SlideShare a Scribd company logo
CCIDS 최동민
Yonsei University SeveranceHospital CCIDS
PyradiomicsCustomization
Contents
1. About Pyradiomics
2. Read image and mask files using SimpleITK
3. How to extract radiomic features using Pyradiomics
4. Customizing Pyradiomics options
Yonsei University SeveranceHospital CCIDS
About Pyradiomics
Yonsei University SeveranceHospital CCIDS
About Pyradiomics
Yonsei University SeveranceHospital CCIDS
- An open-source python package for the extraction of Radiomics features from medical
images
- Aim to establish a reference standard for
Radiomic analysis
- Used to calculate single values per feature
for a region of interest (“segment-based”)
- https://www.radiomics.io/pyradiomics.html
Read image and mask files
using SimpleITK
Yonsei University SeveranceHospital CCIDS
Read image and mask files using SimpleITK
Yonsei University SeveranceHospital CCIDS
1. Install SimpleITK package using pip
! p i p i n s t a l l S i m p l e I T K
2. Import SimpleITK
i m p o r t S i m p l e I T K a s s i t k
3. Specify image and mask file path
i m a g e _ p a t h = ' i m a g e _ s a m p l e _ p a t h . n i i . g z ’
m a s k _ p a t h = ‘ m a s k _ s a m p l e _ p a t h . n i i . g z '
4. Read image and mask file as SimpleITK object
i m a g e = s i t k . R e a d I m a g e ( i m a g e _ p a t h )
m a s k = s i t k . R e a d I m a g e ( m a s k _ p a t h )
p r i n t ( i m a g e )
>>>
…
How to extract radiomic features
using Pyradiomics
Yonsei University SeveranceHospital CCIDS
How to extract radiomic features using Pyradiomics
Yonsei University SeveranceHospital CCIDS
1. Install Pyradiomics package using pip
! p i p i n s t a l l p y r a d i o m i c s
2. Import Pyradiomics
i m p o r t r a d i o m i c s
3. Build feature extractor
e x t r a c t o r = r a d i o m i c s . f e a t u r e e x t r a c t o r. R a d i o m i c s F e a t u r e s E x t r a c t o r ( )
4. Extract features using feature extractor
f e a t u r e Ve c t o r = e x t r a c t o r. e x e c u t e ( i m a g e , m a s k )
Customizing Pyradiomics Options
Yonsei University SeveranceHospital CCIDS
Customizing Pyradiomics Options
Yonsei University SeveranceHospital CCIDS
(1) Specifying which features(class) to extract
- Available feature classes are : first order, shape, glcm, glrlm, glszm, gldm, ngtdm
f e a t u r e s _ t o _ e x t r a c t = [ ' f i r s t o r d e r ' , ' s h a p e ' , ' g l c m ' , ' g l r l m ' , ' g l s z m ' , ' g l d m ' , ‘ n g t d m ’ ]
f o r f e a t u r e i n f e a t u r e s _ t o _ e x t r a c t :
e x t r a c t o r. e n a b l e F e a t u r e C l a s s B y N a m e ( f e a t u r e )
https://pyradiomics.readthedocs.io/en/latest/customization.html
Customizing Pyradiomics Options
Yonsei University SeveranceHospital CCIDS
(2) Specifying settings, which control the pre-processing and customize the behavior of
filters and feature classes
s e t t i n g s = { }
s e t t i n g s [ s e t t i n g _ 1 ] = v a l u e _ 1
s e t t i n g s [ s e t t i n g _ 2 ] = v a l u e _ 2
e x t r a c t o r = r a d i o m i c s . f e a t u r e e x t r a c t o r. R a d i o m i c s F e a t u r e s E x t r a c t o r ( * * s e t t i n g s )
…
Settings are stored in the settings dictionary in the feature extractor class instance,
