SlideShare a Scribd company logo
PROSA
A framework for Failure Prediction through Online Testing

Osama Sammodi

                S‐Cube Industrial Workshop
                 24.02.2012, Thales, Paris




                                                                     1
                                    University of Duisburg‐Essen (UniDue)
Agenda




• PROSA: Online Testing & Failure Prediction
  Framework
• Evaluation
• PROSA and fi‐ware
• Benefits and Use Case
                                           2
Current Situation
Failure Prediction
 • Web services provide opportunities for building highly dynamic 
   systems by integrating 3rd party services
    – Which are under the sole control of service providers
    – May behave in ways not anticipated during design time
       (e.g., degradation of QoS such as reduced performance or low reliability)


 • Online failure prediction allows anticipating deviations in the 
   expected QoS
    – And thus, planning and implementing proactive repair or compensation 
      activities




                                                                              3
Goal
Accurate Failure Prediction
 Inaccurate failure prediction leads to:
    – False Positives: prediction predicts a failure although the service turns out 
      to work when invoked
    – False Negatives: prediction doesn’t predict a failure although the service 
      turns out to fail when invoked 


    – Higher operational cost
      (e.g., use of expensive alternative service)
    – Performance issues (in the worst case, leaving less 
      time to address true failures)
    – Failures and financial loses (e.g., use of a “buggy” 
      service) 
                                                                                 4
Failure Prediction & Monitoring
Problem
  •     Monitoring (prominent for SBAs)
        – Observe the software during its 
          current execution (i.e., actual use / 
                                                 End-user
          operation)
        – End‐user interacts with the 
          system

                                                        input   output
            Cannot guarantee 
               comprehensive / timely 
               coverage of the ’test object’
             Can reduce the accuracy of 
            failure prediction


[for more details, see deliverable JRA-1.3.1; S-                     5
Cube KM]
Failure Prediction & OT
Solution
 Solution: Online Testing (OT) = Extend testing to the operation phase
                                            Identify 
                                            Adaptation                                    Requirements
                                            Need                                          Engineering
                                                                    Operation &
                                                                    Management
   “Actively (& systematically)                           Testing
   execute services in parallel    Identify 
                                   Adaptation         Adaptation
                                                                                                   Design
                                                                                   Evolution
   to their normal use in SBA”     Strategy

                                                                    Deployment &
                                             Enact                  Provisioning               Realization
                                             Adaptation




                                                 Tester




                                                             input                    output
                                                                                                             6
PROSA
Failure Prediction Framework
                                                             PROSA Framework
• Online testing
                                          Online Testing                      Monitoring Module
   – Triggers testing the                   Module                                                Usage Rates

     services based on usage                                        Test
                                                                    Input
                       Usage rate 
                                           Online Testing                       Monitoring  QoS Data         Monitoring 
     rates              threshold
                                              Engine              Time 
                                                                                 Engine     Usage Data
                                                                                                               Data
                                                                Interval
• Monitoring
                           Online test       Test Input 
                                                                                                                   QoS Data
   – Performs actual              rate       Repository

     observation of QoS data                                                  Prediction Module

     for both testing and                                                           Prediction 
                                                                                      Model
                                                                                                            Prediction 
                                                                                                              Engine
                                                                                                                                  Pred. 
     monitoring                                                                                                                   model

• Prediction
   – Use combined                                                                                                             Prediction 
     monitoring and testing                          Monitoring             Test Input                                          Result 

                                                      Events
     results (QoS data) for                                                                       Service

     predicting failures                                                                 Service‐oriented System          7
Agenda




• PROSA: Online Testing & Failure Prediction
  Framework
• Evaluation
• PROSA and fi‐ware
• Benefits and Use Cases
                                               8
Experiments
Goal
 • To understand the accuracy gains achieved by OT in a 
   broad setting 

 • Analyse the factors that can influence the gains in 
   prediction accuracy achieved by OT.
    – Usage rate
    – Prediction model
    – Online test rates




