SlideShare a Scribd company logo
Prolog Programming
2
Prolog ProgrammingProlog Programming
 DATA STRUCTURES IN PROLOG
 PROGRAMMING TECHNIQUES
 CONTROL IN PROLOG
 CUTS
3
DATA STRUCTURES IN
PROLOG
 Lists in Prolog
List notation is a way of writing terms
 Terms as Data
Term correspond with list
4
Lists in Prolog
 The simplest way of writing a list is to
enumerate its elements.
The list consisting of the 3 atoms a, b and c can be
written as
[a, b, c]
The list that doesn’t have elements called empty
list denoted as [ ]
5
Lists in Prolog
 We can also specify an initial sequence of
elements and a trailing list, separated by |
The list [a, b, c] can also be written as
[a, b, c | [ ] ]
[a, b | [c] ]
[a | [b, c] ]
6
Lists : Head & Tail
 A special case of this notation is a list with
head H and tail T, written as [H|T]
 The head is the first element of a list, and
 The tail is the list consisting of the remaining
elements.
The list [a, b, c] can also be separated as
• Head:The first element is a
• Tail:The list of remaining elements = [b, c]
7
Lists : Unification
 Unification can be used to extract the
components of a list, so explicit operators for
extracting the head and tail are not needed.
The solution of the query
 Bind variable H to the head and variable T to
the tail of list [a, b, c].
?- [H | T] = [a, b, c].
H = a
T = [b, c]
8
Lists : Specified terms
 The query (partially specified terms)
 The term [ a | T ] is a partial specification of a
list with head a and unknown tail denoted by
variable T.
 Similarly, [ H, b, c] is a partial specification of a
list with unknown head H and tail [b, c].
 These two specification to unify H = a, T =[b,c]
?- [a | T] = [H, b, c].
T = [b, c]
H = a
9
Lists in Prolog
 Example 2 The append relation on lists is
defined by the following rules:
Append([ ], Y, Y).
Append([H | X], Y, [H | Z]) :- append(X,Y,Z).
In words,
The result of appending the empty list [ ] and a list Y is Y.
If the result of appending X and Y is Z, then
the result of appending [H | X] and Y is [H | Z]
10
Lists : Compute Arguments
 The rules for append can be used to compute
any one of the arguments from the other two:
 Inconsistent arguments are rejected
?- append([a, b], [c, d], Z).
Z = [a, b, c, d]
?- append([a, b], Y, [a, b, c, d]).
Y = [c, d]
?- append(X, [c, d], [a, b, c, d]).
X = [a, b]
?- append(X, [d, c], [a, b, c, d]).
no
11
Terms as Data
 The Dot operator or functor ‘.’ corresponds to
make list with H and T.
 [H | T ] is syntactic sugar for the term .(H,T)
 Lists are terms. The term for the list [a, b, c] is
.(H,T)
.(a, .(b, .(c, [])))
12
Terms as Data
 following terms can be drawn a tree
 There is a one-to-one correspondence
between trees and terms
.(a, .(b, .(c, [])))
∙
∙
∙
a
b
c []
13
Terms : Binary Tree
 Binary trees can be written as terms
 An atom leaf for a leaf
 A functor nonleaf with 2 arguments
leaf
nonleaf(leaf,leaf)
nonleaf(nonleaf(leaf,leaf), nonleaf(leaf,leaf))
nonleaf(nonleaf(leaf,leaf),leaf)
nonleaf(leaf,nonleaf(leaf,leaf))
14
List : tree
 Example 3 A binary search tree is either
empty, or it consists of a node with two binary
search trees as subtrees.
 Each node holds an integer.
 Smaller elements appear in the left subtree of
a node and larger elements appear in the right
subtree.
 Let a term node(K,S,T) represent a tree
K
S T
15
Binary search trees
15
2 16
10
129
0
3
19
10
2 12
9
153
0 16
3
16
Binary search trees
 The rules define a relation member to test
whether an integer appear at some node in a
tree. The two arguments of member are an
integer and a tree.
member(K,_,_).
member(K, node(N,S,_)) :- K < N, member(K, S).
member(K, node(N,_,T)) :- K > N, member(K, T).
17
PROGRAMMING TECHNIQUES
 The strengths of Prolog namely, backtracking
and unification.
 Backtracking allows a solution to be found if
one exists
 Unification allows variables to be used as
placeholders for data to be filled in later.
 Careful use of the techniques in this section
can lead to efficient programs. The programs
rely on left-to-right evaluation of subgoals.
18
Guess and Verify
 A guess-and-verify query has the form
Where guess(S) and verify(S) are subgoals.
 Prolog respond to a query by generating
solutions to guess(S) until a solution satisfying
verify(S) is found. Such queries are also called
generate-and-test queries.
Is there an S such that
guess(S) and verify(S)?
19
Guess and Verify
 Similarly, a guess-and-verify rule has the
following form:
 Example
Conslusion(…) if guess(…,S,…) and verify(…,S,…)
overlap(X, Y) :- member(M, X), member(M, Y).