where the key is the case sensitive setting name.
Customizing Pyradiomics Options
Yonsei University SeveranceHospital CCIDS
(2) Specifying settings, which control the pre-processing and customize the behavior of
filters and feature classes
s e t t i n g s = { }
s e t t i n g s [ ' n o r m a l i z e ' ] = Tr u e
s e t t i n g s [ ' n o r m a l i z e S c a l e ' ] = 1
s e t t i n g s [ ' r e m o v e O u t l i e r s ' ] = F a l s e
1. Feature Extractor level : Image Normalization
Customizing Pyradiomics Options
Yonsei University SeveranceHospital CCIDS
(2) Specifying settings, which control the pre-processing and customize the behavior of
filters and feature classes
s e t t i n g s = { }
s e t t i n g s [ ' r e s a m p l e d P i x e l S p a c i n g ' ] = ( 1 , 1 , 1 )
s e t t i n g s [ ' i n t e r p o l a t o r ' ] = ' s i t k B S p l i n e '
1. Feature Extractor level : Resampling the image
Set the size of the voxel in (x, y, z) plane where resampling
Customizing Pyradiomics Options
Yonsei University SeveranceHospital CCIDS
(2) Specifying settings, which control the pre-processing and customize the behavior of
filters and feature classes
1. Feature Extractor level :
• Pre-cropping
• Resegmentation
• Mask validation
• Miscellaneous
Customizing Pyradiomics Options
Yonsei University SeveranceHospital CCIDS
(2) Specifying settings, which control the pre-processing and customize the behavior of
filters and feature classes
s e t t i n g s = { }
s e t t i n g s [ ' b i n W i d t h ' ] = 2 5
s e t t i n g s [ ' b i n C o u n t ' ] = N o n e
2. Filter class level : Image discretization
Size of bins when making a histogram and for discretization of the image gray level
Specify the number of bins to create. The width of the bin is then determined by the range of in the ROI
* Tips. No definitive evidence on which method is available. Authors advise a fixed bin width.
Customizing Pyradiomics Options
Yonsei University SeveranceHospital CCIDS
(2) Specifying settings, which control the pre-processing and customize the behavior of
filters and feature classes
s e t t i n g s = { }
s e t t i n g s [ ' d i s t a n c e ' ] = [ [ 1 ] ]
2. Filter class level : Distance to neighbor
Specifies the distance between the center voxel and the neighbor, for which
angles should be generated. (Only valid for GLCM and NGTDM)
Customizing Pyradiomics Options
Yonsei University SeveranceHospital CCIDS
(2) Specifying settings, which control the pre-processing and customize the behavior of
filters and feature classes
s e t t i n g s = { }
s e t t i n g s [ ' w e i g h t i n g N o r m ' ] = N o n e
2. Filter class level : Texture matric weighting
Which norm should be used when applying distance weighting
(Only valid for GLCM and GLRLM)
• 'manhattan'
• 'euclidian'
• 'infinity'
• 'no_weighting ' : GLCMs are weighted by factor 1 and summed
• None : Applies no weights, mean of values are returned
Customizing Pyradiomics Options
Yonsei University SeveranceHospital CCIDS
(2) Specifying settings, which control the pre-processing and customize the behavior of
filters and feature classes
2. Filter class level :
• Forced 2D extraction
Thankyou

