SlideShare a Scribd company logo
BPSK RF Receiver

      Team 10
   Michael Russell
     Shawn Kuo
     Amit Patel
Objective
   Successfully demodulate BPSK data
    sent at RF from one DSP to another
   Demonstrate feasibility of
    programmable back-end receiver
   Develop future tool for DSP lab
End-user Benefits
   A quick and simple point-to-point digital
    communication solution
   Scalable module that is capable of
    handling multiple demodulation
    schemes without hardware redesign
   Capable of receiving over a large
    frequency range
Original Design Review
                                        Design Schematic

                   BW ~ 10's of MHz's      AD8343             AD605     f =44.1KHz
 Universal                                                                             Eval      PC
 Rx                                                                     CS4226         DSP
AR5000       AD605 fc = 10.7 MHz                                        CODEC
                   ECS-10.7-7.5B
                                                    AD605                                     Teraterm




                             PBP-10.7               BW ~ 200 KHz
                                                    fc=10.7 MHz - 11.025 KHz


                                    DDS                                        CPLD
                                   AD9854           LO
                                                                           Mach211SP


                                 Crystal            60 MHz
Software Implementation
   Differential BPSK
       Pi-Radian Ambiguity
       Symbol Quantization and Unmapping
   Phase-Locked Loop
       Carrier Recovery
       Coherent Detection
   Symbol Timing
Differential BPSK Symbol Mapping
Phase-Locked Loop
Symbol Timing
Simulation Results
Generated BPSK Waveform   Received BPSK Waveform
RF Receive Stage
                            10.7 MHz BPF                Fixed Gain Amp              0.528 MHz LPF   Software
Transmitted                                8dB
BPSK                                                                                                  DSP 2
                                           Attenuator

                                                         25 dB

              Function
              Generator                                                           10.7 MHz LPF
              (Simulates Noise)


                                                                             Fixed Gain Amp
                                                                              25d B



                                                                     3dB
                                                                     Attenuator


                                                                                 21.4 MHz LPF




                                                                     DDS            Local
                                                                                    Oscillator
                                                                         DSP 1
RF Stage - Preselector

                                Maching Network                  Monolithic                                       Monolithic                      Maching Network
                                                                Crystal Filter                                    Crystal Filter




                                 Ta se F n t no Pe e c rd )
                                  rn fr u cio f rs l t ( B
                                                    eo                                                                             P ae f rsl t
                                                                                                                                    h s o Pee c r
                                                                                                                                             eo
                       0
   h g e r_3 ( ,1)




                                                                                                          20
                                                                                                           0
...cin _N tok ..S2 )




                                                                                     c g ewr_3 ( ,1)
                                                                                  ...t in _N tok ..S2 )
                       -0
                       1
                                                                                                          10
                                                                                                           0
                       -0
                       2

                       -0
                       3
          w




                                                                                                           0
                       -0
                       4

                                                                                                          -0
                                                                                                          10
                       -0
                       5
                                                                                      h




                       -0
                       6
                                                                                                          -0
                                                                                                          20
                        1 .6
                         0 7   1 .6
                                0 8    1 .6
                                        0 9       1 .7
                                                   0 0   1 .7
                                                          0 1      1 .7
                                                                    0 2          1 .7
                                                                                  0 3
                                                                                                           1 .6
                                                                                                            07       1 .6
                                                                                                                      08           1 .6
                                                                                                                                    09     1 .7
                                                                                                                                            00      1 .7
                                                                                                                                                     01       1 .7
                                                                                                                                                               02    1 .7
                                                                                                                                                                      03
                                              f qM z
                                              r , H
                                               e
                                                                                                                                          f qM z
                                                                                                                                          r , H
                                                                                                                                           e
Preselector Matching Network
                                                        Input Impedance
                                                     30
                                                      50

