High range DNA ruler lane-2,3,4 OM-1 lane-5,6,7 OM-3 lane-8,9,10 OM-4 lane-11 Super Mix DNA ladder, lane-12,13,14 OM-6 lane-15,16,17 OM-7 lane-18 High range DNA ruler lane-19,20,21 OM-8 lane-22,23,24 OM-9 lane-25,26,27 OM-11 Gohel, S. D. and Singh S.P. 2018. Molecular. Geomicrobiology Journal, 35:9, 775-789
  • 42. 0.8% agarose gel show PCR products of isolates Okha Madhi amplified with (a) StrepB/E (Lane 2-24) at 50.7°C, 53.9°C, 56.7°C and StrepB/F (Lane 26-28) at 54.1°C, 58.1°C, 60.0°C lane-1 High range marker (10 kb), lane-2,3,4 OM-3 lane-5,6,7 OM-4 lane-8 High range marker, lane-9,10,11 OM-5 lane-12 High range marker, lane-13,14,15 OM-8 lane-16,17,18 OM-9 lane-19,20,21 OM-10 lane-22,23,24 OM-11 lane-25: High range marker, lane-26,27,28 OM-2 (b) N F/R primer at 53.3°C, 56.4°C, 60.0°C lane-1 high range marker (10 kb), lane-2,3,4 OM-6 lane-5,6,7 OM-8 lane-8,9,10 OM-9 lane-11,12,13 OM-11 lane-14,15,16 OM-12
  • 43. 16S rRNA amplification profile of isolates from A) Okha Madhi and B) Okha site U1 U2 StrepB/E StrepB/F N-F/R OK-1 OK-2 OK-3 OK-4 OK-5 OK-6 OK-7 OK-8 OK-9 OK-10 U1 U2 StrepB/ E StrepB/ F N-F/R OM-1 OM-2 OM-3 OM-4 OM-5 OM-6 Gohel, S. D. and Singh S.P. 2018. Molecular. Geomicrobiology Journal, 35:9, 775-789
  • 44. Primer Denaturation Annealing Extension No. of cycles F243 & R513 94ºC - 5 min 94ºC-30s 56ºC-30s 72ºC-1min 72ºC-10 min 30 F984 & R1378 94ºC - 5 min 96ºC-45s 56ºC-30s 72ºC-2min 72ºC-10 min 35 U1F & R 94ºC-10 min 94ºC-30s 56ºC-30s 72ºC-1min 72ºC-10 min 30 U2F & R 94ºC-10 min 94ºC-30s 56ºC-30s 72ºC-1min 72ºC-10 min 30 NF & R 94ºC - 5 min 94ºC-30s 60ºC-30s 72ºC-1min 72ºC-10 min 30 PCR amplification conditions
  • 45. 0 5 10 15 20 25 F243 & R513 F984 & R1378 U1F & R U2F& R NF & R Total no. of isolates 16S rDNA Based Profiling of the actinomycetes of water origin 16S rRNA gene amplification profile Sharma, A.K. Kikani, B.A. and Singh S.P. 2020, Geomicrobiology Journal, DOI: 10.1080/01490451.2020.1860165
  • 46. Chemotaxonomic features Sharma, A.K. Kikani, B.A. and Singh S.P. 2020, Geomicrobiology Journal, DOI: 10.1080/01490451.2020.1860165
  • 47. Amplified ribosomal DNA restriction analysis (ARDRA) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 A B Abbreviations: A: 1- Marker, 2-D2, 3-OK-24, 4-OK-4, 5-OK-17, 6-OK-18, 7-OK-8, 8-D8, 9-OK-19, 10-OK-13, 11- OK-22, 12-OK-20, 13-OK-1, 14-S1, 15-D-5 B: 1-Marker, 2-S2, 3-OK-23, 4-OK-10, 5-OK-2, 6- OK-6, 7-OK-14 (Left to right position) Sharma, A.K. Kikani, B.A. and Singh S.P. 2020, Geomicrobiology Journal, DOI: 10.1080/01490451.2020.1860165
  • 48. Phylogenetic tree constructed by the neighbor-joining method conducted using BioEdit version 7.2.5 Sharma, A.K. Kikani, B.A. and Singh S.P. 2020, Geomicrobiology Journal, DOI:10.1080/01490451.2020.1860165
  • 49. Step for constructing phylogenetic tree using MEGA software Step 1: Aligning sequences • Retrieve 16S rRNA gene sequences (FASTA files) of the isolates • Install MEGA X software • Make one combine FASTA file for all isolates • Open combined file on MEGA software: Go to Align (dropdown) --> Edit/Build Alignment --> Retrieve sequences from a file --> OK. • Select all sequence and Go to Alignment --> Align by ClustalW • After processing, go to Data --> Save Session. Step 2: Constructing the phylogenetic tree • Open the session previously saved. • Select the Neighbor-Joining method for tree construction. • Finally, it will show you the constructed tree. You can save the tree session.
  • 50. Novel Lineages & Whole genome Sequences
  • 51. Nowlan B., Dodia, M.S., Singh, S.P and Patel, B. K. C. 2006. Int J Syst Evol. Microbiol 56:1073-1077
  • 52. TEM results fro Bacillus indiensis. a) Thin Film TEM. Bar represents 200nm. b) Thin Film TEM demonstrating Gram-positive cell wall. Bar indicates 50nm. c and d) Negative Stain TEM showing the rod shape of cell and flagella. Bar indicates 500nm
  • 53. Phase contrast micrograph of strain KJ1-10-99T and strain KJ1-10-93T showing endospores formation Description of Desertibacillus haloalkaliphilus gen. nov. sp. nov.
  • 56. Salient Features of Halophilic/Haloalkaliphilic Bacteria •Wide occurrence of the bacteria with variable level of salt tolerance and salt needs •The enzyme level- Varied levels from costal Gujarat •Homology based on 16 S rRNA gene sequencing indicated presence of some novel strains •Variation in optimum Salt, pH and temperature range for catalysis and for stability •Denaturation of proteins- Extremely resistant against denaturation •In-vitro protein folding: Renaturation varies and affected by pH, Salt, Temperature •Salt -Dependence thermo stability and temperature profile •Heterologous gene expression-Effect of salt •Metagenomics-Exploration of novel genes Ref:  Dwivedi, Purna, Sharma, A. K. and Singh, S.P. 2021. Biocatalysis and Agricultural Biotechnology, 07 June 2021 (Elsevier; IF: 0.90)  Kikani, B.A. and Singh, S.P. 2021.. Critical Reviews in Biotechnology, 2021 (Taylor & Francis; IF: 8.102)  Rathore, D. R., Sheikh, M., Gohel G.D, and Singh, S.P. 2021. Genetic and phenotypic heterogeneity of the Nocardiopsis alba strains of sea water. Current Microbiology, 78: 1377-1387 (Springer; IF: 1.75), DOI: 10.1007/s00284-021-02420-0  Bhatt, H.B., Begum, M.A., Chintalapati, S., Chintalapati, V.R. and Singh, S.P. 2017. International Journal of Systematic & Evolutionary Microbiology (IJSEM), 67(11):4435-4442 (IF 2.1)  Gohel, S. D. and Singh S.P. 2018. Molecular phylogeny and diversity of the salt-tolerant alkaliphilic actinobacteria inhabiting Coastal Gujarat, India. Geomicrobiology Journal, 35:9, 775-789  Nowlan B., Dodia, M.S., Singh, S.P and Patel, B. K. C. 2006. Int J Syst Evol. Microbiol 56:1073-1077  Dodia M. S., Rawal C. M., Bhimani H. G., Joshi R. H., Khare, S. K. and Singh, S. P. 2008. Journal of Industrial Microbiology & Biotechnology 35(2):121-132  Raval, V. Rawal, C.M., Pillai, S. and Singh S.P. 2014. Process Biochemistry 49 (6): 955-962 (IF 2.63)  Dodia M. S., Rawal C. M., Bhimani H. G., Joshi R. H., Khare, S. K. and Singh, S. P. 2008. Journal of Industrial Microbiology & Biotechnology 35(2):121-132
  • 58. Extra cellular enzyme detection  Gohel, S. and Singh S.P. 2015. . International Journal of Biological Macromolecules (IJBIOMAC). DOI: 10.1016/j.ijbiomac.2014.08.008, Vol 74: 421-429 (IF 3.00).  Gohel, S. and Singh S.P. 2013. International Journal of Biological Macromolecules (IJBIOMAC) 56: 20– 27 (IF 2.45).  Gohel, S. and Singh S.P. 2012., J Chromatography- B,889– 890, 61– 68 (IF 2.9).  Gohel, S. and Singh S.P. 2012. International Journal of Biological Macromolecules (IJBIOMAC) 50: 664– 671 (IF 2.45).
