SlideShare a Scribd company logo
Properties of Exponents p. 323
Properties of Exponents a&b are real numbers, m&n are integers Product Property : Quotient of Powers :  Power of a Power Property :  Power of a Product Property : Negative Exponent Property : Zero Exponent Property :  Power of Quotient:
Example  – Product Property (-5)  3  (-5)  2  =  (-5)(-5)(-5)(-5)(-5)= (-5)  5 (-5) 3+2  = (-5)  5
Example – Product Property x 5   •  x 2  = x •x• x •x•x•x•x x 5+2  =  x 7
Product Property  a&b are real numbers, m&n are integers Product Property : (a m  )(a n )=a m+n a 3 •  a 5  •   a 4  = a 3 •  a 5  •   a 4  = a 3+5+4  a 3 •  a 5  •   a 4  = a 12
Product Property (a 3  b 2 ) (a 4  b 6 ) =  (a 3  a 4 ) (b 2  b 6 ) = a 3+4  b 2+6 a 3+4  b 2+6  = a 7  b 8 (x 5  y 2 ) (x 4  y 7 ) =  (x 5  x 4 ) (y 2  y 7 ) = x 5+4  y 2+7 x 5+2  y 2+7  = x 9  y 9
You try (3x 6  y 4 ) (4xy 7 ) = (3x 6  y 4 ) (4xy 7 ) = (3 •4) x 6+1   •  y 4+7 (3 •4) x 6+1   •  y 4+7  = 12x 7 y 11 (2x 12  y 5 ) (6x 3  y 9 ) = (2 • 6) x 12+3  y 5+9  =12x 15 y 14
Do now (2x 4  y 4 ) (5xy 7 ) = (2x 4  y 4 ) (5xy 7 ) = (2 •5) x 4+1   •  y 4+7 (2 •5) x 4+1   •  y 4+7  = 10x 5 y 11 (3x 14  y 5 ) (9x 3  y) = (3 • 9) x 14+3  y 5+1  =27x 17 y 6
Dividing Powers with Like bases -5  3  =  -5 •  -5 •  -5 -5  2  -5 •  -5 -5 •  -5 •  -5  = -5 -5 •  -5
Power of a Quotient with like bases x  4  =  x •  x  •  x •  x X 2  x •  x X 2
Quotient of Powers
Quotient of Powers Quotient of Powers :  a m   = a m-n ;   a≠0   a n
You try 4 5 x 4 y 7  =  4 3 x 2 y 6 4 5 x 4 y 7  =  4 5-3  x 4-2 y 7-6  4 3 x 2 y 6 4 5-3  x 4-2 y 7-6   =  4 2 x 2 y  =  16x 2 y
You try 3 7 x 9 y 12  =  3 4 x 5 y 6 3 7 x 9 y 12  =  3 7-4  x 9-5  y 12-6 3 4 x 5 y 6 3 7-4  x 9-5  y 12-6 =  3 3 x 4 y 8  =  27x 4 y 8
Negative Exponents x  2  =  x •  x_____   x 4  x •  x  •  x •  x 1   = x 2 x  2  = x  2 -4  = x -2  X 4 x -2  =  1   x 2
Negative exponets x  3  =  x •  x_  •  x___   x 5  x •  x  •  x •  x  •  x 1   =  x 3 x  3  = x  3 -5  = x -3  x 5 x -3  =  1 x 3
Example  – Quotient of Powers
You try x -2  = 1 x 2  2x -2 y =  2x -2 y =  2y x 2
You try (-5) -6 (-5) 4  =  (-5) -6+4  =  (-5) -2  =
Properties of Exponents a&b are real numbers, m&n are integers Negative Exponent Property :  a -m =  ; a ≠0
Zero Exponent Property x 0 x 2   = x 2-2  x 2 x 2-2  = x 0 x 2   = 1 x 2 x 0 = 1
You try (x -2 ) (x 2 ) = (x -2 ) (x 2 ) = x -2+2 x -2+2  = x 0 x 0  = 1
Properties of Exponents a&b are real numbers, m&n are integers ets Review Zero Exponent Property : a 0 =1; a≠0
Properties of Exponents a&b are real numbers, m&n are integers Product Property : a m  * a n =a m+n Quotient of Powers :  a m   = a m-n ;   a≠0   a n Negative Exponent Property : a -m =  ; a ≠0 Zero Exponent Property : a 0 =1; a≠0
