SlideShare a Scribd company logo
PROJECTILE MOTION
Senior High School Physics
2010
Part 1.

Free powerpoints at http://www.worldofteaching.com

Part 2.
Introduction
 Projectile

Motion:
Motion through the air without a propulsion
 Examples:
Part 1.
Motion of Objects Projected
Horizontally
y

v0

x
y

x
y

x
y

x
y

x
y
•Motion is accelerated
•Acceleration is constant,
and downward
• a = g = -9.81m/s2

g = -9.81m/s2

•The horizontal (x)
component of velocity is
constant
•The horizontal and
vertical motions are
independent of each other,
x
but they have a common
time
ANALYSIS OF MOTION
ASSUMPTIONS:
•

x-direction (horizontal):

uniform motion

•

y-direction (vertical):

accelerated motion

•

no air resistance

QUESTIONS:
•

What is the trajectory?

•

What is the total time of the motion?

•

What is the horizontal range?

•

What is the final velocity?
Frame of reference:

Equations of motion:

y

X
Uniform m.

Y
Accel. m.

ACCL.

ax = 0

ay = g = -9.81
m/s2

VELC.

vx = v0

vy = g t

x DSPL.

x = v0 t

y = h + ½ g t2

v0
g

h

0
Trajectory
y

x = v0 t
y = h + ½ g t2
Eliminate time, t
t = x/v0
y = h + ½ g (x/v0)2

Parabola, open down
h

v01

v02 > v01

y = h + ½ (g/v02) x2
y = ½ (g/v02) x2 + h

x
Total Time, Δt
y = h + ½ g t2
final y = 0

y

0 = h + ½ g (Δt)2

Δt = tf - ti

ti =0

Solve for Δt:

h

Δt = √ 2h/(-g)
Δt = √ 2h/(9.81ms-2)
Total time of motion depends
only on the initial height, h

tf =Δt
x
Horizontal Range, Δx
x = v0 t

y

final y = 0, time is
the total time Δt

Δx = v0 Δt

h

Δt = √ 2h/(-g)
Δx = v0 √ 2h/(-g)
Horizontal range depends on the
initial height, h, and the initial
velocity, v0

Δx
x
VELOCITY
vx = v0

v = √vx

2

+ vy

2

= √v02+g2t2

tg Θ = v / v = g t / v

vy = g t

Θ

v
FINAL VELOCITY
vx = v0

Δt = √ 2h/(-g)
v = √vx

2

+ vy

2

vy = g t

v = √v02+g2(2h /(-g))
v = √ v02+ 2h(-g)

Θ

tg Θ = g Δt / v0

v

= -(-g)√2h/(-g) / v0

= -√2h(-g) / v0
Θ is negative
(below the
horizontal line)
HORIZONTAL THROW - Summary
h – initial height, v0 – initial horizontal velocity, g = -9.81m/s2

Trajectory

Half -parabola, open
down

Total time

Δt = √ 2h/(-g)

Horizontal Range

Δx = v0 √ 2h/(-g)

Final Velocity

v = √ v02+ 2h(-g)
tg Θ = -√2h(-g) / v0
Part 2.
Motion of objects projected at an
angle
y

vi

Initial position: x = 0, y = 0
Initial velocity: vi = vi [Θ]

viy
Velocity components:
x- direction : vix = vi cos Θ
θ

y- direction : viy = vi sin Θ
x

vix
y
a =g=
- 9.81m/s2
•

Motion is accelerated

•

Acceleration is constant, and
downward

•

a = g = -9.81m/s2

•

The horizontal (x) component of
velocity is constant

•

The horizontal and vertical
motions are independent of each
other, but they have a common
time

x
ANALYSIS OF MOTION:
ASSUMPTIONS
•

x-direction (horizontal):

uniform motion

•

y-direction (vertical):

accelerated motion

•

no air resistance

QUESTIONS
•

What is the trajectory?

•

What is the total time of the motion?

•

What is the horizontal range?

•

What is the maximum height?

