This document presents a novel brain tumor detection system using k-means clustering integrated with fuzzy c-means clustering and artificial neural networks. The system takes advantage of both algorithms for minimal computation time and accuracy. It accurately extracts the tumor region and calculates the tumor area by comparing the results to ground truths of the MRI images. K-means performs initial segmentation, then fuzzy c-means locates the approximate segmented tumor based on membership and cluster selection criteria. Features are extracted and an artificial neural network classifies MRI images as normal or containing a tumor. The system achieves high accuracy, sensitivity and specificity when validated against ground truths.