                                                                         m1
                  Matching Network                   30
                                                      00          m1     fq 0 0 H
                                                                         r =1 .7 M z
                                                                          e
                                                                         Rn 7 7 5
                                                                          i =2 5 .7 6
                                                     20
                                                      50



                                      R              20
                                                      00




                                                in
                      C     L




                                               R
                                      R2             10
                                                      50

                      C1    L2
                                      R=5 Oh
                                         0 m
                      C=4 p L .8 u
                         0 F =5 5 H
                                                     10
                                                      00




                            R=                        50
                                                       0


                                                       0

                                                     10
                                                      50


                                                     10
                                                      00


                                                      50
                                                       0



                                                                  m 2
Zin = 2580 - j 1040                        `   Xn
                                                i
                                                       0
                                                                  fq 0 0 H
                                                                  r =1 .7 M z
                                                                   e
                                                                  X =- 0 3 4
                                                                   in 1 3 .4 8
                                                     - 0
                                                      50

                                                                  m2
                                                     - 00
                                                      10


                                                     - 50
                                                      10


                                                     - 00
                                                      20
                                                        1 .0
                                                         0     1 .5
                                                                0      1 .0
                                                                        1     1 .5
                                                                               1     1 .0
                                                                                      2

                                                                      fqM z
                                                                      r , H
                                                                       e
Measured Signals
   Transmitted signal
   Signal after preselector
   Signal after mixing (baseband)
   Unfiltered DDS signal (LO)
   Filtered DDS signal
Transmitted Signal
Filtered Signal
Filtered Signal
Baseband Signal
Unfiltered DDS (LO)
Filtered DDS (LO)
Output Interface
   Write decoded characters to memory
    and serial port simultaneously
   Interact with serial port through Tera
    Term
Theoretical Probability of Error
                           Q



Constellation
                                          I
                Symbol B       Symbol A




                           Q


Constellation
w/Noise                                   I

                Symbol B       Symbol A
Theoretical Probability of Error
                  Received Symbol:
Mapping                              Q




                                                    I



                      Symbol B           Symbol A




Result: Q(sqrt(2*Energy/Noise)) or Q(sqrt(2*SNR))
Calculating SNR
The SNR was calculated by measuring separately
measuring the signal power and the noise power
after the preselector filter.
                                  10.7 MHz BPF            Fixed Gain Amp
Transmitted                                  8dB                    25 dB
BPSK                                         Attenuator



              Function                            Noise Measured Here
              Generator
              (Simulates Noise)
Calculated Probability of Error
   Calculated Byte Error (upper bound)
   Took 125KB of data
       Accurate for large amounts of noise
       Good order of magnitude approximation for
        low noise
Error Results

                              Error Calculations

                                                        Theoretical   Calculated
Noise Level (p-p)   Noise SNR (dB/dB) Noise SNR (W/W)   Perror (%)    Perror (%)
100 mV                    26.60            457.000      5.00E-199        0.00
500 mV                    11.32             13.550       1.00E-05        0.05
800 mV                     7.20             5.025           0.60         0.18
1500 mV                    1.74             1.490           4.22         1.30
3000 mV                    -4.30            0.372          19.50         6.80
Tolerance of PLL
   Variation in Frequency
         Drifting in DDS
         Temperature
   Result
                PLL Frequency Tolerance

    Noise Level (p-p)   Upper Bound (Hz)   Lower Bound (Hz)
    100 mV                     9                 -32
    500 mV                     8                 -32
    800 mV                     8                 -32
    1500 mV                    8                 -32
    3000 mV                    8                 -31
Successes
   Demodulated BPSK data sent at RF
    from one DSP to another
   Demonstrated feasibility of
    programmable back-end receiver
   Breadboard design produced expected
    behavior
Challenges
   Transmitting BPSK signal at RF
       Used passive mixer and DDS
       Used coaxial channel instead of air
   Bandlimiting Signal
       Use of Narrow Bandwidth Crystal Filter
       Matching Network
   Working around Serial Port interrupts
Future Developments Rev1.1
   Solve Serial Port Issues for live data
   Printed Circuit Board
   Add Faster A/D
   Implement more Demodulation
    Schemes
Questions???