Two lists X and Y overlap if there is some M that is a
member of both X and Y. The first goal member(M, X)
guesses an M from list X, and the second goal member(M,
Y) verifies that M also appears in list Y.
20
 The rules for member are
member(M, [M |_]).
Member(M, [_ |T]) :- member(M, T).
The first rule says that M is a member of a list with head
M. The second rule says that M is a member of a list if M
is a member of its tail T.
21
Consider query
 These query
 The first goal in this query generates
solutions and the second goal tests to see
whether they are acceptable.
?- overlap([a,b,c,d],[1,2,c,d]).
yes
?- member(M,[a,b,c,d]),member(M,[1,2,c,d]).
22
Consider query
 The solutions generated by the first goal are
 Test the second goal
?- member(M,[a,b,c,d]).
M = a;
M = b;
M = c;
M = d;
no
?- member(a,[1,2,c,d]).
no
?- member(b,[1,2,c,d]).
no
?- member(c,[1,2,c,d]).
yes
23
Hint
 Since computation in Prolog proceeds from
left to right, the order of the subgoals in a
guess-and-verify query can affect efficiency.
 Choose the subgoal with fewer solutions as
the guess goal.
 Example of the effect of goal order
?- X = [1,2,3], member(a,X).
no
?- member(a,X), X = [1,2,3]).
[infinite computation]
24
Variables as Placeholders in Terms
 Variables have been used in rules and
queries but not in terms representing objects.
 Terms containing varibales can be used to
simulate modifiable data structures;
 The variables serve as placeholders for
subterms to be filled in later.
25
Represent Binary Trees in Terms
 The terms leaf and nonleaf(leaf,leaf)
are completely specified.
leaf
nonleaf(leaf,leaf)
26
Partially specified list
 The example list [a, b | X] has
 Its first element : a
 Its second element : b
 Do not yet know what X represents
 “Open list” if its ending in a variable, referred
“end marker variable”
 “Close list” if it is not open.
27
How prolog know variable
 Prolog used machine-generated variables,
written with a leading underscore (“_”)
followed by an integer.
?- L = [a, b | X].
L = [a, |_G172]
X = _G172
Yes
28
 Prolog generates fresh variables each time it
responds to a query or applies a rule.
 An open list can be modified by unifying its
end marker
?- L = [a, b | X], X = [c,Y].
L = [a,b,c |_G236]
X = [c,_G236]
Y = _G236
Yes
29
 Extending an open list by unifying its end
marker.
a b
L X
_172
a b
L X
_236
c
(a) Before X is bound. (b) After X = [c | Y].
30
 Unification of an end-marker variable is akin
to an assignment to that variable.
 List L changes from
[a, b | _172]  [a, b, c | _236]
when _172 unifies with [c | _236]
 Advantage of working with open lists is that
the end of a list can be accessed quickly.
31
Open list implement queues
when a queue is created, where L is an open list with
end marker E
When element a enters queue Q, we get queue R.
When element a leaves queue Q, we get queue R.
q(L,E)
enter(a,Q,R)
leave(a,Q,R)
32
Open list implement queue
?- setup(Q).
?- setup(Q), enter(a,Q,R).
?- setup(Q), enter(a,Q,R), leave(S,R,T).
?- setup(Q), enter(a,Q,R), enter(b,R,S),
leave(X,S,T),leave(Y,T,U), wrapup(q([],[])).
setup(q(X,X)).
enter(A, q(X,Y), q(X,Z)) :- Y = [A | Z].
leave(A, q(X,Z), q(Y,Z)) :- Y = [A | Y].
wrapup(q([],[])).
33
Test queue
?-setup(Q),enter(a,Q,R),enter(b,R,S),leave(X,S,T),
leave(Y,T,U),wrapup(U).
Q = q([a, b], [a, b])
R = q([a, b], [b])
S = q([a, b], [])
X = a
T = q([b], [])
Y = b
U = q([], [])
Yes
?-
34
Operations on a queue
Q
_1
R
_2
a
a
T
_3
b
Q
Q R
setup(Q)
enter(a,Q,R)
enter(b,R,S)
35
Operations on a queue
a
T
_3
b
X
leave(X,S,T)
a
T
_3
b
Y
leave(Y,T,U)
36
Internal Prolog
 A queue q(L,E) consists of open list L with
end marker E.
 The arrows from Q therefore go to the empty
open list _1 with end marker _1.
setup(q(X,X)).
?-setup(Q).
Q = q(_1,_1)
yes
37
Second goal
 To enter A into a queue q(X,Y),
bind Y to a list [A|Z],
where Z is a fresh end marker,
and return q(X,Z).
enter(A,q(X,Y),q(X,Z)):- Y = [A|Z].
?-setup(Q),enter(a,Q,R).
Q = q([a|_2], [a|_2])
R = q([a|_2], _2)
Unifies _1 with [a|_2],where _2 is a fresh end marker
38
 When an element leaves a queue q(L,E), the
resulting queue has the tail of L in place of L.