•

What is the final velocity?
Equations of motion:
X
Uniform motion

Y
Accelerated motion

ACCELERATION

ax = 0

ay = g = -9.81 m/s2

VELOCITY

vx = vix= vi cos Θ

vy = viy+ g t

vx = vi cos Θ

vy = vi sin Θ + g t

x = vix t = vi t cos Θ

y = h + viy t + ½ g t2

x = vi t cos Θ

y = vi t sin Θ + ½ g t2

DISPLACEMENT
Equations of motion:
X
Uniform motion

Y
Accelerated motion

ACCELERATION

ax = 0

ay = g = -9.81 m/s2

VELOCITY

vx = vi cos Θ

vy = vi sin Θ + g t

DISPLACEMENT

x = vi t cos Θ

y = vi t sin Θ + ½ g t2
x = vi t cos Θ

Trajectory

y = vi t sin Θ + ½ g t2

y

Parabola, open down

Eliminate time, t

t = x/(vi cos Θ)

vi x sin Θ
gx 2
y=
+ 2
vi cos Θ 2vi cos 2 Θ
y = x tan Θ +

g
x2
2vi2 cos 2 Θ

y = bx + ax2
x
Total Time, Δt
y = vi t sin Θ + ½ g t2
final height y = 0, after time interval Δt
0 = vi Δt sin Θ + ½ g (Δt)2
Solve for Δt:
x

0 = vi sin Θ + ½ g Δt

Δt =

2 vi sin Θ
(-g)

t=0

Δt
Horizontal Range, Δx
x = vi t cos Θ

y

final y = 0, time is
the total time Δt

Δx = vi Δt cos Θ
Δt =

Δx =

2 vi sin Θ
(-g)

sin (2 Θ) = 2 sin Θ cos Θ

2vi 2 sin Θ cos Θ
(-g)

x

0

Δx =

Δx
vi 2 sin (2 Θ)
(-g)
Horizontal Range, Δx
Δx =
Θ (deg) sin (2 Θ)
0

0.00

15

0.50

30

1.00

60

0.87

75

0.50

90

0

(-g)
•CONCLUSIONS:

0.87

45

vi 2 sin (2 Θ)

•Horizontal range is greatest for the
throw angle of 450

• Horizontal ranges are the same for
angles Θ and (900 – Θ)
Trajectory and horizontal range
g
y = x tan Θ + 2
x2
2vi cos 2 Θ
35

vi = 25 m/s

30

15 deg
30 deg

25

45 deg

20

60 deg

15

75 deg

10
5
0
0

20

40

60

80
Velocity

•Final speed = initial speed (conservation of energy)
•Impact angle = - launch angle (symmetry of parabola)
Maximum Height
vy = vi sin Θ + g t
y = vi t sin Θ + ½ g t2
At maximum height vy = 0

0 = vi sin Θ + g tup
tup =

vi sin Θ

hmax = vi t upsin Θ + ½ g tup2
hmax = vi2 sin2 Θ/(-g) + ½ g(vi2 sin2 Θ)/g2
vi2 sin2 Θ

(-g)

tup = Δt/2

hmax =

2(-g)
Projectile Motion – Final Equations
(0,0) – initial position, vi = vi [Θ]– initial velocity, g = -9.81m/s2
Trajectory

Parabola, open down

Total time

Δt =

Horizontal range

Max height

Δx =

2 vi sin Θ
(-g)
vi 2 sin (2 Θ)
(-g)

hmax =

vi2 sin2 Θ
2(-g)
PROJECTILE MOTION - SUMMARY
 Projectile

motion is motion with a constant
horizontal velocity combined with a constant
vertical acceleration
 The projectile moves along a parabola

More Related Content

DOCX
ROTATION OF RIGID BODIES
PPTX
Projectile motion
PPTX
Physics mechanics
PPT
Waves Ppp
PPT
Kinematics 2012
PPT
CIRCULAR MOTION
PPTX
Projectile motion of a particle
PPTX
Chapter13 rigid body rotation
ROTATION OF RIGID BODIES
Projectile motion
Physics mechanics
Waves Ppp
Kinematics 2012
CIRCULAR MOTION
Projectile motion of a particle
Chapter13 rigid body rotation

