SlideShare a Scribd company logo
Learn Python
Learn Python
in three hours
in three hours
Some material adapted
from Upenn cmpe391
slides and other sources
Overview
Overview
 History
 Installing & Running Python
 Names & Assignment
 Sequences types: Lists, Tuples, and
Strings
 Mutability
Brief History of Python
Brief History of Python
 Invented in the Netherlands, early 90s
by Guido van Rossum
 Named after Monty Python
 Open sourced from the beginning
 Considered a scripting language, but is
much more
 Scalable, object oriented and functional
from the beginning
 Used by Google from the beginning
 Increasingly popular
Python’s Benevolent Dictator For Life
Python’s Benevolent Dictator For Life
“Python is an experiment in
how much freedom program-
mers need. Too much
freedom and nobody can read
another's code; too little and
expressive-ness is
endangered.”
- Guido van Rossum
http://docs.python.org/
http://docs.python.org/
The Python tutorial is good!
The Python tutorial is good!
Running
Running
Python
Python
The Python Interpreter
The Python Interpreter
 Typical Python implementations offer
both an interpreter and compiler
 Interactive interface to Python with a
read-eval-print loop
[finin@linux2 ~]$ python
Python 2.4.3 (#1, Jan 14 2008, 18:32:40)
[GCC 4.1.2 20070626 (Red Hat 4.1.2-14)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> def square(x):
... return x * x
...
>>> map(square, [1, 2, 3, 4])
[1, 4, 9, 16]
>>>
Installing
Installing
 Python is pre-installed on most Unix systems,
including Linux and MAC OS X
 The pre-installed version may not be the most
recent one (2.6.2 and 3.1.1 as of Sept 09)
 Download from http://python.org/download/
 Python comes with a large library of standard
modules
 There are several options for an IDE
• IDLE – works well with Windows
• Emacs with python-mode or your favorite text editor
• Eclipse with Pydev (http://pydev.sourceforge.net/)
IDLE Development Environment
IDLE Development Environment
 IDLE is an Integrated DeveLopment Environ-
ment for Python, typically used on Windows
 Multi-window text editor with syntax
highlighting, auto-completion, smart indent
and other.
 Python shell with syntax highlighting.
 Integrated debugger
with stepping, persis-
tent breakpoints,
and call stack visi-
bility
Editing Python in Emacs
Editing Python in Emacs
 Emacs python-mode has good support for editing
Python, enabled enabled by default for .py files
 Features: completion, symbol help, eldoc, and inferior
interpreter shell, etc.
Running Interactively on UNIX
Running Interactively on UNIX
On Unix…
% python
>>> 3+3
6
 Python prompts with ‘>>>’.
 To exit Python (not Idle):
• In Unix, type CONTROL-D
• In Windows, type CONTROL-Z + <Enter>
• Evaluate exit()
Running Programs on UNIX
Running Programs on UNIX
 Call python program via the python interpreter
% python fact.py
 Make a python file directly executable by
• Adding the appropriate path to your python
interpreter as the first line of your file
#!/usr/bin/python
• Making the file executable
% chmod a+x fact.py
• Invoking file from Unix command line
% fact.py
Example ‘script’: fact.py
Example ‘script’: fact.py
#! /usr/bin/python
def fact(x):
"""Returns the factorial of its argument, assumed to be a posint"""
if x == 0:
return 1
return x * fact(x - 1)
print
print ’N fact(N)’
print "---------"
for n in range(10):
print n, fact(n)
Python Scripts
Python Scripts
 When you call a python program from the
command line the interpreter evaluates each
expression in the file
 Familiar mechanisms are used to provide
command line arguments and/or redirect
input and output
 Python also has mechanisms to allow a
python program to act both as a script and as
a module to be imported and used by another
python program
Example of a Script
Example of a Script
#! /usr/bin/python
""" reads text from standard input and outputs any email
addresses it finds, one to a line.