More Related Content

PDF
PDF
PDF
Microcontroller Instruction Set atmel
PDF
Tap Lenh Ho 8051
PDF
NanowireSensor
PDF
WE4.L09 - ORTHOGONAL POLARIMETRIC SAR PROCESSOR BASED ON SIGNAL AND INTERFERE...
PDF
PPT
Protocol Optimizations using anonymous EPC Gen2 Inventories
Microcontroller Instruction Set atmel
Tap Lenh Ho 8051
NanowireSensor
WE4.L09 - ORTHOGONAL POLARIMETRIC SAR PROCESSOR BASED ON SIGNAL AND INTERFERE...
Protocol Optimizations using anonymous EPC Gen2 Inventories

What's hot (18)

PDF
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
DOCX
PDF
Transistor BLF578
PDF
DOCX
Exp5 bani
DOCX
Comm008 e4 agdon
PDF
NanowireSensor (Nano-Tera)
PPT
Fer smbt
PPT
Microcontroller 8051 soft
PPTX
Modelling diffusion at high pressure
DOCX
Comm008 e4 pagara
DOCX
PDF
Design Of New Rac1 Inhibitors Through Computational Approaches
PPT
sigma delta converters
DOCX
Exp5 tagasa
PDF
LM380 Audio Power Amplifier
DOCX
Exp5 agdon
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
Transistor BLF578
Exp5 bani
Comm008 e4 agdon
NanowireSensor (Nano-Tera)
Fer smbt
Microcontroller 8051 soft
Modelling diffusion at high pressure
Comm008 e4 pagara
Design Of New Rac1 Inhibitors Through Computational Approaches
sigma delta converters
Exp5 tagasa
LM380 Audio Power Amplifier
Exp5 agdon
Ad

Viewers also liked (20)

DOCX
Bpsk simulation
PPTX
At tawajud, al-wijdu dan al-wujud
PDF
Uu 15 2004 - pemeriksanaan keuangan(1)
PDF
Rudiana bachrie, hapzi.ali, etika bisnis, mercubuana, 2017
PPT
Kredit dan Hukum Perjanjian Jaminan
PPTX
Jaminan (Kafalah)
PPTX
Hukum perjanjian
PPTX
Pemeriksaan Keuangan
PPTX
Materi audit
PPTX
Bank Umum
PPTX
Present bab 13 auditing
PPT
Auditing
PPTX
Analisis keadaan ekonomi politik zaman orde lama, orde baru, reformasi
PPTX
Persiapan lahan dan penanaman kelapa sawit
PPT
Hukum Perikatan
PPTX
5. sahnya perikatan
PPTX
Asas hukum perbankan
PPT
Hukum Jaminan
PPT
Hukum jaminan
PPT
Manajemen organisasi
Bpsk simulation
At tawajud, al-wijdu dan al-wujud
Uu 15 2004 - pemeriksanaan keuangan(1)
Rudiana bachrie, hapzi.ali, etika bisnis, mercubuana, 2017
Kredit dan Hukum Perjanjian Jaminan
Jaminan (Kafalah)
Hukum perjanjian
Pemeriksaan Keuangan
Materi audit
Bank Umum
Present bab 13 auditing
Auditing
Analisis keadaan ekonomi politik zaman orde lama, orde baru, reformasi
Persiapan lahan dan penanaman kelapa sawit
Hukum Perikatan
5. sahnya perikatan
Asas hukum perbankan
Hukum Jaminan
Hukum jaminan
Manajemen organisasi
Ad

Similar to Project10 presentation (20)