Journal Entry: Describe the rules for the follwoing Product Property :  Quotient of Powers :  Negative Exponent Property : Zero Exponent Property :
Example  – Power of a Power (2 3 ) 4  = (2 3 ) (2 3 ) (2 3 ) (2 3 ) 4   2 3+3+3+3  =  (2 3 ) 4  = 2 12
Example - Power of a Power (3 4 ) 3  = (3 4 ) (3 4 ) (3 4 ) (3 4 ) (3 4 ) (3 4 ) = 3 4+4+4 (3 4 ) 3  = 3 12
Raising a Power to a Power (X 5 ) 2  = (X 5 ) (X 5 ) (X 5 ) (X 5 )= x 5+5 (X 5 ) 2  = x 10
Power of a Power Property   a&b are real numbers, m&n are integers Power of a Power Property : (a m ) n =a mn (x 5 ) 3  = x 5 • 3 x 5 • 3 = x 15
You try (y 4 ) 8  = (y 4 ) 8  = y 4 •8  = y 24 (s 3 ) 4  = (s 3 ) 4  = s 3 •4  = s 12
Power of a Product Property (-2x 7 ) 2  = (-2x 7 )   (-2x 7 )   (-2x 7 )   (-2x 7 )   = (-2 • - 2)   (x 7   • x 7 )   =4x 14 (-2x 7 ) 2  = (-2) 2  (x 7 ) 2  = -2 1 •2   x 7 • 2 = 4x 14
Power of a Product Property :  (ab) m =a m b m (a 3 b 2 ) 4 = (a 3 ) 4  (b 2 ) 4  (a 3 ) 4  (b 2 ) 4  =   a 3 •4 b 2 •4  =a 12 b 8
You try (-2x 4 ) 3  = (-2) 1 • 3  x 5 • 3 (-2x 4 ) 3  = (-2) 1 • 3  x 4 • 3 (-2) 1 • 3  x 4 • 3  = (-2) 3  x 12  = -16x 12   (4x 4 y 5 ) 2 (4x 4 y 5 ) 2 =  4 1 • 2 x 4  • 2 y 5 • 2 (4x 4 y 5 ) 2 =  16x 8 y 10
You try (-3x 5 y 3 ) 4  = (-3) 1 • 4  x 5 • 4  y 4 • 4 = (-3) 4  x 20  y 16  (7x 3 y -5 ) 2 7 1 • 2 x 3  • 2 y -5 • 2 16x 8 y -10  =  16x 8 y 10
Example – Power of Quotient
Properties of Exponents a&b are real numbers, m&n are integers Power of Quotient:     b≠0
Properties of Exponents a&b are real numbers, m&n are integers Product Property : a m  * a n =a m+n Quotient of Powers :  a m   = a m-n ;   a≠0   a n Power of a Power Property : (a m ) n =a mn Power of a Product Property :  (ab) m =a m b m Negative Exponent Property : a -m =  ; a ≠0 Zero Exponent Property : a 0 =1; a≠0 Power of Quotient:     b≠0
Multiplying and Dividing Monomials Monomial – an expression that is either a numeral, a variable or a product of numerals and variables with whole number exponents. Constant – Monomial that is a numeral. Example -  2
Journal Entry: Describe the rules for the follwoing Power of a Power Property :  Power of a Product Property : Power of Quotient:
Multiplying Monomials (-2x 4 y 2 ) (-3xy 2 z 3 )  =  (-2)(-3)(x 4 x )(y 2 y 2  ) z 3 6x 5 y 4  z 3 (-2x 3 y 4 )  2  (-3xy 2 )  (-2   )  2  x 3∙2 y 4∙2  ) (-3xy 2 )  (4)(-3)(x 6 x) (y 8  y 2  )  -12x 7 y 10
Scientific Notation A number is expressed in scientific notation when it is written as the product of a factor and a power of 10.  The factor must be greater than or equal to 1 and less then 10 a x 10ⁿ, where 1 ≤ a < 10
Scientific Notation 131,400,000,000=  1.314 x 10 11 Move the decimal behind the 1 st  number How many places did you have to move the decimal? Put that number here!