  • 59. Isolateion from Differnt sites Okha 13 Jodiya 10 Diu 5 Mithapur 37 Enzyme producers from all site Amylase 3 None 9 Lipase 40 Protease 42
  • 60. Mithapur Both (Protease and Lipase) 22 Amylase 1 None 3 Lipase 26 Protease 29 Okha Protease 4 Lipase 5 None 4 Amylase 1 Both (Protease and Lipase) 2 Protease 7 Amylase 0 None 1 Lipase 8 Both (Protease and Lipase) 6 Jodiya 6 Diu Protease 1 Lipase 1 None 3 Amylase 1 Both (Protease and Lipase) 0 Dodia, M. S., Joshi, R.H., Patel, R.K., Singh, S.P.. 2006 Brazilian Journal of Microbiology. 37:276-282
  • 61. Enzymes from the Actinomycetes of Sea Origin (MoES Net Working Project, Govt. of India)
  • 62. Representative photos of Alang isolates Sheikh M.A., Rathore D.S., Gohel S.D. and Singh S.P.(2019) Sheikh M.A., Rathore D.S., Gohel S.D. and Singh S.P. Ind J of Geo-Marine Sciences(2019)
  • 63. Pre-monsoon Monsoon Profile of the Extracellular Enzyme Secretion : Marine Actinomycetes from Kachhigarhi Post-monsoon Amylase secretion is in majority followed by Protease and Lipases among all seasons Rathore, D. R., Sheikh, M., Gohel G.D, and Singh, S.P. 2021. Current Microbiology, 78: 1377-1387, DOI: 10.1007/s00284-021-02420-0
  • 64. Enzyme Secretion by Winter isolates of the actinomycetes from Alang 0 10 20 30 40 50 60 Zone of hydrolysis(mm) Isolates Protease screening of Winter isolates 0 5 10 15 20 25 30 35 40 45 50 Zone of hydrolysis(mm) isolates Amylase screening of Winter isolates Sheikh M.A., Rathore D.S., Gohel S.D. and Singh S.P.(2019)
  • 65. Enzyme screening of Summer isolates of the actinomycetes from Alang 0 5 10 15 20 25 30 35 40 45 AlS1 AlS2 AlS3 AlS4 AlS5 AlS7 AlS8 AlS9 AlS10 AlS11 AlS12 Zone of hydrolysis(mm) Name of isolates Protease screening of Summer isolates 0 5 10 15 20 25 30 35 AlS1 AlS2 AlS3 AlS4 AlS5 AlS7 AlS8 AlS9 AlS10 AlS11 AlS12 Zone of hydrolysis(mm) Name of isolates Amylase Enzyme screening of Summer isolates
  • 66. Enzyme Secretion by Monsoon isolates of the actinomycetes from Alang 0 5 10 15 20 25 30 35 40 45 50 Zone of hydrolysis(mm) Name of isolates Protease Production by Monsoon isolates 0 5 10 15 20 25 30 AlM1 AlM3 AlM4 AlM5 AlM6 AlM7 AlM9 AlM10 AlM11 AlM12 AlM13 AlM14 AlM15 Zone of hydrolysis(mm) Name of isolates Amylase Production by Monsoon isolates
  • 67. Extent of alkaline proteases production from sea water 0 100 200 300 400 500 S-20-9 S-15-9 D-15-9 D-20-91 Ve2-15-91 Ve2-10-10 Ve2-20-92 Isolates Activity (U/ml/min) Activity
  • 68. Diversity among the Haloalkaliphilic bacteria with regards to the extent of protease production B 0 100 200 300 400 A H - 6 S j - 1 S j - 2 A 0 5 10 15 20 25 30 M i30-3 M i25-41 M i20-42 M i25-51 M i10-31 M i10-33 M i10-63 Protease activity (U/ml)
  • 69. Isolates Alkaline Proteases Optimum pH Optimum Salt ,%(w/v) Activity Stability Activity Stability S3-20-5 9 9-9.5 10 0-10 Mi-15-4 8.5-10 9-10 0-15 0-10 Mi-15-3 9-9.5 9.5 0-15 0-10 Sj-1 9.5-11 7-11 0 0-20 Sj-2 10-11 7-11 0-1 0-10 AH-6 8.5-11 7-9.5 0-1 0-10 Ve1 10-11.5 9-10 0-0.5 0-1
  • 70. Optimum salt requirement for Growth and Enzyme Secreation 0 5 10 15 20 25 30 35 0 5 10 15 20 25 Salt (%, w/v) Number of Isolates Optimum pH require for Growth and Enzyme Secreation 0 5 10 15 20 25 7 8 9 10 pH Number of Isolates Growth Enzyme secreation
  • 71. Regulation of Enzyme Synthesis
  • 72. 2016 Dec; 12: 40–51. Effect of amino acids on the repression of alkaline protease synthesis in haloalkaliphilic Nocardiopsis dassonvillei Amit K. Sharma and Satya P. Singh⁎ Repression of alkaline protease
  • 73. 0 20 40 60 80 100 120 0 0.5 1 1.5 2 2.5 3 0 1 2 3 4 5 6 7 8 OM-6 0 100 200 300 400 500 600 700 0 0.5 1 1.5 2 2.5 3 0 1 2 3 4 5 6 7 8 OK-5 Growth (■) and protease production (■) among OM-6 and OK-5 isolates at increasing number of amino acids at 1% concentration of each Growth at 540nm Protease activity (U/ml/min) Protease activity (U/ml/min) Growth at 540nm Increasing number of amino acids Increasing number of amino acids 1. Phenylalanine, 2. Leucine 3. Methionine, 4. Tyrosine 5. Aspartic acid 6. Arginine 7. Histidine 8. Asparagine
  • 74. Effect of combinations of amino acids on protease production 0 0.5 1 1.5 2 2.5 0 1 2 3 4 5 6 No. of amino acids Growth (A 540 ) 0 50 100 150 200 250 Activity (U/ml) Growth Activity 1) Phe ala 2) Phe ala + leu 3) Phe ala + leu + met 4) Phe ala + leu + met + tyr 5) Phe ala + leu + met + tyr + asp 6) Phe ala + leu + met + tyr + asp + arg
  • 75. 0 0.5 1 1.5 2 2.5 C ontrol M et A la H is Tyr P he A rg Leu A sn Amino acids (1%, w/v) Growth (A 540 ) 0 20 40 60 80 100 120 140 Activity (U/ml) 0 0.5 1 1.5 2 2.5 Control Molasses Wheat flour Whey Crude source (1%, w/v) Growth (A 540 ) 0 30 60 90 120 150 Activity (U/ml) Growth (■) Activity (■) Effect of amino acids and crude nutritional sources on growth and protease production Amino acids Crude sources
  • 76. Effect of cations and media on protease production 0 1 2 3 4 GB SB CMB SCB AB GA GAB GCB GGB Media Growth (A540) 0 25 50 75 100 125 150 Activity (U/ml) 0 0.5 1 1.5 2 2.5 KCl MnCl2 MgCl2 CaCl2 Cations (0.5 %, w/v) Growth (A540) 0 100 200 300 400 Activity (U/ml) Growth (■) Activity (■) cations Media
  • 77. ALKALINE PROTEASE: PRODUCTION AND CATALYSIS UNDER NON-AQUEOUS CONDITIONS
  • 79. Growth behavior of Mit-1 in the presence of Organic solvents Control Xylene Butanol Benzene
  • 80. Comparison of specific enzyme production with complex medium and with organic solvent as the sole source of carbon (0.1%) Medium Specific enzyme Comparative production fold (Enzyme activity/growth) Complex medium 49 1.0 (gelatin broth) MM* + Butanol 2400 48.9 MM+ Xylene 1083 22.1 MM+ Acetone 268 5.5 MM+ Benzene 73.8 1.5 MM+ Ethanol 20.21 0.412