What's hot (20)

PPT
Law of motion
PPT
Newtons Laws Of Motion
PPT
Physics a2 unit4_06_centripetal_force -centripetal force
PPT
Kinematics graphing
PPTX
projectile motion
PPT
Projectile motion 2
PPT
Physics - Chapter 6 - Momentum and Collisions
PPTX
Work Power & Energy-SPP.pptx
PPT
Motion graphs
DOCX
Practica 4 friccion cinematica y dinamica
PPSX
Circular motion
PPTX
P8 light
PPTX
Projectile motion
PPTX
motion-in-a-plane physics of class 11 motion
PPTX
Introduction to Special theory of relativity
PPT
AP Physics - Chapter 2 Powerpoint
PPT
Kinematic equations of motion
PPTX
Kinematics questions
PDF
5 - Circular motion
PPSX
Kinematics - The Study of Motion
Law of motion
Newtons Laws Of Motion
Physics a2 unit4_06_centripetal_force -centripetal force
Kinematics graphing
projectile motion
Projectile motion 2
Physics - Chapter 6 - Momentum and Collisions
Work Power & Energy-SPP.pptx
Motion graphs
Practica 4 friccion cinematica y dinamica
Circular motion
P8 light
Projectile motion
motion-in-a-plane physics of class 11 motion
Introduction to Special theory of relativity
AP Physics - Chapter 2 Powerpoint
Kinematic equations of motion
Kinematics questions
5 - Circular motion
Kinematics - The Study of Motion
Ad

Viewers also liked (16)

PPT
Tugas trigonomet ry
PPT
Trigonometry 2
PDF
Pet schl spk_sample_paper
PPTX
Tugas trigonometi
PPT
Presentasi pendidikan kewarganegaraan bru
PPTX
Alkali alkali tanah
PPT
Trigonometri 4
PPTX
Projectil motion
PPTX
Perkembangan kognitif pada penderita autis
PDF
139169 cambridge-english-preliminary-for-schools-dl-leaflet
DOC
Perkembangan islam pada abad
PDF
Pet schl l_sample_paper-2
PPTX
Fungsi PKn dalam Mencegah Korupsi
PPTX
Kerajaan kalingga power point
PPTX
Presentasi kaa
PDF
Aula03
Tugas trigonomet ry
Trigonometry 2
Pet schl spk_sample_paper
Tugas trigonometi
Presentasi pendidikan kewarganegaraan bru
Alkali alkali tanah
Trigonometri 4
Projectil motion
Perkembangan kognitif pada penderita autis
139169 cambridge-english-preliminary-for-schools-dl-leaflet
Perkembangan islam pada abad
Pet schl l_sample_paper-2
Fungsi PKn dalam Mencegah Korupsi
Kerajaan kalingga power point
Presentasi kaa
Aula03
Ad

Similar to Projectile motion (20)

PPT
Projectile motion
PPT
projectile motion.ppt
PPT
Projectile motion
PPT
Managing Stakeholder Engagement: A Practice Guide (Sixth Edition) by Clifford...
PPT
Projectile motion
PPT
projectile motion STA 2012.pptvvvvvvvvvv
PPT
Projectile motion (2)
PPTX
Ch#4 MOTION IN 2 DIMENSIONS
PPTX
Chapter 3
PPT
03 Motion in Two & Three Dimensions.ppt
PPT
2 2-d kinematics notes
PPT
projectile motion at an angle from direction.ppt
PPTX
projectile motion grade 9-170213175803.pptx
PPT
Projectile motionchemistory (4)
PDF
CURVILINEAR-MOTION-Dynamics Of Rigid.pdf
PPTX
PROJECTILE MOTION-Horizontal and Vertical
PPTX
Chapter 2
PPTX
Friction and Gravity Education Presentation in Peach and Yellow Animated Styl...
PPTX
Kinematic equations
PPTX
PROJECTILE MOTION
Projectile motion
projectile motion.ppt
Projectile motion
Managing Stakeholder Engagement: A Practice Guide (Sixth Edition) by Clifford...
Projectile motion
projectile motion STA 2012.pptvvvvvvvvvv
Projectile motion (2)
Ch#4 MOTION IN 2 DIMENSIONS
Chapter 3
03 Motion in Two & Three Dimensions.ppt
2 2-d kinematics notes
projectile motion at an angle from direction.ppt
projectile motion grade 9-170213175803.pptx
Projectile motionchemistory (4)
CURVILINEAR-MOTION-Dynamics Of Rigid.pdf
PROJECTILE MOTION-Horizontal and Vertical
Chapter 2
Friction and Gravity Education Presentation in Peach and Yellow Animated Styl...
Kinematic equations
PROJECTILE MOTION