                                                           9
Experiments
Results
       • Influence of usage rate and online test rate
            – results using: Last and 25% failure rate




                                                                                                     0.25
0.25




                                                 0.25
       ΔF                   Difference (OT‐M)           ΔF                   Difference (OT‐M)              ΔF                   Difference (OT‐M)




                                                                                                     0.20
0.20




                                                 0.20




                                                                                                     0.15
0.15




                                                 0.15




                                                                                                     0.10
0.10




                                                 0.10
0.05




                                                                                                     0.05
                                                 0.05
0.00




                                                 0.00




                                                                                                     0.00
             0.05    0.10      0.15       0.20               0.05     0.10      0.15          0.20               0.05     0.10      0.15          0.20
                                  usage rate                                           usage rate                                          usage rate

             Online test rate = 0.15                           Online test rate = 0.30                             Online test rate = 0.60


                                                                                                                                             10
Experiments
  Results
       • Influence of prediction model
               – results using: 0.15 online test rate and 25% failure rate
0.25




                                                 0.25




                                                                                                 0.25




                                                                                                                                                 0.25
       ΔF                   Difference (OT‐M)           ΔF                  Difference (OT‐M)           ΔF                  Difference (OT‐M)           ΔF                  Difference (OT‐M)
0.20




                                                 0.20




                                                                                                 0.20




                                                                                                                                                 0.20
0.15




                                                 0.15




                                                                                                 0.15




                                                                                                                                                 0.15
0.10




                                                 0.10




                                                                                                 0.10




                                                                                                                                                 0.10
0.05




                                                 0.05




                                                                                                 0.05




                                                                                                                                                 0.05
0.00




                                                 0.00




                                                                                                 0.00




                                                                                                                                                 0.00
            0.05     0.10        0.15     0.20               0.05    0.10        0.15     0.20               0.05    0.10        0.15     0.20               0.05    0.10        0.15     0.20
                                  usage rate                                      usage rate                                      usage rate                                      usage rate
                   Last                                             BM(10)                                          BM(5)                                           SEM
            Last observed value is                             Arithmetic average                            Arithmetic average                         Simple Exponential Smoothing
            the prediction value                               of last 10 points                             of last 5 points


                                                                                                                                                                                 11
Agenda




• PROSA: Online Testing & Failure Prediction
  Framework
• Evaluation
• PROSA and fi‐ware
• Benefits and Use Cases
                                               12
PROSA & fi‐ware
                           Analysis and        Construction          Deployment             Execution and 
  PERFORMANCE TESTING        Design             and Testing                                  Monitoring

                                                    Trace Analyzer


                                  Software Performance Cockpit


                                                                                                  PROSA
 DEPLOY‐
  MENT




                                                                     ENG Deployment Tool
                                                                     (for IaaS/PaaS Deployment)




                                                                                         On‐going work
                                                                                                          13
                        Future Internet Core Platform: http://www.fi‐ware.eu/
Agenda




• PROSA: Online Testing & Failure Prediction
  Framework
• Evaluation
• PROSA and fi‐ware
• Benefits and Use Cases
                                               14
Benefits and Use Cases
PROSA Constant availability of QoS data
Use Cases:
•   Accurate failure prediction
•   Integration in FI application core platform (fi‐ware)
•   Combining/using PROSA with approaches for failure 
    prediction of a composite service
     – UniDue’s approach (SPADE) : e‐2‐e requirement violation 
       prediction through runtime verification (see S‐Cube Virtual 
       Campus)




                                                                      SLA violation 
                                                                       prediction
• Avoiding unnecessary costs
• Avoiding unnecessary repair/        Failure
  compensation efforts              Prediction


• Avoiding SLA violations for service 
  providers                                                               15
Thank You!