Write using scientific notation 12,300=  1.23 x 10 4 Write using standard notation 1.76 x 10 3 1,760
Example – Scientific Notation 131,400,000,000  = 5,284,000 1.314 x 10 11   = 5.284 x 10 6
Example – Scientific Notation (5.2 x 10 9 )(3.0 x 10 -3  )= (5.2 x 3.0) (10 9  x 10 -3  )= 15.6 x 10 6 1.56 x 10 7 2.45 x 10 -3  = 0.00245
Properties of Exponents a&b are real numbers, m&n are integers Product Property : a m  * a n =a m+n Quotient of Powers :  a m   = a m-n ;   a≠0   a n Power of a Power Property : (a m ) n =a mn Power of a Product Property :  (ab) m =a m b m Negative Exponent Property : a -m =  ; a ≠0 Zero Exponent Property : a 0 =1; a≠0 Power of Quotient:     b≠0

More Related Content

PDF
Factoring Sum and Difference of Two Cubes
PPT
Simplifying radical expressions, rational exponents, radical equations
PPT
Combining Like Terms
PPTX
7.7 Solving Radical Equations
PDF
Radical expressions
PDF
Sets of numbers
PPT
Adding and Subtracting Monomials
PPTX
Factoring the Difference of Two Squares
Factoring Sum and Difference of Two Cubes
Simplifying radical expressions, rational exponents, radical equations
Combining Like Terms
7.7 Solving Radical Equations
Radical expressions
Sets of numbers
Adding and Subtracting Monomials
Factoring the Difference of Two Squares

What's hot (20)

PPT
Solving One Step Equations
PPT
Distance between two points
PPTX
Evaluating an Algebraic Expression
PPTX
First Quarter - Chapter 2 - Quadratic Equation
PPT
Absolute Value Equations and Inequalities
PDF
Obj. 27 Special Parallelograms
PPTX
Logarithm
PDF
3.3 Zeros of Polynomial Functions
PPT
Square roots
PPT
Adding and subtracting polynomials
PPT
Exponents
PPT
Absolute value
PPT
Simplifying Radicals
PPTX
Math 7 – adding and subtracting polynomials
PPT
Laws of exponents
PPTX
Cube of binomial
PPT
Remainder theorem
PPT
Basics about exponents
PPTX
Exponential Growth And Decay
PPT
one step equations
Solving One Step Equations
Distance between two points
Evaluating an Algebraic Expression
First Quarter - Chapter 2 - Quadratic Equation
Absolute Value Equations and Inequalities
Obj. 27 Special Parallelograms
Logarithm
3.3 Zeros of Polynomial Functions
Square roots
Adding and subtracting polynomials
Exponents
Absolute value
Simplifying Radicals
Math 7 – adding and subtracting polynomials
Laws of exponents
Cube of binomial
Remainder theorem
Basics about exponents
Exponential Growth And Decay
one step equations
Ad

Viewers also liked (20)

PPT
Laws of exponents
PPTX
7.2 properties of rational exponents
PPTX
Exponent review
PPS
1 rules for exponents
PPT
Rules of exponents
PPTX
Rules Of Exponents1
PDF
Integrated Math 2 Sections 2-7 and 2-8
PPTX
Rules Of Exponents