More from Siti Nur Khotimah (14)

DOCX
PPT
Bab i budaya pol di ind 2
PPT
Unit circleandtrigequations
PPT
Trigonometry 2
PPT
Trigonometry
PPT
Verbe irregulier
PPT
PPT
Les adjectifs interrogatifs
PPT
Les adjectifs démonstratif
PPT
Futur proche
PPT
PPT
Compréhension écrite
PPT
Adjective de couleur
DOCX
Proses pembuatan memori
Bab i budaya pol di ind 2
Unit circleandtrigequations
Trigonometry 2
Trigonometry
Verbe irregulier
Les adjectifs interrogatifs
Les adjectifs démonstratif
Futur proche
Compréhension écrite
Adjective de couleur
Proses pembuatan memori

Recently uploaded (20)

PDF
Tata consultancy services case study shri Sharda college, basrur
PDF
Daniels 2024 Inclusive, Sustainable Development
DOCX
80 DE ÔN VÀO 10 NĂM 2023vhkkkjjhhhhjjjj
PDF
How to Get Business Funding for Small Business Fast
PDF
Nante Industrial Plug Factory: Engineering Quality for Modern Power Applications
PDF
NEW - FEES STRUCTURES (01-july-2024).pdf
PDF
Charisse Litchman: A Maverick Making Neurological Care More Accessible
PDF
Solaris Resources Presentation - Corporate August 2025.pdf
PPTX
Slide gioi thieu VietinBank Quy 2 - 2025
PDF
NISM Series V-A MFD Workbook v December 2024.khhhjtgvwevoypdnew one must use ...
PDF
Solara Labs: Empowering Health through Innovative Nutraceutical Solutions
PDF
THE COMPLETE GUIDE TO BUILDING PASSIVE INCOME ONLINE
PPT
Lecture 3344;;,,(,(((((((((((((((((((((((
PDF
Digital Marketing & E-commerce Certificate Glossary.pdf.................
PPTX
Astra-Investor- business Presentation (1).pptx
PPT
Lecture notes on Business Research Methods
PDF
NewBase 12 August 2025 Energy News issue - 1812 by Khaled Al Awadi_compresse...
PDF
Booking.com The Global AI Sentiment Report 2025
PPTX
Principles of Marketing, Industrial, Consumers,
PDF
PMB 401-Identification-of-Potential-Biotechnological-Products.pdf
Tata consultancy services case study shri Sharda college, basrur
Daniels 2024 Inclusive, Sustainable Development
80 DE ÔN VÀO 10 NĂM 2023vhkkkjjhhhhjjjj
How to Get Business Funding for Small Business Fast
Nante Industrial Plug Factory: Engineering Quality for Modern Power Applications
NEW - FEES STRUCTURES (01-july-2024).pdf
Charisse Litchman: A Maverick Making Neurological Care More Accessible
Solaris Resources Presentation - Corporate August 2025.pdf
Slide gioi thieu VietinBank Quy 2 - 2025
NISM Series V-A MFD Workbook v December 2024.khhhjtgvwevoypdnew one must use ...
Solara Labs: Empowering Health through Innovative Nutraceutical Solutions
THE COMPLETE GUIDE TO BUILDING PASSIVE INCOME ONLINE
Lecture 3344;;,,(,(((((((((((((((((((((((
Digital Marketing & E-commerce Certificate Glossary.pdf.................
Astra-Investor- business Presentation (1).pptx
Lecture notes on Business Research Methods
NewBase 12 August 2025 Energy News issue - 1812 by Khaled Al Awadi_compresse...
Booking.com The Global AI Sentiment Report 2025
Principles of Marketing, Industrial, Consumers,
PMB 401-Identification-of-Potential-Biotechnological-Products.pdf