Note in the diagram to the right of
leave(X,S,T) that the open list for queue T is
the tail of the open list for S.
 The final goal wrapup(U) checks that the
enter and leave operations leave U in an
initial state q(L,E), where L is an empty
openlist with end marker E.
39
Difference Lists
 Difference List are a technique for coping with
such changes.
 Difference List consists of a list and its suffix.
 We write this difference list as
dl(L,E).
40
Contents of Difference List
 The contents of the difference list consist of
the elements that are in L but not in E.
 Examples of difference lists with contents
[a,b] are
dl([a,b],[]).
Dl([a,b,c],[c]).
Dl([a,b|E],E).
Dl([a,b,c|F],[c|F]).
41
CONTROL IN PROLOG
 In the informal equation
 “Logic” refers to the rules and queries in a
logic program and
 “control” refers to how a language computes
a response to a query.
algorithm = logic + control
42
CONTROL IN PROLOG
 Control in Prolog is characterized by two
decisions
 Goal order : Choose the leftmost subgoal.
 Rule order : Select the first applicable rule.
 The response to a query is affected both by
goal order within the query and by rule order
with in the database of facts and rules.
43
CONTROL IN PROLOG
start with a query as the current goal;
while the current goal is nonempty do
choose the leftmost subgoal;
if a rule applies to the subgoal then
select the first applicable rule;
form a new current goal
else
backtrack
end if
end while;
succeed
44
Example
 A sublist S of Z can be specified in the
following seemingly equivalent ways:
 preffix X of Z and suffix S of X.
 suffix S of X and prefix X of Z.
appen1([],Y,Y).
appen1([H|X],Y,[H|Z]):- appen1(X,Y,Z).
Prefix(X,Z) :- appen1(X,Y,Z).
Suffix(Y,Z) :- appen1(X,Y,Z).
appen2([H|X],Y,[H|Z]):- appen2(X,Y,Z).
appen2([],Y,Y).
45
Queries
 The corresponding queries usually produce
the same responses.
 Rule order can also make a difference.
?-prefix(X,[a,b,c]),suffix([e],X).
no
?-suffix([e],X),prefix(X,[a,b,c]).
[infinite computation]
46
Queries
?- appen1(X,[c],Z).
X = []
Z = [c] ;
X = [_G230]
Z = [_G230, c] ;
X = [_G230, _G236]
Z = [_G230, _G236, c] ;
?- appen2(X,[c],Z).
 New Solutions are produced on demand for
47
Unification an Substitutions
 Unification is central to control in Prolog
 Substitution is a function from variables to
terms
48
Applying a Rule to a Goal
 A rule applies to a
subgoal G if its head A unifies with G
 Variables in the rule are renamed before
unification to keep them distinct from
variables in the subgoal.
A :- B1, B2, …, Bn
49
A computation that succeeds without backtracking
GOAL
Suffix([a],L),prefix(L,[a,b,c]).
suffix([a],L) if append(_1,[a],L).
Append(_1,[a],L),prefix(L,[a,b,c]).
{_1[],L[a]} append([],[a],[a]).
Prefix([a],[a,b,c]).
prefix([a],[a,b,c]) if append([a],_2,[a,b,c])
append([a],_2,[a,b,c]).
prefix([a],[a,b,c]) if append([],_2,[b,c])
Append([],_2,[b,c]).
{_2[b,c]} append([],[b,c],[b,c])
yes
50
Prolog Search Trees
51
Goal Order Changes Solutions
52
Cuts
 A cut prunes or “cuts out” and unexplored
part of a Prolog search tree.
 Cuts can therefore be used to make a
computation more efficient by eliminating
futile searching and backtracking.
 Cuts can also be used to implement a form of
negation
53
Cuts
 A cut, written as !, appears as a condition
within a rule. When rule
is applied, the cut tells control to backtrack
past Cj-1,…,C1,B, without considering any
remaining rules for them.
B :- C1,…, Cj-1, !,Cj+1,…,Ck
54
A cut as the First Condition
 Consider rules of the form
 If the goal C fails, then control backtracks
past B without considering any remaining
rules for B. Thus the cut has the effect of
making B fail if C fails.
B :- !, C.
55
Example
b :- c.
b :- d.
b :- e.
b,G
c,G e,G
X
d,G!,d,G
d,G
b :- c.
b :- !,d.
b :- e.
56
Example
 ?-a(X).
a(1) :- b;
a(2) :- e;
b :- c.
b :- d.
a(1) :- b;
a(2) :- e;
b :- !,c.
b :- d.
a(X)
b e
c d Yes
X=2Yes
X=1
backtrack
a(X)
b e
!c d Yes
X=2
backtrack
c
57
The Effect of Cut
 As mentioned earlier, when a rule
is applied during a computation
 The cut tells control to backtrack past Cj-
1,..C1,B without considering any remaining
rules for them.
 The effect of inserting a cut in the middle of a
guess-and-verify rule.