PPT
Rules of exponents 1
PPT
Rules of Exponents
PPTX
Exponents Rules
PPT
Jeopardy Pemdas
PPTX
Radical and exponents (2)
PDF
Nov. 17 Multiply And Divide Exponent Rules
PPT
Power Laws
PDF
Math1003 1.3 - Exponents
PPTX
Power of Power Exponent Rule
PPT
Multiplying Polynomials I
DOCX
Detailed Lesson plan of Product Rule for Exponent Using the Deductive Method
PPT
Lesson plan multiple and factors.ppt v 3
Laws of exponents
7.2 properties of rational exponents
Exponent review
1 rules for exponents
Rules of exponents
Rules Of Exponents1
Integrated Math 2 Sections 2-7 and 2-8
Rules Of Exponents
Rules of exponents 1
Rules of Exponents
Exponents Rules
Jeopardy Pemdas
Radical and exponents (2)
Nov. 17 Multiply And Divide Exponent Rules
Power Laws
Math1003 1.3 - Exponents
Power of Power Exponent Rule
Multiplying Polynomials I
Detailed Lesson plan of Product Rule for Exponent Using the Deductive Method
Lesson plan multiple and factors.ppt v 3
Ad

Similar to Properties Of Exponents (20)

PPT
New Properties
PPT
9 2power Of Power
PDF
Working with Exponents Unit
PDF
Algebra 2 Section 4-1
PPT
Laws of Exponents
PPT
PPT
properties of exponents
PPT
Exponents
PPT
8 2power Of Power
PDF
Working with exponents rules
ODP
Simplifying exponents
PDF
Unit2 powers[1].doc
PPTX
Exponent lecture final
PDF
Working with exponents unit
PPTX
6 2 properties of exponents
DOC
Unit 2 powers
PPT
PPTX
Laws of exponents and Power
PPT
Presentation5 1
PPT
Properties-of-Exponents.pptslc[z;xcw;xvr
New Properties
9 2power Of Power
Working with Exponents Unit
Algebra 2 Section 4-1
Laws of Exponents
properties of exponents
Exponents
8 2power Of Power
Working with exponents rules
Simplifying exponents
Unit2 powers[1].doc
Exponent lecture final
Working with exponents unit
6 2 properties of exponents
Unit 2 powers
Laws of exponents and Power
Presentation5 1
Properties-of-Exponents.pptslc[z;xcw;xvr

Properties Of Exponents

  • 2. Properties of Exponents a&b are real numbers, m&n are integers Product Property : Quotient of Powers : Power of a Power Property : Power of a Product Property : Negative Exponent Property : Zero Exponent Property : Power of Quotient:
  • 3. Example – Product Property (-5) 3 (-5) 2 = (-5)(-5)(-5)(-5)(-5)= (-5) 5 (-5) 3+2 = (-5) 5
  • 4. Example – Product Property x 5 • x 2 = x •x• x •x•x•x•x x 5+2 = x 7
  • 5. Product Property a&b are real numbers, m&n are integers Product Property : (a m )(a n )=a m+n a 3 • a 5 • a 4 = a 3 • a 5 • a 4 = a 3+5+4 a 3 • a 5 • a 4 = a 12
  • 6. Product Property (a 3 b 2 ) (a 4 b 6 ) = (a 3 a 4 ) (b 2 b 6 ) = a 3+4 b 2+6 a 3+4 b 2+6 = a 7 b 8 (x 5 y 2 ) (x 4 y 7 ) = (x 5 x 4 ) (y 2 y 7 ) = x 5+4 y 2+7 x 5+2 y 2+7 = x 9 y 9