  • 85. Organisms Gene Bank Number Cultural characteristics Optimum pH (Range) Optimum Temperature ( Range) Optimum Salt (Range) Solvent tolerance Reference Haloalkaliphilic bacterium S- 15-9 GU059918 Round, opaque, smooth, regular 9.5-10.5 60 5-25% Methanol, Propanol,Xylene, n-hexane Joshi RH 2006 Haloalkaliphilic bacterium S- 20-9 EU118360 Round, opaque, smooth, regular 10.5 50-60 5-25% Methanol,Butanol Propanol,Xylene, n-hexane Joshi et al 2008 Haloalkaliphilic bacterium D- 15-9 HM047795 Round, opaque, smooth, regular 10 50-60 5-25% Methanol, propanol Joshi RH 2006 Oceanobacillus oncorhynchi D-20-91 HM047798 Round, opaque, smooth, regular 9.5-12.5 50-60 5-25% -- Joshi RH 2006 Haloalkaliphilic bacterium Ve2-10-10 HM047799 Round, opaque, smooth, regular 10.5 50-60 5-25% -- Joshi RH 2006 Oceanobacillus oncorhynchi Ve2-15-91 HM047796 Round, opaque, smooth, regular 9.5-13 50-60 5-25% Methanol, Butanol Propanol,n-hexane Joshi RH 2006 Oceanobacillus iheyensis Ve2- 20-92 HM047797 Round, opaque, smooth, regular 10-13 50-60 5-25% -- Joshi RH 2006 Haloalkaliphilic bacteria Ve2- 20-91 HM047794 Round, opaque, smooth, regular 8-10 50-90 5-25% n-heptane, toluene, benzene, chloroform, ethyl acetate, isopropyl alcohol, isoamyl alcohol Raval et al 2014 Haloalkaliphilic bacteria AH6 EU118361 Round, opaque, smooth, regular 8-13 50-60 0-4 M methanol, propanpl, hexane, heptanes, isooctane, dodecanes, decane and cuclohexane. Dodia MS 2005 Pandey and Singh 2013 Oceanobacillus sp. SJ1 GQ162111 Round, opaque, smooth, regular 10 50-60 5-25% Methanol, Butanol Propanol,n-hexane Pandey et al 2012 Bacillus pseudofirmus SJ2 EU090232 Round, opaque, smooth, 10 50-60 5-25% Methanol, Butanol Dodia MS 2005 Enzymatic Characteristics of Haloalkaliphilic bacteria
  • 86. 0 100 200 300 400 500 600 37 50 60 70 80 90 100 Activity(U/ml) Temp(oC) Temperature optima OM-4 OM-6 OM-11 Okha-5 Okha-7 Mit7 Tata-5 Tata-13 0 50 100 150 200 250 300 350 400 450 500 OM-4 OM-6 OM-11 Okha-1 Okha-5 Okha-7 Mit-7 Tata-5 Tata- 13 Activity(U/ml) Optimum enzyme activity in different nine isolates Activity(U/ml) 0 100 200 300 400 500 600 700 7 8 9 10 11 Activity(U/ml) pH pH optima OM-6 OM-4 Okha-1 Okha-7 OM-11 Okha-5 Mit-7 Tata-5 Tata-13
  • 87. 0 100 200 300 400 500 37 50 60 70 80 90 % Residual activity Temp (oC) OM-6 0 2 5 7 10 20 50 100 0 100 200 300 400 500 600 700 800 900 37 50 60 70 80 90 % Residual activity Temp (oC) OK-5 0 2 5 7 10 20 50 100 Effect of Ca2+ on temperature optima and enzyme activity of purified proteases from both OM-6 and OK-5 isolates at 0 - 100mM concentration
  • 88. Effect of osmolytes, inhibitors, metal ions, oxidizing and reducing agents and surfactants Gohel, S. D., & Singh, S. P. (2013). Characteristics and thermodynamics of a thermostable protease from a salt-tolerant alkaliphilic actinomycete.International journal of biological macromolecules, 56, 20-27.
  • 89. Effect of NaCl on Temperature Optima Ah-6 Alkaline Protease 0 50 100 150 200 250 0mM NaCl 0 50 100 150 200 250 300 Activity (u/ml/min) 500mM NaCl 0 50 100 150 200 250 1500mM NaCl 0 50 100 150 200 250 30 40 50 60 70 80 90 100 Temperature (0 C) 2000mM NaCl 0 50 100 150 200 250 300 200mM NaCl Dodia M. S., Rawal C. M., Bhimani H. G., Joshi R. H., Khare, S. K. and Singh, S. P. 2008. Journal of Industrial Microbiology & Biotechnology 35(2):121-132
  • 90. Effect of salt on Temperature optima S-20-9 (seawater) 0 50 100 150 200 0mM NaCl 0 50 100 150 200 250mM NaCl 0 50 100 150 200 Activity (U/ml/min) 500mM NaCl 0 50 100 150 200 1000mM NaCl 0 50 100 150 200 2000mM NaCl 0 50 100 150 200 30 40 50 60 70 80 90 100 Temperature ( . C) 3000mM NaCl
  • 91. 0 10 20 30 40 50 60 70 80 90 100 37°C 50°C 60°C 70°C 80°C 90°C Temperature % Relative activity 0 M 0.25 M 0.5 M 1 M 2 M 3 M Effect of NaCl on Ve2-20-91 Protease Temperature optima Raval, V. Rawal, C.M., Pillai, S. and Singh S.P. 2014. Process Biochemistry 49 (6): 955-962 (IF 2.63)
  • 92. Effect Of ca +2 on temperature optima of Ah-6 Protease 0 200 400 600 800 1000 1200 1400 20 30 40 50 60 70 80 90 Temperature (0 C) Acivity (U/ml) 0mM Ca+2 5mM Ca+2 10mM Ca+2
  • 93. Effect of NaCl on partialy prufied Protease activity at 37 o C 40 60 80 100 120 140 160 0 50 100 150 200 250 300 350 400 450 500 NaCl (mM) % of Residual Activity Gupta, A., Roy, I., Patel, R.K., Singh, S.P., Khare, S.K. and M.N. Gupta. 2005. Journal of Chromatography A 1075: 103-108
  • 94. Urea Denaturation(8M) among haloalkaline proteases Undialyzed Enzyme 0 20 40 60 80 100 control 0 1 2 24 48 72 96 Time(Hrs) % Residual Activity (U/ml/min) S-20-9 S-15-9 D-15-9 D-20-91 Ve2-10-10 Ve2-15-91 Ve2-20-92 Dialysed Enzyme 0 20 40 60 80 100 Control 0 10 20 30 60 120 Time(min) % Residual Activity (U/ml/min) S-20-9 S-15-9 D-15-9 D-20-91 Ve2-10-10 Ve2-15-91 Ve2-20-92
  • 95. Effect of NaCl on Denaturation Kinetics Of Ah-6 Protease 0 20 40 60 80 100 120 0 20 40 60 80 100 120 140 160 180 Time (h) %, Residual Activity dialysed 0mM NaCl 500mM NaCl 1000mM NaCl 2000mM NaCl Dodia M. S., Bhimani H. G., Rawal C. M., Joshi R. H., and Singh, S. P. 2008. Bioresource Technology 99:6223- 6227
  • 96. Thermodynamics of the Enzyme Catalysis and Denaturation
