This document presents a study comparing two techniques for detecting brain tumors in MRI images: level set segmentation and K-means segmentation. Features are extracted from the segmented tumors using discrete wavelet transform and gray level co-occurrence matrix. The features are then classified as benign or malignant using a support vector machine. The level set method and K-means method are evaluated based on accuracy, sensitivity, and specificity on a dataset of 41 MRI brain images. The level set method achieved slightly higher accuracy of 94.12% compared to the K-means method.