Projectile motion

  • 1. PROJECTILE MOTION Senior High School Physics 2010 Part 1. Free powerpoints at http://www.worldofteaching.com Part 2.
  • 2. Introduction  Projectile Motion: Motion through the air without a propulsion  Examples:
  • 3. Part 1. Motion of Objects Projected Horizontally
  • 5. y x
  • 6. y x
  • 7. y x
  • 8. y x
  • 9. y •Motion is accelerated •Acceleration is constant, and downward • a = g = -9.81m/s2 g = -9.81m/s2 •The horizontal (x) component of velocity is constant •The horizontal and vertical motions are independent of each other, x but they have a common time
  • 10. ANALYSIS OF MOTION ASSUMPTIONS: • x-direction (horizontal): uniform motion • y-direction (vertical): accelerated motion • no air resistance QUESTIONS: • What is the trajectory? • What is the total time of the motion? • What is the horizontal range? • What is the final velocity?
  • 11. Frame of reference: Equations of motion: y X Uniform m. Y Accel. m. ACCL. ax = 0 ay = g = -9.81 m/s2 VELC. vx = v0 vy = g t x DSPL. x = v0 t y = h + ½ g t2 v0 g h 0
  • 12. Trajectory y x = v0 t y = h + ½ g t2 Eliminate time, t t = x/v0 y = h + ½ g (x/v0)2 Parabola, open down h v01 v02 > v01 y = h + ½ (g/v02) x2 y = ½ (g/v02) x2 + h x
  • 13. Total Time, Δt y = h + ½ g t2 final y = 0 y 0 = h + ½ g (Δt)2 Δt = tf - ti ti =0 Solve for Δt: h Δt = √ 2h/(-g) Δt = √ 2h/(9.81ms-2) Total time of motion depends only on the initial height, h tf =Δt x
  • 14. Horizontal Range, Δx x = v0 t y final y = 0, time is the total time Δt Δx = v0 Δt h Δt = √ 2h/(-g) Δx = v0 √ 2h/(-g) Horizontal range depends on the initial height, h, and the initial velocity, v0 Δx x
  • 15. VELOCITY vx = v0 v = √vx 2 + vy 2 = √v02+g2t2 tg Θ = v / v = g t / v vy = g t Θ v
  • 16. FINAL VELOCITY vx = v0 Δt = √ 2h/(-g) v = √vx 2 + vy 2 vy = g t v = √v02+g2(2h /(-g)) v = √ v02+ 2h(-g) Θ tg Θ = g Δt / v0 v = -(-g)√2h/(-g) / v0 = -√2h(-g) / v0 Θ is negative (below the horizontal line)
  • 17. HORIZONTAL THROW - Summary h – initial height, v0 – initial horizontal velocity, g = -9.81m/s2 Trajectory Half -parabola, open down Total time Δt = √ 2h/(-g) Horizontal Range Δx = v0 √ 2h/(-g) Final Velocity v = √ v02+ 2h(-g) tg Θ = -√2h(-g) / v0
  • 18. Part 2. Motion of objects projected at an angle
  • 19. y vi Initial position: x = 0, y = 0 Initial velocity: vi = vi [Θ] viy Velocity components: x- direction : vix = vi cos Θ θ y- direction : viy = vi sin Θ x vix
  • 20. y a =g= - 9.81m/s2 • Motion is accelerated • Acceleration is constant, and downward • a = g = -9.81m/s2 • The horizontal (x) component of velocity is constant • The horizontal and vertical motions are independent of each other, but they have a common time x