  • 97. Isolates T (oC) 0 M NaCl 2 M NaCl 4 M NaCl 30% Na-glutamate Kd ( ×10-3) t1/2 (min) Kd ( ×10-3) t1/2 (min) Kd ( ×10-3) t1/2 (min) Kd ( ×10-3) t1/2 (min) OM-6 37 1.24 558.98 0.73 949.51 0.51 1359.11 0.42 1650.35 50 4.94 140.31 2.52 274.62 0.91 761.70 0.73 949.51 60 27.51 25.19 10.92 63.47 1.68 412.58 1.14 608.02 70 35.86 19.32 27.29 25.39 10.75 64.47 2.41 287.61 80 41.09 16.86 33.30 20.81 28.50 28.50 8.66 80.04 OK-5 37 1.55 447.19 1.47 471.52 1.08 641.80 0.99 700.14 50 2.30 301.36 2.01 344.84 1.20 577.62 0.826 839.16 60 19.15 36.19 2.37 292.46 1.69 433.21 0.77 900.19 70 22.4 30.94 18.38 37.71 6.23 111.25 2.50 277.25 80 37.2 18.63 24.31 28.51 8.29 83.61 4.11 168.64 Deactivation rate constant (Kd) and Half life (t1/2) of OM-6 and OK-5 purified proteases in presence of 0 M NaCl, 2 M NaCl, 4 M NaCl and 30% Na- glutamate at the range of 37oC-80oC temperature 1. Decrease in favorable electrostatic repulsion 2. Halophilic enzymes have high –ve charge with hydrated groups shielded by high salt that avoids unfolding and maintain solubility of proteins 3. Lowering NaCl decrease stability of enzyme suggesting low water activity resulting from high salt conc. required for conformational stability of enzyme 4. Effect of salt on stabilizing enzyme is related not only to the salt/solute conc but also to the type of salt/solute
  • 98. Isolates OM-6 OK-5 Treatment ∆H* (KJ/mole) ∆S* (J/mole) E (KJ/mole) ∆H* (KJ/mole) ∆S* (J/mole) E (KJ/mole) 0 M NaCl 111.26 57.03 113.92 71.33 -69.99 74.08 2 M NaCl 96.91 6.48 99.57 62.59 -152.72 65.34 4 M NaCl 41.34 -175.17 44.01 44.91 -160.12 47.66 30% Na-glutamate 34.47 -196.37 37.14 29.23 -211.83 31.97 Strains OM-6 OK-5 T (oC) ∆G* (KJ/mole) for deactivation of protease ∆G* (KJ/mole) for deactivation of protease 0 M NaCl 2 M NaCl 4 M NaCl 30% Na- glutamate 0 M NaCl 2 M NaCl 4 M NaCl 30% Na- glutamate 37 93.27 94.63 95.56 96.06 92.69 92.83 93.62 93.85 50 93.58 94.38 98.12 98.71 95.63 95.99 97.38 98.38 60 91.80 94.36 99.54 101.62 92.81 98.59 99.68 101.70 70 93.89 94.67 97.32 101.59 95.23 95.79 98.88 101.48 80 96.31 96.93 99.85 100.88 96.60 97.85 101.01 103.07 ∆H*, ∆S* and activation energy for OM-6 and OK-5 proteases deactivation ∆G* for deactivation of OM-6 and OK-5 proteases 1. Low values of ∆H and ∆S reveled higher thermal stability of protease 2. –ve values of ∆S indicated ordered transition state of protease 3. ↑ salt/solute ----- stable conformation of protease ---- decreased entropy of unfolding ---- thermodynamic 4. ↑ ∆G ----- thermal stability of protease ---- ↑ free energy --- as enzyme could resist against unfolding of its transition state
  • 99. NaCl (M) Kcat ( sec-1 ) 370 C 500 C 600 C 700 C 800 C 0.0 6.18 3.36 0.45 0.234 0.0 0.5 4.08 9.30 10.26 5.82 3.78 1.0 1.98 5.64 7.62 11.28 9.6 1.5 0.66 4.08 4.92 9.90 4.8 2.0 0.12 2.28 3.00 7.32 3.42 Effect of NaCl on the catalytic constant Kcat (sec-1) of purified AH-6 protease Dodia M. S., Rawal C. M., Bhimani H. G., Joshi R. H., Khare, S. K. and Singh, S. P. 2008. Journal of Industrial Microbiology & Biotechnology 35(2):121-132
  • 100. CaCl2 (mM) Kcat ( sec-1 ) 370 C 500 C 600 C 700 C 0.0 4.86 3.24 0.66 0.84 2.0 4.92 10.02 5.16 1.44 5.0 4.98 8.1 5.88 1.56 8.0 4.2 7.32 5.16 1.62 10.0 3.3 6.72 3.54 1.32 Effect of Ca+2 on the catalytic constant Kcat (sec-1) of purified AH-6 protease
  • 101. Structure & Function analysis of the enzymes
  • 102. Here below are the predicted Sequence from De novo. The predicted sequences are Blasted against the NCBI nr bacterial protein databases. The top matches are listed under the pictures of the spectrums. #1: OBS MASS: 1271.5388 Charge : 2 Predicted Seq: SVNSNLSVPEAR or VSNSNLSVPEAR Blast report: gi|90327884|gb|EAS44215.1| hypothetical protein P3TCK_11048 [Photobacterium profundum 3TCK]Length=609 Score = 27.8 bits (58), EUS EAS44215 609 aa linear BCT 23-MAR-2006 DEFINITION hypothetical protein P3TCK_11048 [Photobacterium profundum 3TCK]. ACCESSION EAS44215 VERSION EAS44215.1 GI:90327884 DBSOURCE accession AAPH01000006.1 KEYWORDS . SOURCE Photobacterium profundum 3TCK ORGANISM Photobacterium profundum 3TCK Bacteria; Proteobacteria; Gammaproteobacteria; Vibrionales; Vibrionaceae; Photobacterium. REFERENCE 1 (residues 1 to 609) AUTHORS Bartlett,D.H., Valle,G., Lauro,F.M., Vezzi,A., Simonato,F., 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 M/z 0 100 % Pandey_100506 MaxEnt 3 35 [Ev-149431,It50,En1] (0.050,200.00,0.200,1400.00,2,Cmp) 2: TOF MSMS 636.78ES+ SV N S N L SVPEAR bMax R A E P V S L N S N VS yMax 472.27 y4 246.17 y2 187.12 b2 159.12 a2 455.25 301.17 b3 370.20 658.37 y6 571.34 y5 484.24 771.45 y7 667.33 885.51 y8 783.44 972.54 y9 955.50 1086.57 y10 1315.93 1141.84 1367.83
  • 103. N-Terminal amino acid sequencing of Ve2-20-91 Protease
  • 104. Amide A Amide B Amide I Amide II Amide III Amide IV, V & VI FTIR spectroscopic analysis of Ve2-20-91 Protease
  • 105. -2 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 2 240 237 234 231 228 225 222 219 216 213 210 207 204 201 Wavelength (nm) [θ] x 10 -4 deg cm 2 dmol -1 Native Enzyme Denatured 50 Denatured 50 1 M Denature 50 2M -2 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 2 2 4 0 2 3 7 2 3 4 2 3 1 2 2 8 2 2 5 2 2 2 2 1 9 2 1 6 2 1 3 2 1 0 2 0 7 2 0 4 2 0 1 Wavelength (nm) [θ] x 10-4 deg cm2 dmol-1 Native Enzyme Denatured 70 Denature 70 2M Denature 70 1M a b (NaCl,% w/v) Analysis by K2D2 50˚C 70˚C α helix β strand α helix β strand Native 1.58% 24.49% 1.81 36.24 Denature 4.44% 44.17% 1.81 36.25 With 1M NaCl 3.95% 44.11% 1.77 36.09 With 2M NaCl 4.44% 44.17% 1.82 36.07 CD spectroscopy analysis of Ve2-20-91 Protease
  • 106. -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 200 210 220 230 240 pH10 pH8 -3 -2 -1 0 1 2 3 200 210 220 230 240 50 70 90 -4 -3 -2 -1 0 1 2 3 4 200 210 220 230 240 50 1M 50 2 M 70 1M 90 1M -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 200 210 220 230 240 0M 4M 8M Circular Dichroism (CD) spectroscopy Wavelength (nm) MRE Urea
  • 108. FT-IR analysis of the free and immobilized protease A:alkaline protease, B: immobilized alkaline protease A B Structural topographies of the immobilized HTASP-FT-IR Decrease in Amide A band, suggesting the Interaction of the carriers with –NH groups in protease molecule while C=O regions remain less affected Thakrar, F. J., and Singh, S. P. (2019). Bioresource Technology. 278 150–158