B :- C1,…, Cj-1, !,Cj+1,…,Ck
58
The Effect of Cut
 The right side of a guess-and-verify rule has
the form guess(S), verify(S), where guess(S)
generates potential solutions until one
satisfying verify(S) is found.
 The effect of insering a cut between them, as
is to eliminate all but the first guess.
Conclusion(S) :- guess(S), !, verify(S)
59
a(X) :- b(X).
a(X) :- f(X).
b(X) :- g(X),v(X).
b(X) :- X = 4, v(X).
g(1).
g(2).
g(3).
v(X).
f(5)
a(X) :- b(X).
a(X) :- f(X).
b(X) :- g(X),!,v(X).
b(X) :- X = 4, v(X).
g(1).
g(2).
g(3).
v(X).
f(5)
(a) (b)
60
a(Z)
b(Z) f(5)
g(Z),v(Z) v(4)
v(1) v(2) v(3)
a(Z)
b(Z) f(5)
g(Z),!,v(Z) v(4)
!v(X)
v(1)
v(2) v(3)
(a) (b)
61
Negation as Failure
 The not operator in Prolog is implemented by
the rules
not(X) :- X, !, fail.
not(_).

More Related Content

PPTX
Prolog Programming : Basics
PPTX
Resolution,forward backward chaining
PPT
Lec 17 heap data structure
PDF
Trees, Binary Search Tree, AVL Tree in Data Structures
PPT
1.Role lexical Analyzer
PPTX
Demonstrate interpolation search
PPTX
Binary expression tree
PDF
Informed search
Prolog Programming : Basics
Resolution,forward backward chaining
Lec 17 heap data structure
Trees, Binary Search Tree, AVL Tree in Data Structures
1.Role lexical Analyzer
Demonstrate interpolation search
Binary expression tree
Informed search

What's hot (20)

PPT
String matching algorithm
PPTX
Artificial Intelligence- TicTacToe game
PPT
prolog ppt
PPTX
PROLOG: Arithmetic Operations In Prolog
PPT
B trees in Data Structure
PDF
Trie Data Structure
DOCX
8-Practice problems on operator precedence parser-24-05-2023.docx
PDF
Arrays In Python | Python Array Operations | Edureka
PPT
Heap sort
PDF
Ai lab manual
PPTX
Queue in Data Structure
PPTX
Binary Search Tree
PPTX
Adversarial search
PPSX
Data Structure (Queue)
PPTX
Boyer moore algorithm
PPT
B trees dbms
PPTX
B and B+ tree
PPT
Unit 7 sorting
PPTX
Python Data Structures and Algorithms.pptx
String matching algorithm
Artificial Intelligence- TicTacToe game
prolog ppt
PROLOG: Arithmetic Operations In Prolog
B trees in Data Structure
Trie Data Structure
8-Practice problems on operator precedence parser-24-05-2023.docx
Arrays In Python | Python Array Operations | Edureka
Heap sort
Ai lab manual
Queue in Data Structure
Binary Search Tree
Adversarial search
Data Structure (Queue)
Boyer moore algorithm
B trees dbms
B and B+ tree
Unit 7 sorting
Python Data Structures and Algorithms.pptx
Ad

Viewers also liked (20)

TXT
Prolog Code [Family Tree] by Shahzeb Pirzada
PPT
Prolog basics
PPTX
Introduccion a prolog
PPT
Chaps 1-3-ai-prolog
PDF
Logic programming (1)
PPTX
PROLOG: Fact Roles And Queries In Prolog
PPTX
Prolog 7-Languages
PPTX
ProLog (Artificial Intelligence) Introduction
PPTX
PROLOG: Database Manipulation In Prolog
PPTX
PROLOG: Recursion And Lists In Prolog
PPTX
Introduction to Prolog
PPT
Ch10 Recursion
PDF
"That scripting language called Prolog"
PPTX
Knight’s tour algorithm
PDF
Knight's Tour
PPTX
Prolog: Arithmetic Operations In Prolog
PPT
Logic Programming and Prolog
PPTX
Logic programming in python
DOC
اجابات البرولوج
PPT
Artificial intelligence Prolog Language
Prolog Code [Family Tree] by Shahzeb Pirzada
Prolog basics
Introduccion a prolog
Chaps 1-3-ai-prolog
Logic programming (1)
PROLOG: Fact Roles And Queries In Prolog
Prolog 7-Languages
ProLog (Artificial Intelligence) Introduction
PROLOG: Database Manipulation In Prolog
PROLOG: Recursion And Lists In Prolog
Introduction to Prolog
Ch10 Recursion
"That scripting language called Prolog"
Knight’s tour algorithm
Knight's Tour
Prolog: Arithmetic Operations In Prolog
Logic Programming and Prolog
Logic programming in python
اجابات البرولوج
Artificial intelligence Prolog Language
Ad

Similar to Prolog programming (20)

PPT
PrologListsGraphs.ppt
PPT
Section3 Prologppt
PDF
python_avw - Unit-03.pdf
PDF
GE3151_PSPP_UNIT_4_Notes
PPT
Functions And Relations
PDF
Python lecture 07