More Related Content

PPTX
Minimal requirements for generalist about cancer topics
PPTX
Metastatic Castration Resistant Prostate Cancer(mCRPC)
PDF
合成変量とアンサンブル:回帰森と加法モデルの要点
PPTX
CA PROSTATE
PDF
経験過程
PPTX
Hormonal therapy of prostate cancer
PPTX
Radiotherapy in acute leukemia
PPTX
Role of immobilisation and devices in radiotherapy
Minimal requirements for generalist about cancer topics
Metastatic Castration Resistant Prostate Cancer(mCRPC)
合成変量とアンサンブル:回帰森と加法モデルの要点
CA PROSTATE
経験過程
Hormonal therapy of prostate cancer
Radiotherapy in acute leukemia
Role of immobilisation and devices in radiotherapy

What's hot (20)

PDF
ONCOLOGY CARTOONS
PPTX
Radiation Therapy in the Management of Lung Cancer
PPTX
Thulium vs holmium
PDF
性能測定道 事始め編
PPTX
Metastatic castrate resistant prostate cancer
PPTX
Accidents in Radiotherapy
PPT
4 D Adaptive Radiotherapy & Tomotherapy
PDF
Cache-Oblivious データ構造入門 @DSIRNLP#5
PDF
トピックモデル
PPT
Stomach adjuvant rt
PPTX
Clinical Trials in Carcinoma Prostate
PPTX
Cross trial
PDF
カルマンフィルタ講義資料
PPTX
StanとRでベイズ統計モデリング読書会(Osaka.stan) 第6章
PPTX
Management of testicular tumors-Seminoma (by Dr. Akhil Kapoor)
PPT
Metastatic breast cancer..
PPTX
ベイズファクターとモデル選択
PDF
はじめてのパターン認識第八章
PDF
第13回 配信講義 計算科学技術特論B(2022)
PDF
Convex optimization
ONCOLOGY CARTOONS
Radiation Therapy in the Management of Lung Cancer
Thulium vs holmium
性能測定道 事始め編
Metastatic castrate resistant prostate cancer
Accidents in Radiotherapy
4 D Adaptive Radiotherapy & Tomotherapy
Cache-Oblivious データ構造入門 @DSIRNLP#5
トピックモデル
Stomach adjuvant rt
Clinical Trials in Carcinoma Prostate
Cross trial
カルマンフィルタ講義資料
StanとRでベイズ統計モデリング読書会(Osaka.stan) 第6章
Management of testicular tumors-Seminoma (by Dr. Akhil Kapoor)
Metastatic breast cancer..
ベイズファクターとモデル選択
はじめてのパターン認識第八章
第13回 配信講義 計算科学技術特論B(2022)
Convex optimization
Ad

Similar to Pyradiomics Customization [CDM] (20)

PDF
Segmentation and Classification of MRI Brain Tumor
PDF
A Hybrid Auto Surveillance Model Using Scale Invariant Feature Transformation...
PDF
PPT
PACS strategic plan and needs assessment, technical Issues, PACS architecture.
PDF
Ls3520052009
PDF
IRJET - Skin Disease Identification using Image Processing and Machine Le...
PDF
Hybrid Model using Unsupervised Filtering Based on Ant Colony Optimization an...
PDF
Automatic Detection of Radius of Bone Fracture
PPTX
Bioinfo ngs data format visualization v2
PDF
IRJET- Texture Analysis and Fracture Identification of Bones X-Ray Images...
PPTX
Structure of DICOM Image
PDF
An Effective Attendance Management System using Face Recognition
PDF
⭐⭐⭐⭐⭐ Device Free Indoor Localization in the 28 GHz band based on machine lea...
PDF
IRJET-Analysis of Face Recognition System for Different Classifier
PDF
Flow Trajectory Approach for Human Action Recognition
PDF
Simple APIs and innovative documentation
PDF
Feature selection using modified particle swarm optimisation for face recogni...
PDF
An fpga based efficient fruit recognition system using minimum
PDF
Weapon Detection and Classification in CCTV Footage
PDF
NIPS2017 Few-shot Learning and Graph Convolution
Segmentation and Classification of MRI Brain Tumor
A Hybrid Auto Surveillance Model Using Scale Invariant Feature Transformation...
PACS strategic plan and needs assessment, technical Issues, PACS architecture.
Ls3520052009
IRJET - Skin Disease Identification using Image Processing and Machine Le...
Hybrid Model using Unsupervised Filtering Based on Ant Colony Optimization an...
Automatic Detection of Radius of Bone Fracture
Bioinfo ngs data format visualization v2
IRJET- Texture Analysis and Fracture Identification of Bones X-Ray Images...
Structure of DICOM Image
An Effective Attendance Management System using Face Recognition
⭐⭐⭐⭐⭐ Device Free Indoor Localization in the 28 GHz band based on machine lea...
IRJET-Analysis of Face Recognition System for Different Classifier
Flow Trajectory Approach for Human Action Recognition
Simple APIs and innovative documentation
Feature selection using modified particle swarm optimisation for face recogni...
An fpga based efficient fruit recognition system using minimum
Weapon Detection and Classification in CCTV Footage
NIPS2017 Few-shot Learning and Graph Convolution
Ad