  • 109. FTIR spectra of (a) native alkaline protease (b) partially denatured enzyme (c) partially denatured enzyme along with 1M salt and (d) completely denatured enzyme. The spectra were recorded in the range of 400-4000 cm-1. a b c d
  • 110. Gene Profiling Cloning, Expression and Characterization of the Recombinant Enzymes
  • 111. Protease Gene Profiling Cloning, Expression and Characterization of the Recombinant Enzymes
  • 112. Protease gene amplification profile 0 1 2 3 4 5 6 7 8 9 BPAP1 BLIAP2 BAAP PCAP GMAP BPAP2 Number of isolates Primers No. Of isolates 0 1 2 3 4 5 6 BPAP1 BLIAP2 BAAP PCAP GMAP BPAP2 Number of species Primers No. Of Species Hitarth Bhat, Mausami Pandya, Yogesh and S P Singh 2019
  • 113. Haloalkaliphilic organism Functional clones Recombinant CLONES Vector construct
  • 114. Organisms NCBI Accession number Gene cloned Host Reference Haloalkaliphilic bacterium OME12 EU680960 Alkaline protease BL21 (DE3) Purohit and Singh 2013 Proc. Biochem Metagenome from salt enriched soil --------------- Alkaline protease BL21 (DE3) Purohit and Singh 2013 IJBIOMAC Oceanobacillus ihyehensis OME18 EU680961 Alkaline protease BL21 (DE3) Purohit and Singh 2013 Proc. Biochem Alkalibacillus haloalkaliphilus C-5 -- Serine alkaline protease E.coli (DH5α) Rawal et al 2012/2014 Haloakaliphilic bacteria Ve2-20-91 JX296114 Serine alkaline protease E.coli (DH5α) Raval et al. 2015 Ann Microbiology Haloalkaliphilic actinomycetes Serine alkaline protease BL21 (DE3) Gohel & Singh, 2012 IJBIOMAC Bacillus lehensis JO-26 ---------- Serine alkaline protease BL21 (DE3) Hitarth Bhatt and S P Singh ( Frontiers in Microbiology, 2020) Cloning, Expression and structure and function relationship of proteases from Haloalkaliphilic bacteria & Actinobacteria
  • 115. WP 026680332.1serineproteaseBacillus megaterium WP 121604525.1serineproteaseVirgibacillus sp. Bac332 JO-21 WP 100011609.1serineproteaseLentibacillus sediminis WP 088049911.1serineproteaseVirgibacillus dakarensis WP 102415391.1serineproteaseCitricoccus massiliensis Phylogenetic tree of the alkaline protease J-21 with its closest phylogenetic relatives obtained from BLASTP using Neighbour Joining Method of MEGA 6 software.
  • 116. 1 M 1 2 3 4 5 6 7 A 1 kb 3 kb 1 kb 3 kb B PCR Amplification of Alkaline Protease Gene/s 1.2 kb 0.8 kb
  • 117. Conformation of insert in pET 21a+ by digesting with Bam HI and Sal I Colony # 1 kb Ladder Size (bp) 1 2 3 4 5 6 10,000 5,000 3,000 2,000 1,500 1,000 Vector Insert (Alkaline protease) (~1.2 kb)
  • 118. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Protein expression and effect of IPTG induction
  • 119. • Amplicon and pET 21a+ was Digested by BamH1 • Amplicon and pET 21a+ was Digested by Sal1 RE Digestion • Double digested amplicon and vector was ligated in ratio of 1:3 • Ligation carried by Quick Ligase, Fermentas Ligation • Ligated vector transformed to Top 10(E.coli Host strain) • 5 Poisitive clones for O.M.A18 and 7 positive clones for O.M.E12 obtained on plate containing LB+Ampicillin Transformation-I • Colony PCR • To check for release of vector Confirmation of transformation • Positive clone from both the strains vector transformed in BL21 Host strain(Expression strain) Transformation-II THE MAJOR STEPS OF CLONING OF ALKALINE PROTEASE GENES… 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 1 2 3 4 5 6 7 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 1 2 3 4 5 6 7 8 9 10 1 2 3 4 Colony number 27oC and 1mM: Lane 1: Molecular weight marker (Middle range, Merk life science) Lane 2: Pre-induction sample Lane 3: 2 hours sample Lane 4: 4 hours sample Lane 5: 4 hours sample Lane 6: 6 hours sample Lane 7: 24 hours sample 1 2 3 4 5 6 7 Colony Diameter (mM) Zone Ratio (m/z) EFFECT OF TEMPERATURE AND IPTG ON ENZYME INDUCTION EXPRESSION ANALYSIS
  • 120. 1 2 3 4 5 6 7 1 2 3 4 5 6 7 Soluble fraction: (27 oC;1mM ) Lane 1: PCR control Lane 2: Molecular weight marker (Middle range marker, Merk life science) Lane 3: 24 hours sample Lane 4: 6 hours sample; Lane 5: 4 hours sample Lane 6: 2 hours sample Lane 7: Pre-induction sample Insoluble fraction: (27 oC;1mM ) Lane 1:Protein molecular weight marker (3500- 205000Da) Lane 2: -- Lane 3: 0 hour Lane 4:2 hours Lane 5:4 hours Lane 6: 6 hours Lane 7: 24 hours 120 Over-Expression Analysis
  • 121. 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 0 20 40 60 80 100 120 140 160 180 200 0 0.5 1 2 4 Relative enzyme activity (%) NaCl concentration (% w/v) Enzyme activity Growth Growth Bhatt, H.B. and Singh S.P. 2020, Frontiers in Microbiology, 11:1- 16, https://doi.org/10.3389/fmicb.2020.00941
  • 122. Phylogenetic tree based on a comparison of the APrBL amino acid sequence and some of their closest phylogenetic relatives retrieved from NCBI database. The tree was reconstructed by the neighbor joining method using MEGA 6 software. The numbers on the tree indicates the percentages of bootstrap support derived from 1,000 replications. The scale bar corresponds to 0.1 substitutions per nucleotide position Bhatt, H.B. and Singh S.P. 2020, Frontiers in Microbiology, 11:1-16, https://doi.org/10.3389/fmicb.2020.00941
  • 123. AprBL (Alkaline protease gene) (1.151 kbp) from Bacillus lehensis JO-26 , ARID Zone  ORF 1014 bp-337 amino acids: Cloned and expressed in E.coli BL21 (DE3)  Optimum expression: 0.2 mM IPTG induction, 2% NaCl and 28°C at 20 hrs growth  Subtilase S8 family of proteases: Asp 97, His 127 and Ser 280- catalytic triad  31.75% α-helices, 22.55 % β-strands and 45.70% coils  Broad pH (8–11) and temperature (30-70°C), Optima at pH 10 and 50°C  Highly thermostable: 73% of the residual activity at 80°C up to 3 h  Significantly stimulated by SDS, Ca2+, chloroform, toluene, n-butanol and benzene  Completely inhibited by PMSF and Hg2+  High glycine and low proline residues, a characteristic feature of the cold adapted enzymes  Hydrolysis of whey protein and detergent additive established Bhatt, H.B. and Singh S.P. 2020, Frontiers in Microbiology, 11:1-16, https://doi.org/10.3389/fmicb.2020.00941