PDF
Bai tap-prolog-da-tap-hop-9889
PPT
Functions And Relations
PPTX
Addressing Formulas for Sparse Matrices Using Column Major in 1D Arrays.pptx
DOCX
Python Materials- Lists, Dictionary, Tuple
PPTX
List and Dictionary in python
PPTX
making of lists,tables,matrix,vactor,sets.pptx
PDF
Relation function
PDF
Relation function
PDF
Lecture-5.pdf
PPT
Set Concepts
PPT
Theory of the sets and Venn diagram-grade 9 math
PPT
Lecture in Sets, Sequences and Summations
PrologListsGraphs.ppt
Section3 Prologppt
python_avw - Unit-03.pdf
GE3151_PSPP_UNIT_4_Notes
Functions And Relations
Python lecture 07
Bai tap-prolog-da-tap-hop-9889
Functions And Relations
Addressing Formulas for Sparse Matrices Using Column Major in 1D Arrays.pptx
Python Materials- Lists, Dictionary, Tuple
List and Dictionary in python
making of lists,tables,matrix,vactor,sets.pptx
Relation function
Relation function
Lecture-5.pdf
Set Concepts
Theory of the sets and Venn diagram-grade 9 math
Lecture in Sets, Sequences and Summations

More from Harry Potter (20)

PDF
How to build a rest api.pptx
PPTX
Business analytics and data mining
PPTX
Big picture of data mining
PPTX
Data mining and knowledge discovery
PPTX
Cache recap
PPTX
Directory based cache coherence
PPTX
How analysis services caching works
PPTX
Optimizing shared caches in chip multiprocessors
PPTX
Hardware managed cache
PPTX
Smm & caching
PPTX
Data structures and algorithms
PPT
Abstract data types
PPTX
Abstraction file
PPTX
Object model
PPTX
Concurrency with java
PPTX
Encapsulation anonymous class
PPT
Abstract class
PPTX
Object oriented analysis
PPTX
Api crash
PPTX
Rest api to integrate with your site
How to build a rest api.pptx
Business analytics and data mining
Big picture of data mining
Data mining and knowledge discovery
Cache recap
Directory based cache coherence
How analysis services caching works
Optimizing shared caches in chip multiprocessors
Hardware managed cache
Smm & caching
Data structures and algorithms
Abstract data types
Abstraction file
Object model
Concurrency with java
Encapsulation anonymous class
Abstract class
Object oriented analysis
Api crash
Rest api to integrate with your site

Recently uploaded (20)

PDF
Encapsulation_ Review paper, used for researhc scholars
PDF
Per capita expenditure prediction using model stacking based on satellite ima...
PDF
cuic standard and advanced reporting.pdf
PDF
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
PDF
Spectral efficient network and resource selection model in 5G networks
PDF
Network Security Unit 5.pdf for BCA BBA.
PPT
Teaching material agriculture food technology
PDF
Unlocking AI with Model Context Protocol (MCP)
PDF
Advanced methodologies resolving dimensionality complications for autism neur...
PDF
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
PDF
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
PDF
Approach and Philosophy of On baking technology
PPTX
Understanding_Digital_Forensics_Presentation.pptx
PDF
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
PPTX
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
PDF
Machine learning based COVID-19 study performance prediction
PDF
NewMind AI Weekly Chronicles - August'25 Week I
PPTX
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
PDF
Dropbox Q2 2025 Financial Results & Investor Presentation
PDF
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
Encapsulation_ Review paper, used for researhc scholars
Per capita expenditure prediction using model stacking based on satellite ima...
cuic standard and advanced reporting.pdf
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
Spectral efficient network and resource selection model in 5G networks
Network Security Unit 5.pdf for BCA BBA.
Teaching material agriculture food technology
Unlocking AI with Model Context Protocol (MCP)
Advanced methodologies resolving dimensionality complications for autism neur...