More from Dongmin Choi (20)

PDF
[Review] BoxInst: High-Performance Instance Segmentation with Box Annotations...
PDF
Review: Incremental Few-shot Instance Segmentation [CDM]
PDF
Review: You Only Look One-level Feature
PDF
Transformer in Computer Vision
PDF
Review : Adaptive Consistency Regularization for Semi-Supervised Transfer Lea...
PDF
YolactEdge Review [cdm]
PDF
Review : Inter-slice Context Residual Learning for 3D Medical Image Segmentation
PDF
Deformable DETR Review [CDM]
PDF
ViT (Vision Transformer) Review [CDM]
PDF
Review : Prototype Mixture Models for Few-shot Semantic Segmentation
PDF
Review : PolarMask: Single Shot Instance Segmentation with Polar Representati...
PDF
Review : Multi-Domain Image Completion for Random Missing Input Data [cdm]
PDF
Review : Rethinking Pre-training and Self-training
PDF
Review : Structure Boundary Preserving Segmentation
for Medical Image with Am...
PDF
Seeing What a GAN Cannot Generate [cdm]
PDF
Neural network pruning with residual connections and limited-data review [cdm]
PDF
Network Deconvolution review [cdm]
PDF
How much position information do convolutional neural networks encode? review...
PDF
Objects as points (CenterNet) review [CDM]
PDF
Augmix review [cdm]
[Review] BoxInst: High-Performance Instance Segmentation with Box Annotations...
Review: Incremental Few-shot Instance Segmentation [CDM]
Review: You Only Look One-level Feature
Transformer in Computer Vision
Review : Adaptive Consistency Regularization for Semi-Supervised Transfer Lea...
YolactEdge Review [cdm]
Review : Inter-slice Context Residual Learning for 3D Medical Image Segmentation
Deformable DETR Review [CDM]
ViT (Vision Transformer) Review [CDM]
Review : Prototype Mixture Models for Few-shot Semantic Segmentation
Review : PolarMask: Single Shot Instance Segmentation with Polar Representati...
Review : Multi-Domain Image Completion for Random Missing Input Data [cdm]
Review : Rethinking Pre-training and Self-training
Review : Structure Boundary Preserving Segmentation
for Medical Image with Am...
Seeing What a GAN Cannot Generate [cdm]
Neural network pruning with residual connections and limited-data review [cdm]
Network Deconvolution review [cdm]
How much position information do convolutional neural networks encode? review...
Objects as points (CenterNet) review [CDM]
Augmix review [cdm]

Recently uploaded (20)

PDF
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
PDF
Empathic Computing: Creating Shared Understanding
PDF
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
PDF
Per capita expenditure prediction using model stacking based on satellite ima...
PPTX
Programs and apps: productivity, graphics, security and other tools
PPTX
A Presentation on Artificial Intelligence
PPTX
MYSQL Presentation for SQL database connectivity
PDF
Electronic commerce courselecture one. Pdf
PDF
Mobile App Security Testing_ A Comprehensive Guide.pdf
PDF
Accuracy of neural networks in brain wave diagnosis of schizophrenia
PPTX
Tartificialntelligence_presentation.pptx
PDF
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
PPTX
20250228 LYD VKU AI Blended-Learning.pptx
PDF
Dropbox Q2 2025 Financial Results & Investor Presentation
PDF
gpt5_lecture_notes_comprehensive_20250812015547.pdf
PDF
MIND Revenue Release Quarter 2 2025 Press Release
PPTX
SOPHOS-XG Firewall Administrator PPT.pptx
PDF
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
PDF
The Rise and Fall of 3GPP – Time for a Sabbatical?
PDF
Encapsulation theory and applications.pdf
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
Empathic Computing: Creating Shared Understanding
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
Per capita expenditure prediction using model stacking based on satellite ima...
Programs and apps: productivity, graphics, security and other tools
A Presentation on Artificial Intelligence
MYSQL Presentation for SQL database connectivity
Electronic commerce courselecture one. Pdf
Mobile App Security Testing_ A Comprehensive Guide.pdf
Accuracy of neural networks in brain wave diagnosis of schizophrenia
Tartificialntelligence_presentation.pptx
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
20250228 LYD VKU AI Blended-Learning.pptx
Dropbox Q2 2025 Financial Results & Investor Presentation
gpt5_lecture_notes_comprehensive_20250812015547.pdf
MIND Revenue Release Quarter 2 2025 Press Release
SOPHOS-XG Firewall Administrator PPT.pptx
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
The Rise and Fall of 3GPP – Time for a Sabbatical?
Encapsulation theory and applications.pdf