PPTX
Binary Pass-Band Modulation Techniques
PDF
A CMOS 79GHz PMCW radar SOC
PPTX
Software Defined Radio Workshop
PDF
Acx502 bmu
PDF
Lect2 up340 (100501)
PDF
ADS Workshop on PCI Express(r)
PDF
At89s8252
KEY
Hardware assited x86 emulation on godson 3
PPT
D Belver FEE for Trasgos
PDF
COHERENT OPTICAL TRANSCEIVERS – CURRENT CAPABILITIES AND FUTURE POSSIBILITIES
PDF
RM03D-3_DCOBISC_06_07_09_Final
PDF
Sfp(ft 901 b-s-lc20)-datasheet_ver_1.1
PDF
SFP(FT-901B-S-LC20)_DataSheet_ver_1.1
PDF
SFP(FT-901B-M-LC02)_DataSheet_ver_1_2
PDF
PDF
Sfp(ft 901-m-lc30) data-sheet_ver_1.1
PDF
Sfp(ft 901-m-lc02) data-sheet_ver_1.1
PDF
SFP(FT-901-M-LC02)_DataSheet_ver_1.2
PDF
Introduction of GPS BPSK-R and BOC
Binary Pass-Band Modulation Techniques
A CMOS 79GHz PMCW radar SOC
Software Defined Radio Workshop
Acx502 bmu
Lect2 up340 (100501)
ADS Workshop on PCI Express(r)
At89s8252
Hardware assited x86 emulation on godson 3
D Belver FEE for Trasgos
COHERENT OPTICAL TRANSCEIVERS – CURRENT CAPABILITIES AND FUTURE POSSIBILITIES
RM03D-3_DCOBISC_06_07_09_Final
Sfp(ft 901 b-s-lc20)-datasheet_ver_1.1
SFP(FT-901B-S-LC20)_DataSheet_ver_1.1
SFP(FT-901B-M-LC02)_DataSheet_ver_1_2
Sfp(ft 901-m-lc30) data-sheet_ver_1.1
Sfp(ft 901-m-lc02) data-sheet_ver_1.1
SFP(FT-901-M-LC02)_DataSheet_ver_1.2
Introduction of GPS BPSK-R and BOC