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
Approach and Philosophy of On baking technology
Understanding_Digital_Forensics_Presentation.pptx
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
Machine learning based COVID-19 study performance prediction
NewMind AI Weekly Chronicles - August'25 Week I
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
Dropbox Q2 2025 Financial Results & Investor Presentation
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf

Prolog programming

  • 2. 2 Prolog ProgrammingProlog Programming  DATA STRUCTURES IN PROLOG  PROGRAMMING TECHNIQUES  CONTROL IN PROLOG  CUTS
  • 3. 3 DATA STRUCTURES IN PROLOG  Lists in Prolog List notation is a way of writing terms  Terms as Data Term correspond with list
  • 4. 4 Lists in Prolog  The simplest way of writing a list is to enumerate its elements. The list consisting of the 3 atoms a, b and c can be written as [a, b, c] The list that doesn’t have elements called empty list denoted as [ ]
  • 5. 5 Lists in Prolog  We can also specify an initial sequence of elements and a trailing list, separated by | The list [a, b, c] can also be written as [a, b, c | [ ] ] [a, b | [c] ] [a | [b, c] ]
  • 6. 6 Lists : Head & Tail  A special case of this notation is a list with head H and tail T, written as [H|T]  The head is the first element of a list, and  The tail is the list consisting of the remaining elements. The list [a, b, c] can also be separated as • Head:The first element is a • Tail:The list of remaining elements = [b, c]
  • 7. 7 Lists : Unification  Unification can be used to extract the components of a list, so explicit operators for extracting the head and tail are not needed. The solution of the query  Bind variable H to the head and variable T to the tail of list [a, b, c]. ?- [H | T] = [a, b, c]. H = a T = [b, c]
  • 8. 8 Lists : Specified terms  The query (partially specified terms)  The term [ a | T ] is a partial specification of a list with head a and unknown tail denoted by variable T.  Similarly, [ H, b, c] is a partial specification of a list with unknown head H and tail [b, c].  These two specification to unify H = a, T =[b,c] ?- [a | T] = [H, b, c]. T = [b, c] H = a
  • 9. 9 Lists in Prolog  Example 2 The append relation on lists is defined by the following rules: Append([ ], Y, Y). Append([H | X], Y, [H | Z]) :- append(X,Y,Z). In words, The result of appending the empty list [ ] and a list Y is Y. If the result of appending X and Y is Z, then the result of appending [H | X] and Y is [H | Z]
  • 10. 10 Lists : Compute Arguments  The rules for append can be used to compute any one of the arguments from the other two:  Inconsistent arguments are rejected ?- append([a, b], [c, d], Z). Z = [a, b, c, d] ?- append([a, b], Y, [a, b, c, d]). Y = [c, d] ?- append(X, [c, d], [a, b, c, d]). X = [a, b] ?- append(X, [d, c], [a, b, c, d]). no
  • 11. 11 Terms as Data  The Dot operator or functor ‘.’ corresponds to make list with H and T.  [H | T ] is syntactic sugar for the term .(H,T)  Lists are terms. The term for the list [a, b, c] is .(H,T) .(a, .(b, .(c, [])))
  • 12. 12 Terms as Data  following terms can be drawn a tree  There is a one-to-one correspondence between trees and terms .(a, .(b, .(c, []))) ∙ ∙ ∙ a b c []
  • 13. 13 Terms : Binary Tree  Binary trees can be written as terms  An atom leaf for a leaf  A functor nonleaf with 2 arguments leaf nonleaf(leaf,leaf) nonleaf(nonleaf(leaf,leaf), nonleaf(leaf,leaf)) nonleaf(nonleaf(leaf,leaf),leaf) nonleaf(leaf,nonleaf(leaf,leaf))
  • 14. 14 List : tree  Example 3 A binary search tree is either empty, or it consists of a node with two binary search trees as subtrees.  Each node holds an integer.  Smaller elements appear in the left subtree of a node and larger elements appear in the right subtree.  Let a term node(K,S,T) represent a tree K S T
  • 15. 15 Binary search trees 15 2 16 10 129 0 3 19 10 2 12 9 153 0 16 3
  • 16. 16 Binary search trees  The rules define a relation member to test whether an integer appear at some node in a tree. The two arguments of member are an integer and a tree. member(K,_,_). member(K, node(N,S,_)) :- K < N, member(K, S). member(K, node(N,_,T)) :- K > N, member(K, T).
  • 17. 17 PROGRAMMING TECHNIQUES  The strengths of Prolog namely, backtracking and unification.  Backtracking allows a solution to be found if one exists  Unification allows variables to be used as placeholders for data to be filled in later.  Careful use of the techniques in this section can lead to efficient programs. The programs rely on left-to-right evaluation of subgoals.
  • 18. 18 Guess and Verify  A guess-and-verify query has the form Where guess(S) and verify(S) are subgoals.  Prolog respond to a query by generating solutions to guess(S) until a solution satisfying verify(S) is found. Such queries are also called generate-and-test queries. Is there an S such that guess(S) and verify(S)?
  • 19. 19 Guess and Verify  Similarly, a guess-and-verify rule has the following form:  Example Conslusion(…) if guess(…,S,…) and verify(…,S,…) overlap(X, Y) :- member(M, X), member(M, Y). Two lists X and Y overlap if there is some M that is a member of both X and Y. The first goal member(M, X) guesses an M from list X, and the second goal member(M, Y) verifies that M also appears in list Y.
  • 20. 20  The rules for member are member(M, [M |_]). Member(M, [_ |T]) :- member(M, T). The first rule says that M is a member of a list with head M. The second rule says that M is a member of a list if M is a member of its tail T.
  • 21. 21 Consider query  These query  The first goal in this query generates solutions and the second goal tests to see whether they are acceptable. ?- overlap([a,b,c,d],[1,2,c,d]). yes ?- member(M,[a,b,c,d]),member(M,[1,2,c,d]).