Pyradiomics Customization [CDM]

  • 1. CCIDS 최동민 Yonsei University SeveranceHospital CCIDS PyradiomicsCustomization
  • 2. Contents 1. About Pyradiomics 2. Read image and mask files using SimpleITK 3. How to extract radiomic features using Pyradiomics 4. Customizing Pyradiomics options Yonsei University SeveranceHospital CCIDS
  • 3. About Pyradiomics Yonsei University SeveranceHospital CCIDS
  • 4. About Pyradiomics Yonsei University SeveranceHospital CCIDS - An open-source python package for the extraction of Radiomics features from medical images - Aim to establish a reference standard for Radiomic analysis - Used to calculate single values per feature for a region of interest (“segment-based”) - https://www.radiomics.io/pyradiomics.html
  • 5. Read image and mask files using SimpleITK Yonsei University SeveranceHospital CCIDS
  • 6. Read image and mask files using SimpleITK Yonsei University SeveranceHospital CCIDS 1. Install SimpleITK package using pip ! p i p i n s t a l l S i m p l e I T K 2. Import SimpleITK i m p o r t S i m p l e I T K a s s i t k 3. Specify image and mask file path i m a g e _ p a t h = ' i m a g e _ s a m p l e _ p a t h . n i i . g z ’ m a s k _ p a t h = ‘ m a s k _ s a m p l e _ p a t h . n i i . g z ' 4. Read image and mask file as SimpleITK object i m a g e = s i t k . R e a d I m a g e ( i m a g e _ p a t h ) m a s k = s i t k . R e a d I m a g e ( m a s k _ p a t h ) p r i n t ( i m a g e ) >>> …
  • 7. How to extract radiomic features using Pyradiomics Yonsei University SeveranceHospital CCIDS
  • 8. How to extract radiomic features using Pyradiomics Yonsei University SeveranceHospital CCIDS 1. Install Pyradiomics package using pip ! p i p i n s t a l l p y r a d i o m i c s 2. Import Pyradiomics i m p o r t r a d i o m i c s 3. Build feature extractor e x t r a c t o r = r a d i o m i c s . f e a t u r e e x t r a c t o r. R a d i o m i c s F e a t u r e s E x t r a c t o r ( ) 4. Extract features using feature extractor f e a t u r e Ve c t o r = e x t r a c t o r. e x e c u t e ( i m a g e , m a s k )
  • 9. Customizing Pyradiomics Options Yonsei University SeveranceHospital CCIDS
  • 10. Customizing Pyradiomics Options Yonsei University SeveranceHospital CCIDS (1) Specifying which features(class) to extract - Available feature classes are : first order, shape, glcm, glrlm, glszm, gldm, ngtdm f e a t u r e s _ t o _ e x t r a c t = [ ' f i r s t o r d e r ' , ' s h a p e ' , ' g l c m ' , ' g l r l m ' , ' g l s z m ' , ' g l d m ' , ‘ n g t d m ’ ] f o r f e a t u r e i n f e a t u r e s _ t o _ e x t r a c t : e x t r a c t o r. e n a b l e F e a t u r e C l a s s B y N a m e ( f e a t u r e ) https://pyradiomics.readthedocs.io/en/latest/customization.html
  • 11. Customizing Pyradiomics Options Yonsei University SeveranceHospital CCIDS (2) Specifying settings, which control the pre-processing and customize the behavior of filters and feature classes s e t t i n g s = { } s e t t i n g s [ s e t t i n g _ 1 ] = v a l u e _ 1 s e t t i n g s [ s e t t i n g _ 2 ] = v a l u e _ 2 e x t r a c t o r = r a d i o m i c s . f e a t u r e e x t r a c t o r. R a d i o m i c s F e a t u r e s E x t r a c t o r ( * * s e t t i n g s ) … Settings are stored in the settings dictionary in the feature extractor class instance, where the key is the case sensitive setting name.