Project10 presentation

  • 1. BPSK RF Receiver Team 10 Michael Russell Shawn Kuo Amit Patel
  • 2. Objective  Successfully demodulate BPSK data sent at RF from one DSP to another  Demonstrate feasibility of programmable back-end receiver  Develop future tool for DSP lab
  • 3. End-user Benefits  A quick and simple point-to-point digital communication solution  Scalable module that is capable of handling multiple demodulation schemes without hardware redesign  Capable of receiving over a large frequency range
  • 4. Original Design Review Design Schematic BW ~ 10's of MHz's AD8343 AD605 f =44.1KHz Universal Eval PC Rx CS4226 DSP AR5000 AD605 fc = 10.7 MHz CODEC ECS-10.7-7.5B AD605 Teraterm PBP-10.7 BW ~ 200 KHz fc=10.7 MHz - 11.025 KHz DDS CPLD AD9854 LO Mach211SP Crystal 60 MHz
  • 5. Software Implementation  Differential BPSK  Pi-Radian Ambiguity  Symbol Quantization and Unmapping  Phase-Locked Loop  Carrier Recovery  Coherent Detection  Symbol Timing
  • 9. Simulation Results Generated BPSK Waveform Received BPSK Waveform
  • 10. RF Receive Stage 10.7 MHz BPF Fixed Gain Amp 0.528 MHz LPF Software Transmitted 8dB BPSK DSP 2 Attenuator 25 dB Function Generator 10.7 MHz LPF (Simulates Noise) Fixed Gain Amp 25d B 3dB Attenuator 21.4 MHz LPF DDS Local Oscillator DSP 1
  • 11. RF Stage - Preselector Maching Network Monolithic Monolithic Maching Network Crystal Filter Crystal Filter Ta se F n t no Pe e c rd ) rn fr u cio f rs l t ( B eo P ae f rsl t h s o Pee c r eo 0 h g e r_3 ( ,1) 20 0 ...cin _N tok ..S2 ) c g ewr_3 ( ,1) ...t in _N tok ..S2 ) -0 1 10 0 -0 2 -0 3 w 0 -0 4 -0 10 -0 5 h -0 6 -0 20 1 .6 0 7 1 .6 0 8 1 .6 0 9 1 .7 0 0 1 .7 0 1 1 .7 0 2 1 .7 0 3 1 .6 07 1 .6 08 1 .6 09 1 .7 00 1 .7 01 1 .7 02 1 .7 03 f qM z r , H e f qM z r , H e
  • 12. Preselector Matching Network Input Impedance 30 50 m1 Matching Network 30 00 m1 fq 0 0 H r =1 .7 M z e Rn 7 7 5 i =2 5 .7 6 20 50 R 20 00 in C L R R2 10 50 C1 L2 R=5 Oh 0 m C=4 p L .8 u 0 F =5 5 H 10 00 R= 50 0 0 10 50 10 00 50 0 m 2 Zin = 2580 - j 1040 ` Xn i 0 fq 0 0 H r =1 .7 M z e X =- 0 3 4 in 1 3 .4 8 - 0 50 m2 - 00 10 - 50 10 - 00 20 1 .0 0 1 .5 0 1 .0 1 1 .5 1 1 .0 2 fqM z r , H e
  • 13. Measured Signals  Transmitted signal  Signal after preselector  Signal after mixing (baseband)  Unfiltered DDS signal (LO)  Filtered DDS signal
  • 20. Output Interface  Write decoded characters to memory and serial port simultaneously  Interact with serial port through Tera Term
  • 21. Theoretical Probability of Error Q Constellation I Symbol B Symbol A Q Constellation w/Noise I Symbol B Symbol A
  • 22. Theoretical Probability of Error Received Symbol: Mapping Q I Symbol B Symbol A Result: Q(sqrt(2*Energy/Noise)) or Q(sqrt(2*SNR))
  • 23. Calculating SNR The SNR was calculated by measuring separately measuring the signal power and the noise power after the preselector filter. 10.7 MHz BPF Fixed Gain Amp Transmitted 8dB 25 dB BPSK Attenuator Function Noise Measured Here Generator (Simulates Noise)
  • 24. Calculated Probability of Error  Calculated Byte Error (upper bound)  Took 125KB of data  Accurate for large amounts of noise  Good order of magnitude approximation for low noise
  • 25. Error Results Error Calculations Theoretical Calculated Noise Level (p-p) Noise SNR (dB/dB) Noise SNR (W/W) Perror (%) Perror (%) 100 mV 26.60 457.000 5.00E-199 0.00 500 mV 11.32 13.550 1.00E-05 0.05 800 mV 7.20 5.025 0.60 0.18 1500 mV 1.74 1.490 4.22 1.30 3000 mV -4.30 0.372 19.50 6.80
  • 26. Tolerance of PLL  Variation in Frequency  Drifting in DDS  Temperature  Result PLL Frequency Tolerance Noise Level (p-p) Upper Bound (Hz) Lower Bound (Hz) 100 mV 9 -32 500 mV 8 -32 800 mV 8 -32 1500 mV 8 -32 3000 mV 8 -31
  • 27. Successes  Demodulated BPSK data sent at RF from one DSP to another  Demonstrated feasibility of programmable back-end receiver  Breadboard design produced expected behavior
  • 28. Challenges  Transmitting BPSK signal at RF  Used passive mixer and DDS  Used coaxial channel instead of air  Bandlimiting Signal  Use of Narrow Bandwidth Crystal Filter  Matching Network  Working around Serial Port interrupts
  • 29. Future Developments Rev1.1  Solve Serial Port Issues for live data  Printed Circuit Board  Add Faster A/D  Implement more Demodulation Schemes