  • 22. 22 Consider query  The solutions generated by the first goal are  Test the second goal ?- member(M,[a,b,c,d]). M = a; M = b; M = c; M = d; no ?- member(a,[1,2,c,d]). no ?- member(b,[1,2,c,d]). no ?- member(c,[1,2,c,d]). yes
  • 23. 23 Hint  Since computation in Prolog proceeds from left to right, the order of the subgoals in a guess-and-verify query can affect efficiency.  Choose the subgoal with fewer solutions as the guess goal.  Example of the effect of goal order ?- X = [1,2,3], member(a,X). no ?- member(a,X), X = [1,2,3]). [infinite computation]
  • 24. 24 Variables as Placeholders in Terms  Variables have been used in rules and queries but not in terms representing objects.  Terms containing varibales can be used to simulate modifiable data structures;  The variables serve as placeholders for subterms to be filled in later.
  • 25. 25 Represent Binary Trees in Terms  The terms leaf and nonleaf(leaf,leaf) are completely specified. leaf nonleaf(leaf,leaf)
  • 26. 26 Partially specified list  The example list [a, b | X] has  Its first element : a  Its second element : b  Do not yet know what X represents  “Open list” if its ending in a variable, referred “end marker variable”  “Close list” if it is not open.
  • 27. 27 How prolog know variable  Prolog used machine-generated variables, written with a leading underscore (“_”) followed by an integer. ?- L = [a, b | X]. L = [a, |_G172] X = _G172 Yes
  • 28. 28  Prolog generates fresh variables each time it responds to a query or applies a rule.  An open list can be modified by unifying its end marker ?- L = [a, b | X], X = [c,Y]. L = [a,b,c |_G236] X = [c,_G236] Y = _G236 Yes
  • 29. 29  Extending an open list by unifying its end marker. a b L X _172 a b L X _236 c (a) Before X is bound. (b) After X = [c | Y].
  • 30. 30  Unification of an end-marker variable is akin to an assignment to that variable.  List L changes from [a, b | _172]  [a, b, c | _236] when _172 unifies with [c | _236]  Advantage of working with open lists is that the end of a list can be accessed quickly.
  • 31. 31 Open list implement queues when a queue is created, where L is an open list with end marker E When element a enters queue Q, we get queue R. When element a leaves queue Q, we get queue R. q(L,E) enter(a,Q,R) leave(a,Q,R)
  • 32. 32 Open list implement queue ?- setup(Q). ?- setup(Q), enter(a,Q,R). ?- setup(Q), enter(a,Q,R), leave(S,R,T). ?- setup(Q), enter(a,Q,R), enter(b,R,S), leave(X,S,T),leave(Y,T,U), wrapup(q([],[])). setup(q(X,X)). enter(A, q(X,Y), q(X,Z)) :- Y = [A | Z]. leave(A, q(X,Z), q(Y,Z)) :- Y = [A | Y]. wrapup(q([],[])).
  • 33. 33 Test queue ?-setup(Q),enter(a,Q,R),enter(b,R,S),leave(X,S,T), leave(Y,T,U),wrapup(U). Q = q([a, b], [a, b]) R = q([a, b], [b]) S = q([a, b], []) X = a T = q([b], []) Y = b U = q([], []) Yes ?-
  • 34. 34 Operations on a queue Q _1 R _2 a a T _3 b Q Q R setup(Q) enter(a,Q,R) enter(b,R,S)
  • 35. 35 Operations on a queue a T _3 b X leave(X,S,T) a T _3 b Y leave(Y,T,U)
  • 36. 36 Internal Prolog  A queue q(L,E) consists of open list L with end marker E.  The arrows from Q therefore go to the empty open list _1 with end marker _1. setup(q(X,X)). ?-setup(Q). Q = q(_1,_1) yes
  • 37. 37 Second goal  To enter A into a queue q(X,Y), bind Y to a list [A|Z], where Z is a fresh end marker, and return q(X,Z). enter(A,q(X,Y),q(X,Z)):- Y = [A|Z]. ?-setup(Q),enter(a,Q,R). Q = q([a|_2], [a|_2]) R = q([a|_2], _2) Unifies _1 with [a|_2],where _2 is a fresh end marker
  • 38. 38  When an element leaves a queue q(L,E), the resulting queue has the tail of L in place of L. Note in the diagram to the right of leave(X,S,T) that the open list for queue T is the tail of the open list for S.  The final goal wrapup(U) checks that the enter and leave operations leave U in an initial state q(L,E), where L is an empty openlist with end marker E.
  • 39. 39 Difference Lists  Difference List are a technique for coping with such changes.  Difference List consists of a list and its suffix.  We write this difference list as dl(L,E).
  • 40. 40 Contents of Difference List  The contents of the difference list consist of the elements that are in L but not in E.  Examples of difference lists with contents [a,b] are dl([a,b],[]). Dl([a,b,c],[c]). Dl([a,b|E],E). Dl([a,b,c|F],[c|F]).
  • 41. 41 CONTROL IN PROLOG  In the informal equation  “Logic” refers to the rules and queries in a logic program and  “control” refers to how a language computes a response to a query. algorithm = logic + control
  • 42. 42 CONTROL IN PROLOG  Control in Prolog is characterized by two decisions  Goal order : Choose the leftmost subgoal.  Rule order : Select the first applicable rule.  The response to a query is affected both by goal order within the query and by rule order with in the database of facts and rules.
