Unlock your data potential with our Apache PySpark Training. Enroll in the best PySpark course online with expert-led PySpark online classes. Master real-time data processing today!
2. Agenda
What is PySpark SQL?
DataFrames vs SQLContext
Basic SQL Queries in PySpark
Working with Tables & Views
Common Query Examples
Use Cases & Best Practices
Hands-on Demo / Sample Code
+91-96400 01789
contact@accentfuture.com
3. What is PySpark SQL?
Component of Apache Spark for SQL-based querying
Works on top of structured data (DataFrames)
Allows querying using SQL or DataFrame APIs
Key benefit: Combine SQL familiarity with big data scale
+91-96400 01789
contact@accentfuture.com
4. Why Use PySpark SQL?
Scalable SQL over distributed datasets
Integrated with DataFrame APIs
Compatible with Hive, Parquet, ORC, etc.
Great for ETL, analytics, machine learning pipelines
+91-96400 01789
contact@accentfuture.com
5. PySpark SQL Architecture
Diagram: SparkSession Catalyst Optimizer Query Execution RDD
→ → →
Explain how SQL queries get optimized and converted into execution plans
+91-96400 01789
contact@accentfuture.com
6. Getting Started with SparkSession
SparkSession is the entry point for PySpark SQL
Automatically handles SQLContext and HiveContext
+91-96400 01789
contact@accentfuture.com
7. Creating DataFrames
From RDD, CSV, JSON, Parqu
Preview data in tabular form
+91-96400 01789
contact@accentfuture.com
8. Registering Temp Views
Use SQL Queries like:
Spark SQL treats DataFrame as SQL table
+91-96400 01789
contact@accentfuture.com
9. Common SQL Queries
SELECT, WHERE, GROUP BY, ORDER BY, LIMIT
JOIN, UNION, DISTINCT
+91-96400 01789
contact@accentfuture.com
10. Querying with DataFrame API
• Equivalent to SQL but more flexible
• Chainable syntax for transformations
+91-96400 01789
contact@accentfuture.com
11. Saving Results
• Write to CSV, JSON, Parquet
• Partitioning and overwrite options
+91-96400 01789
contact@accentfuture.com
12. Best Practices
Use .cache() for reused queries
Use .explain() to inspect query plans
Avoid wide transformations where possible
Prefer DataFrame over raw RDDs
+91-96400 01789
contact@accentfuture.com
13. Real-World Use Case
Example: Analyzing sales data with PySpark SQL
Show query for total sales by region, top-selling products
+91-96400 01789
contact@accentfuture.com