  • 7. You try (3x 6 y 4 ) (4xy 7 ) = (3x 6 y 4 ) (4xy 7 ) = (3 •4) x 6+1 • y 4+7 (3 •4) x 6+1 • y 4+7 = 12x 7 y 11 (2x 12 y 5 ) (6x 3 y 9 ) = (2 • 6) x 12+3 y 5+9 =12x 15 y 14
  • 8. Do now (2x 4 y 4 ) (5xy 7 ) = (2x 4 y 4 ) (5xy 7 ) = (2 •5) x 4+1 • y 4+7 (2 •5) x 4+1 • y 4+7 = 10x 5 y 11 (3x 14 y 5 ) (9x 3 y) = (3 • 9) x 14+3 y 5+1 =27x 17 y 6
  • 9. Dividing Powers with Like bases -5 3 = -5 • -5 • -5 -5 2 -5 • -5 -5 • -5 • -5 = -5 -5 • -5
  • 10. Power of a Quotient with like bases x 4 = x • x • x • x X 2 x • x X 2
  • 12. Quotient of Powers Quotient of Powers : a m = a m-n ; a≠0 a n
  • 13. You try 4 5 x 4 y 7 = 4 3 x 2 y 6 4 5 x 4 y 7 = 4 5-3 x 4-2 y 7-6 4 3 x 2 y 6 4 5-3 x 4-2 y 7-6 = 4 2 x 2 y = 16x 2 y
  • 14. You try 3 7 x 9 y 12 = 3 4 x 5 y 6 3 7 x 9 y 12 = 3 7-4 x 9-5 y 12-6 3 4 x 5 y 6 3 7-4 x 9-5 y 12-6 = 3 3 x 4 y 8 = 27x 4 y 8
  • 15. Negative Exponents x 2 = x • x_____ x 4 x • x • x • x 1 = x 2 x 2 = x 2 -4 = x -2 X 4 x -2 = 1 x 2
  • 16. Negative exponets x 3 = x • x_ • x___ x 5 x • x • x • x • x 1 = x 3 x 3 = x 3 -5 = x -3 x 5 x -3 = 1 x 3
  • 17. Example – Quotient of Powers
  • 18. You try x -2 = 1 x 2 2x -2 y = 2x -2 y = 2y x 2
  • 19. You try (-5) -6 (-5) 4 = (-5) -6+4 = (-5) -2 =
  • 20. Properties of Exponents a&b are real numbers, m&n are integers Negative Exponent Property : a -m = ; a ≠0
  • 21. Zero Exponent Property x 0 x 2 = x 2-2 x 2 x 2-2 = x 0 x 2 = 1 x 2 x 0 = 1
  • 22. You try (x -2 ) (x 2 ) = (x -2 ) (x 2 ) = x -2+2 x -2+2 = x 0 x 0 = 1
  • 23. Properties of Exponents a&b are real numbers, m&n are integers ets Review Zero Exponent Property : a 0 =1; a≠0
  • 24. Properties of Exponents a&b are real numbers, m&n are integers Product Property : a m * a n =a m+n Quotient of Powers : a m = a m-n ; a≠0 a n Negative Exponent Property : a -m = ; a ≠0 Zero Exponent Property : a 0 =1; a≠0
  • 25. Journal Entry: Describe the rules for the follwoing Product Property : Quotient of Powers : Negative Exponent Property : Zero Exponent Property :
  • 26. Example – Power of a Power (2 3 ) 4 = (2 3 ) (2 3 ) (2 3 ) (2 3 ) 4 2 3+3+3+3 = (2 3 ) 4 = 2 12
  • 27. Example - Power of a Power (3 4 ) 3 = (3 4 ) (3 4 ) (3 4 ) (3 4 ) (3 4 ) (3 4 ) = 3 4+4+4 (3 4 ) 3 = 3 12
  • 28. Raising a Power to a Power (X 5 ) 2 = (X 5 ) (X 5 ) (X 5 ) (X 5 )= x 5+5 (X 5 ) 2 = x 10
  • 29. Power of a Power Property a&b are real numbers, m&n are integers Power of a Power Property : (a m ) n =a mn (x 5 ) 3 = x 5 • 3 x 5 • 3 = x 15
  • 30. You try (y 4 ) 8 = (y 4 ) 8 = y 4 •8 = y 24 (s 3 ) 4 = (s 3 ) 4 = s 3 •4 = s 12
  • 31. Power of a Product Property (-2x 7 ) 2 = (-2x 7 ) (-2x 7 ) (-2x 7 ) (-2x 7 ) = (-2 • - 2) (x 7 • x 7 ) =4x 14 (-2x 7 ) 2 = (-2) 2 (x 7 ) 2 = -2 1 •2 x 7 • 2 = 4x 14