  • 43. 43 CONTROL IN PROLOG start with a query as the current goal; while the current goal is nonempty do choose the leftmost subgoal; if a rule applies to the subgoal then select the first applicable rule; form a new current goal else backtrack end if end while; succeed
  • 44. 44 Example  A sublist S of Z can be specified in the following seemingly equivalent ways:  preffix X of Z and suffix S of X.  suffix S of X and prefix X of Z. appen1([],Y,Y). appen1([H|X],Y,[H|Z]):- appen1(X,Y,Z). Prefix(X,Z) :- appen1(X,Y,Z). Suffix(Y,Z) :- appen1(X,Y,Z). appen2([H|X],Y,[H|Z]):- appen2(X,Y,Z). appen2([],Y,Y).
  • 45. 45 Queries  The corresponding queries usually produce the same responses.  Rule order can also make a difference. ?-prefix(X,[a,b,c]),suffix([e],X). no ?-suffix([e],X),prefix(X,[a,b,c]). [infinite computation]
  • 46. 46 Queries ?- appen1(X,[c],Z). X = [] Z = [c] ; X = [_G230] Z = [_G230, c] ; X = [_G230, _G236] Z = [_G230, _G236, c] ; ?- appen2(X,[c],Z).  New Solutions are produced on demand for
  • 47. 47 Unification an Substitutions  Unification is central to control in Prolog  Substitution is a function from variables to terms
  • 48. 48 Applying a Rule to a Goal  A rule applies to a subgoal G if its head A unifies with G  Variables in the rule are renamed before unification to keep them distinct from variables in the subgoal. A :- B1, B2, …, Bn
  • 49. 49 A computation that succeeds without backtracking GOAL Suffix([a],L),prefix(L,[a,b,c]). suffix([a],L) if append(_1,[a],L). Append(_1,[a],L),prefix(L,[a,b,c]). {_1[],L[a]} append([],[a],[a]). Prefix([a],[a,b,c]). prefix([a],[a,b,c]) if append([a],_2,[a,b,c]) append([a],_2,[a,b,c]). prefix([a],[a,b,c]) if append([],_2,[b,c]) Append([],_2,[b,c]). {_2[b,c]} append([],[b,c],[b,c]) yes
  • 52. 52 Cuts  A cut prunes or “cuts out” and unexplored part of a Prolog search tree.  Cuts can therefore be used to make a computation more efficient by eliminating futile searching and backtracking.  Cuts can also be used to implement a form of negation
  • 53. 53 Cuts  A cut, written as !, appears as a condition within a rule. When rule is applied, the cut tells control to backtrack past Cj-1,…,C1,B, without considering any remaining rules for them. B :- C1,…, Cj-1, !,Cj+1,…,Ck
  • 54. 54 A cut as the First Condition  Consider rules of the form  If the goal C fails, then control backtracks past B without considering any remaining rules for B. Thus the cut has the effect of making B fail if C fails. B :- !, C.
  • 55. 55 Example b :- c. b :- d. b :- e. b,G c,G e,G X d,G!,d,G d,G b :- c. b :- !,d. b :- e.
  • 56. 56 Example  ?-a(X). a(1) :- b; a(2) :- e; b :- c. b :- d. a(1) :- b; a(2) :- e; b :- !,c. b :- d. a(X) b e c d Yes X=2Yes X=1 backtrack a(X) b e !c d Yes X=2 backtrack c
  • 57. 57 The Effect of Cut  As mentioned earlier, when a rule is applied during a computation  The cut tells control to backtrack past Cj- 1,..C1,B without considering any remaining rules for them.  The effect of inserting a cut in the middle of a guess-and-verify rule. B :- C1,…, Cj-1, !,Cj+1,…,Ck
  • 58. 58 The Effect of Cut  The right side of a guess-and-verify rule has the form guess(S), verify(S), where guess(S) generates potential solutions until one satisfying verify(S) is found.  The effect of insering a cut between them, as is to eliminate all but the first guess. Conclusion(S) :- guess(S), !, verify(S)
  • 59. 59 a(X) :- b(X). a(X) :- f(X). b(X) :- g(X),v(X). b(X) :- X = 4, v(X). g(1). g(2). g(3). v(X). f(5) a(X) :- b(X). a(X) :- f(X). b(X) :- g(X),!,v(X). b(X) :- X = 4, v(X). g(1). g(2). g(3). v(X). f(5) (a) (b)
  • 60. 60 a(Z) b(Z) f(5) g(Z),v(Z) v(4) v(1) v(2) v(3) a(Z) b(Z) f(5) g(Z),!,v(Z) v(4) !v(X) v(1) v(2) v(3) (a) (b)
  • 61. 61 Negation as Failure  The not operator in Prolog is implemented by the rules not(X) :- X, !, fail. not(_).