             16
References
[Sammodi et al. 2011] O. Sammodi, A. Metzger, X. Franch, M. Oriol, J. Marco, and K. Pohl. Usage‐based online testing for proactive
adaptation of service‐based applications. In COMPSAC 2011
[Metzger 2011] A. Metzger. Towards Accurate Failure Prediction for the Proactive Adaptation of Service‐oriented Systems (Invited Paper). 
In ASAS@ESEC 2011
[Salfner et al. 2010] F. Salfner, M. Lenk, and M. Malek. A survey of online failure prediction methods. ACM Comput. Surv., 42(3), 2010
[PO‐JRA‐1.3.1] S‐Cube deliverable # PO‐JRA‐1.3.1: Survey of Quality Related Aspects Relevant for Service‐based Applications; 
      http://www.s‐cube‐network.eu/results/deliverables/wp‐jra‐1.3
[S‐Cube KM] S‐Cube Knowledge Model: http://www.s‐cube‐network.eu/knowledge‐model




                                                                                                                                      17

More Related Content

PPT
Xeronics intro v2.6
PDF
Introduction of IMQA MPM Solution
PDF
Ijett v4 i10p113
PDF
매설배관 건전성평가
PDF
Big Data Analytics for connected home
PPT
Test Automation
PDF
S-CUBE LP: Online Testing for Proactive Adaptation
PPTX
Session #1: Development Practices And The Microsoft Approach
Xeronics intro v2.6
Introduction of IMQA MPM Solution
Ijett v4 i10p113
매설배관 건전성평가
Big Data Analytics for connected home
Test Automation
S-CUBE LP: Online Testing for Proactive Adaptation
Session #1: Development Practices And The Microsoft Approach

Similar to PROSA - A Framework for Online Failure Prediction through Online Testing (20)

PDF
Test and integration in REC
PDF
Quality Assurance in REC Group
PDF
Zapewnienie jakości w Grupie REC
PPTX
Oss Bss Testing
PDF
Linkroad Corporate Snapshot
PDF
Performance Testing
PDF
PLM Implementation services
PPT
Chapter 1 ASE Slides ppt
PPTX
How to bake in quality in agile scrum projects
PPTX
Persistent Analytical Instrumentation Expertise
PDF
Shuvam dutta | Performance testing and engineering
PDF
Shuvam dutta | Performance testing & engineering
PDF
An ASAP Validation Implementation Approach by Qualit Consulting
PDF
BenchmarkQA Performance Testing Quality Forum March 2012
PPTX
Unosquare SlideShare Presentation
PPTX
Enabling the next generation airport at DXB
PPTX
Idexcel Independent Testing Services Presentation
PPTX
Quality & Reliability in Software Engineering
PPTX
SPEC INDIA Java Case Study
PPTX
20110812 CyberTAN presentation
Test and integration in REC
Quality Assurance in REC Group
Zapewnienie jakości w Grupie REC
Oss Bss Testing
Linkroad Corporate Snapshot
Performance Testing
PLM Implementation services
Chapter 1 ASE Slides ppt
How to bake in quality in agile scrum projects
Persistent Analytical Instrumentation Expertise
Shuvam dutta | Performance testing and engineering
Shuvam dutta | Performance testing & engineering
An ASAP Validation Implementation Approach by Qualit Consulting
BenchmarkQA Performance Testing Quality Forum March 2012
Unosquare SlideShare Presentation
Enabling the next generation airport at DXB
Idexcel Independent Testing Services Presentation
Quality & Reliability in Software Engineering
SPEC INDIA Java Case Study
20110812 CyberTAN presentation
Ad

Recently uploaded (20)