  • 32. Power of a Product Property : (ab) m =a m b m (a 3 b 2 ) 4 = (a 3 ) 4 (b 2 ) 4 (a 3 ) 4 (b 2 ) 4 = a 3 •4 b 2 •4 =a 12 b 8
  • 33. You try (-2x 4 ) 3 = (-2) 1 • 3 x 5 • 3 (-2x 4 ) 3 = (-2) 1 • 3 x 4 • 3 (-2) 1 • 3 x 4 • 3 = (-2) 3 x 12 = -16x 12 (4x 4 y 5 ) 2 (4x 4 y 5 ) 2 = 4 1 • 2 x 4 • 2 y 5 • 2 (4x 4 y 5 ) 2 = 16x 8 y 10
  • 34. You try (-3x 5 y 3 ) 4 = (-3) 1 • 4 x 5 • 4 y 4 • 4 = (-3) 4 x 20 y 16 (7x 3 y -5 ) 2 7 1 • 2 x 3 • 2 y -5 • 2 16x 8 y -10 = 16x 8 y 10
  • 35. Example – Power of Quotient
  • 36. Properties of Exponents a&b are real numbers, m&n are integers Power of Quotient: b≠0
  • 37. Properties of Exponents a&b are real numbers, m&n are integers Product Property : a m * a n =a m+n Quotient of Powers : a m = a m-n ; a≠0 a n Power of a Power Property : (a m ) n =a mn Power of a Product Property : (ab) m =a m b m Negative Exponent Property : a -m = ; a ≠0 Zero Exponent Property : a 0 =1; a≠0 Power of Quotient: b≠0
  • 38. Multiplying and Dividing Monomials Monomial – an expression that is either a numeral, a variable or a product of numerals and variables with whole number exponents. Constant – Monomial that is a numeral. Example - 2
  • 39. Journal Entry: Describe the rules for the follwoing Power of a Power Property : Power of a Product Property : Power of Quotient:
  • 40. Multiplying Monomials (-2x 4 y 2 ) (-3xy 2 z 3 ) = (-2)(-3)(x 4 x )(y 2 y 2 ) z 3 6x 5 y 4 z 3 (-2x 3 y 4 ) 2 (-3xy 2 ) (-2 ) 2 x 3∙2 y 4∙2 ) (-3xy 2 ) (4)(-3)(x 6 x) (y 8 y 2 ) -12x 7 y 10
  • 41. Scientific Notation A number is expressed in scientific notation when it is written as the product of a factor and a power of 10. The factor must be greater than or equal to 1 and less then 10 a x 10ⁿ, where 1 ≤ a < 10
  • 42. Scientific Notation 131,400,000,000= 1.314 x 10 11 Move the decimal behind the 1 st number How many places did you have to move the decimal? Put that number here!
  • 43. Write using scientific notation 12,300= 1.23 x 10 4 Write using standard notation 1.76 x 10 3 1,760
  • 44. Example – Scientific Notation 131,400,000,000 = 5,284,000 1.314 x 10 11 = 5.284 x 10 6
  • 45. Example – Scientific Notation (5.2 x 10 9 )(3.0 x 10 -3 )= (5.2 x 3.0) (10 9 x 10 -3 )= 15.6 x 10 6 1.56 x 10 7 2.45 x 10 -3 = 0.00245
  • 46. Properties of Exponents a&b are real numbers, m&n are integers Product Property : a m * a n =a m+n Quotient of Powers : a m = a m-n ; a≠0 a n Power of a Power Property : (a m ) n =a mn Power of a Product Property : (ab) m =a m b m Negative Exponent Property : a -m = ; a ≠0 Zero Exponent Property : a 0 =1; a≠0 Power of Quotient: b≠0