  • 125. 125 Features Oceanobacillus iheyensis O.M.A18 enzyme Haloalkaliphilic bacterium O.M. E12 enzyme Basis Information N-terminal Sequence 5’MNPGSAWRSPVVPFSSLGMSPAYG 5’KLRVIIEFKEDAVEAGIQSTKQLMKK… Homology(%) 100 100 Homologus protein (BLAST analysis) Bacillus sp.KP43, complete CDS gene- protease gene Bacillus pumulius SAFA-032 -protease gene NCBI Genbank ID: HM219179. HM219182 Physicochemical Properties pI 5 5 instability index (II) 39.57 27.30 Stability Yes Yes Aliphatic Index 65.60 42.94 Grand average of hydropathicity (GRAVY) 0.016 -0.747 Total numbers of negatively charged residues (Asp + Glu) 30 40 Total numbers of positively charged residues 30 40 SEQUENCE ANALYSIS OF RECOMBINANT ALKALINE PROTEASES
  • 128. 128 O.M.A18 (Upper panel) and O.M.E12 (Lower Panel) RAMACHANDRAN ANALYSIS
  • 129. Metagenomics & Non Cultivable
  • 132. Functional novel Protease enzyme in E.coli Host Characteristics of Haloalkaliphilic Protease (Saline Habitat) Expression and Purification of enzyme Creation of Metagenomic library Designing of Universal Degenerate Primers Isolation of Total Metagenome from Saline Coastal region of Okha,Gujarat Mechanical Method Chemical method
  • 133. 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% AL1 AL3 KH1 KH3 AL KH Relative abundance (%) Phylum Others Unclassified [Thermi] Crenarchaeota Nitrospirae Cyanobacteria Euryarchaeota OD1 Chloroflexi Acidobacteria 1. Nirali Raiyani & S P Singh Raiyani, Nirali and Singh S.P. 2020, Extraction of environmental DNA, construction of metagenomic libraries and functional screening of enzymes from salt pan soil, Indian Journal of Geo-Marine Sciences, Accepted (NISCARE, CSIR, IF 0.50),
  • 134. 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% AL1 AL3 KH1 KH3 AL KH Relative abundance (%) Genus Unclassified Others Fulvivirga Idiomarina Anaerospora Rhodococcus 4-29 Bradyrhizobium Deinococcus Janibacter Brevundimonas Kaistobacter Psychrobacter Pseudomonas Sediminibacterium Methanosaeta Acidiphilium Sphingomonas Hyphomicrobium Gramella Methylobacterium Mycobacterium Planctomyces Halomonas Pseudidiomarina 1. Raiyani, Nirali and Singh S.P. 2020, Taxonomic and functional profiling of the microbial communities of Arabian Sea: A Metagenomics approach Journal: Genomics (Elsevier, IF 6.20), 112:4361- 4369 https://doi.org/10.1016/j.ygeno.2020.07.024
  • 135. 135 2.3 kb 564bp 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 9 10 11 12 13 3kb 1kb Isolation of metagenomic DNA by various methods for saline soil sample O.M.6.2 and O.M.6.5. Lane 1: Lamda DNA /HindIII Marker (Banglo Genei), Lane 2: Soft Lysis, Lane 3: Bead Beating, Lane 4 : Bead beating+Lysis, Lane 5 : Sonication+Lysis Lane 6: Sonication Lane 7: Sonication+Bead Beating Lane 1: DNA ruler (Middle range marker, Merk life sciences, India), Lane 2: lysis buffer treatment (sample-6.2), Lane-3: Lysis Buffer Treatment (sample-6.5), Lane 4: Bead Beating only (sample-6.2); Lane 5: Bead Beating only (sample-6.5); Lane 6: Bead Beating + Lysis Buffer Treatment (sample-6.2), Lane 7: Bead Beating + Lysis Buffer Treatment (sample-6.5); Lane 8: Bead Beating + sonication treatment (sample-6.2); Lane 9: Bead Beating + sonication treatment (sample-6.5); Lane 10: lysis buffer + sonication treatment (sample-6.2); Lane 11: lysis buffer + sonication treatment (sample-6.5); Lane 12: sonication treatment (sample-6.2); Lane 13: sonication treatment ( (sample-6.5) (Fig.6.1.3.2). Isolation of Metagenomic (Environmental) DNA
  • 136. 136 1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 1 2 3 4 5 6 7 Bead beating + Sonication Method Lane 1: 0.2-10Kb ladder, Lane 2: Site 6.2 (Ta=52.4), Lane 3: Site 6.2 (Ta=55.7), Lane 4 : Site 6.2(Ta=56.9), Lane 5 : Site 6.5(Ta=52.4) Lane 6 : Site 6.5 (Ta=55.7) Lane 7 : Site 6.5 (Ta=56.9) (Bead Beating Method) Lane 1: 0.2-10Kb ladder, Lane 2: Site 6.2 (Ta=52.4), Lane 3: Site 6.2 (Ta=55.7), Lane 4 : Site 6.2(Ta=56.9), Lane 5 : Site 6.5(Ta=52.4), Lane 6 : Site 6.5 (Ta=55.7), Lane 7 : Site 6.5 (Ta=56.9) 16S rRNA Amplification from Total DNA of sample O.M.6.2 (Ta- 64oC) Lane 1, smart ladder 0.2-10 kbp ladder (invitrogen); Lane 2, Lysis treatment; Lane 3, Soft Lysis + Bead Beating; Lane 4, Soft Lysis +Sonication; Lane 5, Bead beating; Lane 6, Sonication; Lane 7, Sonication+ Bead Beating. 16S rRNA Amplification from Total DNA of sample O.M.6.5 (Ta- 64oC) Lane8, Lysis treatment; Lane 9, Soft Lysis +Bead Beating; Lane 10, Soft Lysis +Sonication; Lane 11, Bead beating; 16S rRNA amplification of Total DNA isolated by various method by using eubacterium universal primer 1500bp 1500bp 16S rRNA
  • 137. DGGE ANALYSIS 1 2 3 4 5 6 M M 1 2 3 4 5 6 Megha Purohit and S. P. Singh ( 2009) Letters in Applied Microbiology , 49:338-344
  • 138. 138 SPS- 5F&R SPS- 5F&6R SPS- 5F&7R SPS- 6F&R SPS- 6F&5R SPS- 6F&7R SPS- 7F&R SPS- 7F&6R SPS- 7F&5R Ok.M.6.2 0.5 0 0 0.5 0 1 0.5 0.7 2.8 1.1 1.2 Ok.M.6.5 0.7 1 1 0.5 0.5 0 1.2 1 1 0.5 0 0 0.5 0 1 0.5 0.7 2.8 1.1 1.2 0 0.5 1 1.5 2 2.5 3 Size (kb) AMPLIFICATION PROFILE OF O.M.6.2 AND O.M.6.5 SOIL SAMPLE Ok.M.6.2 Ok.M.6.5 1 2 3 4 1 2 3 4
  • 139. 139 1 2 3 4 5 1 2 3 4 5 A B D Protease gene amplicons PCR amplification of alkaline proteases genes Protease gene amplicons C 1 2 3 4 5 1 2 3 4 5 D C 1 2 3 4 5 1 2 3 4 5 6 D B C A PCR AMPLIFICATION OF ALKALINE PROTEASE GENE/S Purohit, M. and Singh S.P. 2013. A metagenomic alkaline protease from saline habitat: cloning, over- expression and functional attributes. International Journal of Biological Macromolecules (IJBIOMAC) 53: 138– 143 (IF 2.45). Singh S.P, M.K. Purohit, C. Aoyagi, M. Kitaoka and K. Hayashi. 2010. Biotechnology Bioprocess Engineering, 15 (2):273-276 (IF 1.28)