PDF
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
PDF
Reach Out and Touch Someone: Haptics and Empathic Computing
PPTX
Digital-Transformation-Roadmap-for-Companies.pptx
PDF
Mobile App Security Testing_ A Comprehensive Guide.pdf
PDF
NewMind AI Weekly Chronicles - August'25 Week I
PDF
Spectral efficient network and resource selection model in 5G networks
PDF
Unlocking AI with Model Context Protocol (MCP)
PDF
CIFDAQ's Market Insight: SEC Turns Pro Crypto
PDF
cuic standard and advanced reporting.pdf
PDF
NewMind AI Monthly Chronicles - July 2025
PDF
Approach and Philosophy of On baking technology
PDF
Machine learning based COVID-19 study performance prediction
PPTX
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
PPT
Teaching material agriculture food technology
PDF
Per capita expenditure prediction using model stacking based on satellite ima...
PPTX
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
PDF
Review of recent advances in non-invasive hemoglobin estimation
PDF
How UI/UX Design Impacts User Retention in Mobile Apps.pdf
PPTX
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
PDF
Agricultural_Statistics_at_a_Glance_2022_0.pdf
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
Reach Out and Touch Someone: Haptics and Empathic Computing
Digital-Transformation-Roadmap-for-Companies.pptx
Mobile App Security Testing_ A Comprehensive Guide.pdf
NewMind AI Weekly Chronicles - August'25 Week I
Spectral efficient network and resource selection model in 5G networks
Unlocking AI with Model Context Protocol (MCP)
CIFDAQ's Market Insight: SEC Turns Pro Crypto
cuic standard and advanced reporting.pdf
NewMind AI Monthly Chronicles - July 2025
Approach and Philosophy of On baking technology
Machine learning based COVID-19 study performance prediction
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
Teaching material agriculture food technology
Per capita expenditure prediction using model stacking based on satellite ima...
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
Review of recent advances in non-invasive hemoglobin estimation
How UI/UX Design Impacts User Retention in Mobile Apps.pdf
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
Agricultural_Statistics_at_a_Glance_2022_0.pdf
Ad