  • 21. ANALYSIS OF MOTION: ASSUMPTIONS • x-direction (horizontal): uniform motion • y-direction (vertical): accelerated motion • no air resistance QUESTIONS • What is the trajectory? • What is the total time of the motion? • What is the horizontal range? • What is the maximum height? • What is the final velocity?
  • 22. Equations of motion: X Uniform motion Y Accelerated motion ACCELERATION ax = 0 ay = g = -9.81 m/s2 VELOCITY vx = vix= vi cos Θ vy = viy+ g t vx = vi cos Θ vy = vi sin Θ + g t x = vix t = vi t cos Θ y = h + viy t + ½ g t2 x = vi t cos Θ y = vi t sin Θ + ½ g t2 DISPLACEMENT
  • 23. Equations of motion: X Uniform motion Y Accelerated motion ACCELERATION ax = 0 ay = g = -9.81 m/s2 VELOCITY vx = vi cos Θ vy = vi sin Θ + g t DISPLACEMENT x = vi t cos Θ y = vi t sin Θ + ½ g t2
  • 24. x = vi t cos Θ Trajectory y = vi t sin Θ + ½ g t2 y Parabola, open down Eliminate time, t t = x/(vi cos Θ) vi x sin Θ gx 2 y= + 2 vi cos Θ 2vi cos 2 Θ y = x tan Θ + g x2 2vi2 cos 2 Θ y = bx + ax2 x
  • 25. Total Time, Δt y = vi t sin Θ + ½ g t2 final height y = 0, after time interval Δt 0 = vi Δt sin Θ + ½ g (Δt)2 Solve for Δt: x 0 = vi sin Θ + ½ g Δt Δt = 2 vi sin Θ (-g) t=0 Δt
  • 26. Horizontal Range, Δx x = vi t cos Θ y final y = 0, time is the total time Δt Δx = vi Δt cos Θ Δt = Δx = 2 vi sin Θ (-g) sin (2 Θ) = 2 sin Θ cos Θ 2vi 2 sin Θ cos Θ (-g) x 0 Δx = Δx vi 2 sin (2 Θ) (-g)
  • 27. Horizontal Range, Δx Δx = Θ (deg) sin (2 Θ) 0 0.00 15 0.50 30 1.00 60 0.87 75 0.50 90 0 (-g) •CONCLUSIONS: 0.87 45 vi 2 sin (2 Θ) •Horizontal range is greatest for the throw angle of 450 • Horizontal ranges are the same for angles Θ and (900 – Θ)
  • 28. Trajectory and horizontal range g y = x tan Θ + 2 x2 2vi cos 2 Θ 35 vi = 25 m/s 30 15 deg 30 deg 25 45 deg 20 60 deg 15 75 deg 10 5 0 0 20 40 60 80
  • 29. Velocity •Final speed = initial speed (conservation of energy) •Impact angle = - launch angle (symmetry of parabola)
  • 30. Maximum Height vy = vi sin Θ + g t y = vi t sin Θ + ½ g t2 At maximum height vy = 0 0 = vi sin Θ + g tup tup = vi sin Θ hmax = vi t upsin Θ + ½ g tup2 hmax = vi2 sin2 Θ/(-g) + ½ g(vi2 sin2 Θ)/g2 vi2 sin2 Θ (-g) tup = Δt/2 hmax = 2(-g)
  • 31. Projectile Motion – Final Equations (0,0) – initial position, vi = vi [Θ]– initial velocity, g = -9.81m/s2 Trajectory Parabola, open down Total time Δt = Horizontal range Max height Δx = 2 vi sin Θ (-g) vi 2 sin (2 Θ) (-g) hmax = vi2 sin2 Θ 2(-g)
  • 32. PROJECTILE MOTION - SUMMARY  Projectile motion is motion with a constant horizontal velocity combined with a constant vertical acceleration  The projectile moves along a parabola