  • 140. Conclusion •Enzyme: Wide occurrence and variation in levels & Characteristics • Analysis based on 16 S rRNA genes: Phylogeny & Identification •Analysis based on Phenotypic & Biochemical Traits: Phenograms •pH, temperature and salt profiling: Growth and enzyme catalysis-stability •Wide variation in optimum salt concentrations for catalysis and for stability •Chemical Denaturation of Enzymes: Sensitivity/Resistance- highly unique Traits •In-vitro protein folding: Denaturation/Renaturation- Highly specific & Variable, affected by pH, Temperature, Salt, enzyme concentration, Redox conditions •Salt -Dependence thermo stability and temperature profile •Metagenomic & Non-Cultivability •Exploration of novel genes •Understanding the function of genes and proteins • Above features/patterns : Could be developed and used as a marker to assess diversity
  • 146. Research Team Dr. Sangeeta Gohel, Assistant Professor Dr. Vikram Raval, DST Young Scientist (Now at Gujarat University) Dr. Aparna Singh, DST Women Scientist ( Now Asstt. Prof, Surat) Dr. Kalpana Rakholiya, SERB- National Post-Doctoral Fellow Ms. Kruti Dangar, DST Women Scientist (Now Asstt. prof, Saurashtra University) & Ph.D./M.Phil/M.Sc. Students
  • 147. Dr. Bharat Joshi (Canada) Dr. Manish Bhatt ( Canada) Dr. Rajesh K. Patel ( Professor, VNUSG, Surat) Dr. Anju Mittal ( Scientist, USA) Dr. Mital Dodia ( Scientist, Canada)  Dr.. Jignasha Thumar ( Associate Prof. Gandhinagar) Dr. Rupal Joshi (ZRC, Ahmedabad) Dr. Chetna Rajyaguru (Associate Prof. Rajkot) Ms. Geera Mankad ( Associate Prof. Rajkot) Dr. Chirantan Raval ( Asst Prof., Govt College)  Dr. Megha Purohit ( Scientist and Entrepreneur, Canada) Dr. Himanshu Bhimani ( Associate Prof. Navsari Ag Univ,) Dr. Bhavtosh Kikani (Asstt. Prof. CHARUSAT) Dr. Vikram Raval (Asstt Prof. Gujarat University) Dr. Sangeeta Gohel (Asstt Prof. Saurashtra University) Dr. Sandeep Pandey (Scientist, Pharma, Daman) Dr. Viral Akbari ( Self Employed) Dr. Rushit Shukla (Asstt Prof. Christ College, Rajkot) Dr. Amit Sharma (Scientist, ZRC, Ahmedabad) Dr. Kruti Dangar (Asstt Prof. Saurashtra University) Dr. Atman Vaidya ( Biology Teacher & Entrepreneur) Dr.r. Hitarth Bhatt (Asstt Prof. Virani College, Rajkot) Dr. Rupal Pandya (Scientist, USA) Dr. Foram Thakrar ( Ahmedabad) Dr. Dalip Singh Rathore ( GBRC, Gandhinagar) Acknowledgements : Ph.D. Students
  • 148. Financial Support DBT, UGC, DST, MoES, GSBTM, Saurashtra University, Rajkot Research Collaborations •IIT Delhi, New Delhi: Prof. S. K.Khare •DUSC, New Delhi: Prof. Sanjay Kapoor •NFRI, Tsukuba, Japan: Dr. Kiyoshi Hayashi ( Now at Toyo University, Japan) •Griffith University, Australia •JNTU Hyderabad, Prof. Ch. Sasikala •Central University of Hyderabad, Prof. Ch. Rama Rao
  • 150. Recent Publications ( Cumulative Impact factor : 201, H-Index: 31) 2021 Dwivedi, Purna, Sharma, A. K. and Singh, S.P. 2021. Biochemical properties and repression studies of an alkaline serine protease from a haloalkaliphilic actinomycete, Nocarpdiopsis dassonvillei subsp. albirubida OK-14. Biocatalysis and Agricultural Biotechnology, Accepted. 07 June 2021 (Elsevier; IF: 0.90) Kikani, B.A. and Singh, S.P. 2021. Amylases from thermophilic bacteria: Structure and Function Relationship. Critical Reviews in Biotechnology, In Press, 30 April 2021 (Taylor & Francis; IF: 8.102) Rathore, D. R., Sheikh, M., Gohel G.D, and Singh, S.P. 2021. Genetic and phenotypic heterogeneity of the Nocardiopsis alba strains of sea water. Current Microbiology, 78: 1377- 1387 (Springer; IF: 1.75), DOI: 10.1007/s00284-021-02420-0 •
  • 151. 2021 • Chauhan, J.V., Mathukiya, R. Singh, S.P. and Gohel, S.D. 2021. Two steps purification, biochemical characterization, thermodynamics and structure elucidation of thermostable alkaline serine protease from Nocardiopsis alba strain OM-5. International Journal of Biological Macromolecules (IJBIOMAC), 169: 39-50 (Elsevier; IF: 5.16), https://doi.org/10.1016/j.ijbiomac.2020.12.061 , Available On-Line 12 Dec 2020. Rathore, D R and Singh, S.P. 2021. Kinetics of growth and co-production of amylase and protease in novel marine actinomycete, Streptomyces lopnurensis KaM5. Folia Microbiologica (Springer; IF: 1.70), https://doi.org/10.1007/s12223-020-00843-z
  • 152. 2020 Sharma, A.K. Kikani, B.A. and Singh S.P. 2020, Diversity and Phylogeny of Actinomycetes of Arabian Sea along the Gujarat Coast. Geomicrobiology Journal (Taylor & Francis, IF 1.90), DOI: 10.1080/01490451.2020.1860165 Raiyani, Nirali and Singh S.P. 2020, Extraction of environmental DNA, construction of metagenomic libraries and functional screening of enzymes from salt pan soil, Indian Journal of Geo-Marine Sciences, Accepted (NISCARE, CSIR, IF 0.50), Raiyani, Nirali and Singh S.P. 2020, Taxonomic and functional profiling of the microbial communities of Arabian Sea: A Metagenomics approach Journal: Genomics (Elsevier, IF 6.20), 112:4361- 4369 https://doi.org/10.1016/j.ygeno.2020.07.024 Bhatt, H.B. and Singh S.P. 2020, Cloning, Expression and structural elucidation of a biotechnologically potential alkaline serine protease from a newly isolated Haloalkaliphilic Bacillus lehensis JO-26, Frontiers in Microbiology (IF 4.25), 11:1-16, https://doi.org/10.3389/fmicb.2020.00941