PROSA - A Framework for Online Failure Prediction through Online Testing

  • 1. PROSA A framework for Failure Prediction through Online Testing Osama Sammodi S‐Cube Industrial Workshop 24.02.2012, Thales, Paris 1 University of Duisburg‐Essen (UniDue)
  • 2. Agenda • PROSA: Online Testing & Failure Prediction Framework • Evaluation • PROSA and fi‐ware • Benefits and Use Case 2
  • 3. Current Situation Failure Prediction • Web services provide opportunities for building highly dynamic  systems by integrating 3rd party services – Which are under the sole control of service providers – May behave in ways not anticipated during design time (e.g., degradation of QoS such as reduced performance or low reliability) • Online failure prediction allows anticipating deviations in the  expected QoS – And thus, planning and implementing proactive repair or compensation  activities 3
  • 4. Goal Accurate Failure Prediction Inaccurate failure prediction leads to: – False Positives: prediction predicts a failure although the service turns out  to work when invoked – False Negatives: prediction doesn’t predict a failure although the service  turns out to fail when invoked  – Higher operational cost (e.g., use of expensive alternative service) – Performance issues (in the worst case, leaving less  time to address true failures) – Failures and financial loses (e.g., use of a “buggy”  service)  4
  • 5. Failure Prediction & Monitoring Problem • Monitoring (prominent for SBAs) – Observe the software during its  current execution (i.e., actual use /  End-user operation) – End‐user interacts with the  system input output Cannot guarantee  comprehensive / timely  coverage of the ’test object’  Can reduce the accuracy of  failure prediction [for more details, see deliverable JRA-1.3.1; S- 5 Cube KM]
  • 6. Failure Prediction & OT Solution Solution: Online Testing (OT) = Extend testing to the operation phase Identify  Adaptation  Requirements Need Engineering Operation & Management “Actively (& systematically)  Testing execute services in parallel  Identify  Adaptation  Adaptation Design Evolution to their normal use in SBA” Strategy Deployment & Enact Provisioning Realization Adaptation Tester input output 6
  • 7. PROSA Failure Prediction Framework PROSA Framework • Online testing Online Testing  Monitoring Module – Triggers testing the  Module Usage Rates services based on usage  Test Input Usage rate  Online Testing  Monitoring  QoS Data Monitoring  rates threshold Engine Time  Engine Usage Data Data Interval • Monitoring Online test  Test Input  QoS Data – Performs actual  rate Repository observation of QoS data  Prediction Module for both testing and  Prediction  Model Prediction  Engine Pred.  monitoring model • Prediction – Use combined  Prediction  monitoring and testing  Monitoring   Test Input Result  Events results (QoS data) for  Service predicting failures Service‐oriented System 7
  • 8. Agenda • PROSA: Online Testing & Failure Prediction Framework • Evaluation • PROSA and fi‐ware • Benefits and Use Cases 8
  • 9. Experiments Goal • To understand the accuracy gains achieved by OT in a  broad setting  • Analyse the factors that can influence the gains in  prediction accuracy achieved by OT. – Usage rate – Prediction model – Online test rates 9
  • 10. Experiments Results • Influence of usage rate and online test rate – results using: Last and 25% failure rate 0.25 0.25 0.25 ΔF Difference (OT‐M) ΔF Difference (OT‐M) ΔF Difference (OT‐M) 0.20 0.20 0.20 0.15 0.15 0.15 0.10 0.10 0.10 0.05 0.05 0.05 0.00 0.00 0.00 0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20 usage rate usage rate usage rate Online test rate = 0.15 Online test rate = 0.30 Online test rate = 0.60 10
  • 11. Experiments Results • Influence of prediction model – results using: 0.15 online test rate and 25% failure rate 0.25 0.25 0.25 0.25 ΔF Difference (OT‐M) ΔF Difference (OT‐M) ΔF Difference (OT‐M) ΔF Difference (OT‐M) 0.20 0.20 0.20 0.20 0.15 0.15 0.15 0.15 0.10 0.10 0.10 0.10 0.05 0.05 0.05 0.05 0.00 0.00 0.00 0.00 0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20 usage rate usage rate usage rate usage rate Last BM(10) BM(5) SEM Last observed value is  Arithmetic average  Arithmetic average  Simple Exponential Smoothing the prediction value of last 10 points of last 5 points 11
  • 12. Agenda • PROSA: Online Testing & Failure Prediction Framework • Evaluation • PROSA and fi‐ware • Benefits and Use Cases 12
  • 13. PROSA & fi‐ware Analysis and  Construction Deployment Execution and  PERFORMANCE TESTING Design and Testing Monitoring Trace Analyzer Software Performance Cockpit PROSA DEPLOY‐ MENT ENG Deployment Tool (for IaaS/PaaS Deployment) On‐going work 13 Future Internet Core Platform: http://www.fi‐ware.eu/
  • 14. Agenda • PROSA: Online Testing & Failure Prediction Framework • Evaluation • PROSA and fi‐ware • Benefits and Use Cases 14
  • 15. Benefits and Use Cases PROSA Constant availability of QoS data Use Cases: • Accurate failure prediction • Integration in FI application core platform (fi‐ware) • Combining/using PROSA with approaches for failure  prediction of a composite service – UniDue’s approach (SPADE) : e‐2‐e requirement violation  prediction through runtime verification (see S‐Cube Virtual  Campus) SLA violation  prediction • Avoiding unnecessary costs • Avoiding unnecessary repair/  Failure compensation efforts Prediction • Avoiding SLA violations for service  providers 15
  • 17. References [Sammodi et al. 2011] O. Sammodi, A. Metzger, X. Franch, M. Oriol, J. Marco, and K. Pohl. Usage‐based online testing for proactive adaptation of service‐based applications. In COMPSAC 2011 [Metzger 2011] A. Metzger. Towards Accurate Failure Prediction for the Proactive Adaptation of Service‐oriented Systems (Invited Paper).  In ASAS@ESEC 2011 [Salfner et al. 2010] F. Salfner, M. Lenk, and M. Malek. A survey of online failure prediction methods. ACM Comput. Surv., 42(3), 2010 [PO‐JRA‐1.3.1] S‐Cube deliverable # PO‐JRA‐1.3.1: Survey of Quality Related Aspects Relevant for Service‐based Applications;  http://www.s‐cube‐network.eu/results/deliverables/wp‐jra‐1.3 [S‐Cube KM] S‐Cube Knowledge Model: http://www.s‐cube‐network.eu/knowledge‐model 17