  • 12. Customizing Pyradiomics Options Yonsei University SeveranceHospital CCIDS (2) Specifying settings, which control the pre-processing and customize the behavior of filters and feature classes s e t t i n g s = { } s e t t i n g s [ ' n o r m a l i z e ' ] = Tr u e s e t t i n g s [ ' n o r m a l i z e S c a l e ' ] = 1 s e t t i n g s [ ' r e m o v e O u t l i e r s ' ] = F a l s e 1. Feature Extractor level : Image Normalization
  • 13. Customizing Pyradiomics Options Yonsei University SeveranceHospital CCIDS (2) Specifying settings, which control the pre-processing and customize the behavior of filters and feature classes s e t t i n g s = { } s e t t i n g s [ ' r e s a m p l e d P i x e l S p a c i n g ' ] = ( 1 , 1 , 1 ) s e t t i n g s [ ' i n t e r p o l a t o r ' ] = ' s i t k B S p l i n e ' 1. Feature Extractor level : Resampling the image Set the size of the voxel in (x, y, z) plane where resampling
  • 14. Customizing Pyradiomics Options Yonsei University SeveranceHospital CCIDS (2) Specifying settings, which control the pre-processing and customize the behavior of filters and feature classes 1. Feature Extractor level : • Pre-cropping • Resegmentation • Mask validation • Miscellaneous
  • 15. Customizing Pyradiomics Options Yonsei University SeveranceHospital CCIDS (2) Specifying settings, which control the pre-processing and customize the behavior of filters and feature classes s e t t i n g s = { } s e t t i n g s [ ' b i n W i d t h ' ] = 2 5 s e t t i n g s [ ' b i n C o u n t ' ] = N o n e 2. Filter class level : Image discretization Size of bins when making a histogram and for discretization of the image gray level Specify the number of bins to create. The width of the bin is then determined by the range of in the ROI * Tips. No definitive evidence on which method is available. Authors advise a fixed bin width.
  • 16. Customizing Pyradiomics Options Yonsei University SeveranceHospital CCIDS (2) Specifying settings, which control the pre-processing and customize the behavior of filters and feature classes s e t t i n g s = { } s e t t i n g s [ ' d i s t a n c e ' ] = [ [ 1 ] ] 2. Filter class level : Distance to neighbor Specifies the distance between the center voxel and the neighbor, for which angles should be generated. (Only valid for GLCM and NGTDM)
  • 17. Customizing Pyradiomics Options Yonsei University SeveranceHospital CCIDS (2) Specifying settings, which control the pre-processing and customize the behavior of filters and feature classes s e t t i n g s = { } s e t t i n g s [ ' w e i g h t i n g N o r m ' ] = N o n e 2. Filter class level : Texture matric weighting Which norm should be used when applying distance weighting (Only valid for GLCM and GLRLM) • 'manhattan' • 'euclidian' • 'infinity' • 'no_weighting ' : GLCMs are weighted by factor 1 and summed • None : Applies no weights, mean of values are returned
  • 18. Customizing Pyradiomics Options Yonsei University SeveranceHospital CCIDS (2) Specifying settings, which control the pre-processing and customize the behavior of filters and feature classes 2. Filter class level : • Forced 2D extraction