  • 153. 2020 Sharma, A.K. Kikani, B.A. and Singh S.P. 2020, Biochemical, thermodynamic and structural characteristics of a biotechnologically compatible alkaline protease from a haloalkaliphilic, Nocardiopsis dassonvillei OK-18 International Journal of Biological Macromolecules (IJBIOMAC), 153:680-696, DOI: 10.1016/j.ijbiomac.2020.03.006 (IF 5.16) Pandya, Rupal D. and Singh S.P. 2020, Pigment production by an extreme halophilic archaeon on Halorubrum sp. J4.2.2 from little Rann of Kutch, Gujarat, India. Research Journal of Biotechnology, 15(1):88-100. E-ISSN: 2278-4535 Print ISSN: 0973-6263
  • 154. 2019 Thakrar, F.J. and Singh S.P. 2019. Catalytic, thermodynamic and structural properties of an immobilized and highly thermostable alkaline protease from a haloalkaliphilic actinobacteria, Nocardiopsis alba Tata-5. Bioresource Technology, 278:150-158 (IF 5.802) Sheikh, M., Rathore, D.S., Gohel, S.D. and Singh S.P. 2019. Cultivation and characteristics of the Marine Actinobacterial from the Sea water of Alang, Bhavnagar. Indian Journal of Geo- Marine Sciences (CSIR-NISCARE), 48(12), 1896-1901(IF 0.4). Rathore, D.S., Sheikh, M.A., Gohel, S.D. and Singh, S.P. (2019) Isolation strategies, abundance and characteristics of the marine actinomycetes of Kachhighadi, Gujarat, India. Journal of Marine Biological Association of India (JMBAI), CMFRI Cochin, India 61(1): 21-27
  • 155. 2018 Gohel, S. D. and Singh S.P. 2018. Thermodynamics of a Ca2+ dependent, highly thermostable and detergent compatible purified alkaline serine protease from Nocardiopsis xinjiangensis strain OM-6. International Journal of Biological Macromolecules (IJBIOMAC), https://doi.org/10.1016/j.ijbiomac.2018.02.157, 113:565-574 (IF 3.00) Gohel, S. D. and Singh S.P. 2018. Molecular phylogeny and diversity of the salt-tolerant alkaliphilic actinobacteria inhabiting Coastal Gujarat, India. Geomicrobiology Journal, DOI: 10.1080/01490451.2018.1471107, 35:9, 775-789 (IF 1.5) Thakrar, F.J., Kikani, B.A., Sharma, A.K. and Singh S.P. 2018. Stability of alkaline proteases from haloalkaliphilic actinobacteria probed by circular dichroism spectroscopy. Applied Biochemistry and Microbiology (Russia), 54(6), 591-602 (IF 0.68) Sheikh, M., Rathore, D. S., Gohel, S. D. and Singh S.P. 2018. Marine actinobacteria associated with the invertebrate hosts: a rich source of bioactive compounds: A Review. (Invited contribution) Journal of Cell &Tissue Research, 18 (01), 6361-6374.
  • 156. 2018 Dangar, K. G., Kalasava, A. B., Dave, A. V. and Singh S.P. 2018. Molecular diversity of Nocardiopsis alba sp. isolated from the coastal region of Gujarat, India. Journal of Cell &Tissue Research, 18(3) 6559-6570 Vaidya A., Nair, V. S., Georrge, J. and Singh S.P. 2018. Comparative analysis of thermophilic proteases, Research Journal of Life Sciences, Bioinformatics, Pharaceutical and Chemical Sciences (RJLBPCS) 4(6), P. 66. DOI: 10.26479/2018.0406.05 Pandey, S. Sharma, A.K., Solanki, Kiran P. and Singh S.P. January 2018. Catalysis and stability of an extracellular α- amylase from a haloalkaliphilic bacterium as a function of the organic solvents at different pH, salt concentrations and temperatures. Indian Journal of Geo-Marine Sciences (CSIR-NISCARE), 47 (01), 240-248 (IF 0.4).
  • 157. 2018 Dangar, K. G., Kalasava, A. B., Dave, A. V. and Singh S.P. 2018. Molecular diversity of Nocardiopsis alba sp. isolated from the coastal region of Gujarat, India. Journal of Cell &Tissue Research, 18(3) 6559-6570 Vaidya A., Nair, V. S., Georrge, J. and Singh S.P. 2018. Comparative analysis of thermophilic proteases, Research Journal of Life Sciences, Bioinformatics, Pharaceutical and Chemical Sciences (RJLBPCS) 4(6), P. 66. DOI: 10.26479/2018.0406.05 Pandey, S. Sharma, A.K., Solanki, Kiran P. and Singh S.P. January 2018. Catalysis and stability of an extracellular α- amylase from a haloalkaliphilic bacterium as a function of the organic solvents at different pH, salt concentrations and temperatures. Indian Journal of Geo-Marine Sciences (CSIR-NISCARE), 47 (01), 240-248 (IF 0.4).
  • 158. 2017 Bhatt, H.B., Gohel, S.D. and Singh, S.P. 2017. Phylogeny, Novel bacterial lineage and enzymatic potential of haloalkaliphilic bacteria from the saline coastal desert of Little Rann of Kutch, Gujarat, India. 3 Biotech, 8,53, https://doi.org/10.1007/s13205-017-1075-0 (IF 1.36) Bhatt, H.B., Begum, M.A., Chintalapati, S., Chintalapati, V.R. and Singh, S.P. 2017. Desertibacillus haloalkaliphilus gen. nov.sp. nov., isolated from a salt desert. International Journal of Systematic & Evolutionary Microbiology (IJSEM), 67(11):4435- 4442 (IF 2.1) Kikani, B.A., Sharma, A.K. & Singh, S.P. 2017. Metagenomic and Culture-Dependent Analysis of the Bacterial Diversity of a Hot Spring Reservoir as a Function of the Seasonal Variation. International Journal of Environmental Research, 11: 25-38. DOI:10.1007/s41742-017-0003-9 (IF 1.0). Datta, A., Sharma, A., Kundu, R.S. and Singh S.P. 2017. Diversity and enzymatic profile of bacterial flora in the gut of an estuarine fish, Mugil jerdoni. Indian Journal of Geo-Marine Sciences (CSIR-NISCARE), 46(06): 1116-1127 (IF 0.4)
  • 159. Richard Feynman https://en.wikipedia.org/wiki/Richard_Feynman Richard Phillips Feynman, an American theoretical physicist, known for his work in the path integral formulation of quantum mechanics,
  • 161. Assignment Question -1: What are different reasons for the variability in publications among the scientists/students. (One para or 5-7 Points) Question-2: In the light of the historical background of the citations, discus its implications (One para or 5-7 Points) Question-3 Discuss the Impact factors of the journals in the context of the assessment of the credentials of the scientists. (One-two para) Question-4 Highlight the merits of H-Index? (up to 5 Points) Question-5 List 10 Journals with Impact factors and publishers of your research areas