"""
import re
from sys import stdin
# a regular expression ~ for a valid email address
pat = re.compile(r'[-w][-.w]*@[-w][-w.]+[a-zA-Z]{2,4}')
for line in stdin.readlines():
for address in pat.findall(line):
print address
results
results
python> python email0.py <email.txt
bill@msft.com
gates@microsoft.com
steve@apple.com
bill@msft.com
python>
Getting a unique, sorted list
Getting a unique, sorted list
import re
from sys import stdin
pat = re.compile(r'[-w][-.w]*@[-w][-w.]+[a-zA-Z]{2,4}’)
# found is an initially empty set (a list w/o duplicates)
found = set( )
for line in stdin.readlines():
for address in pat.findall(line):
found.add(address)
# sorted() takes a sequence, returns a sorted list of its elements
for address in sorted(found):
print address
results
results
python> python email2.py <email.txt
bill@msft.com
gates@microsoft.com
steve@apple.com
python>
Simple functions: ex.py
Simple functions: ex.py
"""factorial done recursively and iteratively"""
def fact1(n):
ans = 1
for i in range(2,n):
ans = ans * n
return ans
def fact2(n):
if n < 1:
return 1
else:
return n * fact2(n - 1)
Simple functions: ex.py
Simple functions: ex.py
671> python
Python 2.5.2 …
>>> import ex
>>> ex.fact1(6)
1296
>>> ex.fact2(200)
78865786736479050355236321393218507…000000L
>>> ex.fact1
<function fact1 at 0x902470>
>>> fact1
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
NameError: name 'fact1' is not defined
>>>
The Basics
The Basics
A Code Sample (in IDLE)
A Code Sample (in IDLE)
x = 34 - 23 # A comment.
y = “Hello” # Another one.
z = 3.45
if z == 3.45 or y == “Hello”:
x = x + 1
y = y + “ World” # String concat.
print x
print y
Enough to Understand the Code
Enough to Understand the Code
 Indentation matters to code meaning
• Block structure indicated by indentation
 First assignment to a variable creates it
• Variable types don’t need to be declared.
• Python figures out the variable types on its own.
 Assignment is = and comparison is ==
 For numbers + - * / % are as expected
• Special use of + for string concatenation and % for
string formatting (as in C’s printf)
 Logical operators are words (and, or,
not) not symbols
 The basic printing command is print
Basic Datatypes
Basic Datatypes
 Integers (default for numbers)
z = 5 / 2 # Answer 2, integer division
 Floats
x = 3.456
 Strings
• Can use “” or ‘’ to specify with “abc” == ‘abc’
• Unmatched can occur within the string:
“matt’s”
• Use triple double-quotes for multi-line strings or
strings than contain both ‘ and “ inside of them:
“““a‘b“c”””
Whitespace
Whitespace
Whitespace is meaningful in Python: especially
indentation and placement of newlines
Use a newline to end a line of code
Use  when must go to next line prematurely
No braces {} to mark blocks of code, use
consistent indentation instead
• First line with less indentation is outside of the block
• First line with more indentation starts a nested block
Colons start of a new block in many constructs,
e.g. function definitions, then clauses
Comments
Comments
 Start comments with #, rest of line is ignored
 Can include a “documentation string” as the
first line of a new function or class you define
 Development environments, debugger, and
other tools use it: it’s good style to include one
def fact(n):
“““fact(n) assumes n is a positive
integer and returns facorial of n.”””
assert(n>0)
return 1 if n==1 else n*fact(n-1)
Assignment
Assignment
 Binding a variable in Python means setting a name to
hold a reference to some object
• Assignment creates references, not copies
 Names in Python do not have an intrinsic type,
objects have types
• Python determines the type of the reference automatically
based on what data is assigned to it
 You create a name the first time it appears on the left
side of an assignment expression:
x = 3
 A reference is deleted via garbage collection after
any names bound to it have passed out of scope
 Python uses reference semantics (more later)
Naming Rules
Naming Rules
 Names are case sensitive and cannot start
with a number. They can contain letters,
numbers, and underscores.
bob Bob _bob _2_bob_ bob_2 BoB
 There are some reserved words:
and, assert, break, class, continue,
def, del, elif, else, except, exec,
finally, for, from, global, if,
import, in, is, lambda, not, or,
pass, print, raise, return, try,
while
Naming conventions
Naming conventions
The Python community has these recommend-
ed naming conventions
joined_lower for functions, methods and,
attributes
joined_lower or ALL_CAPS for constants
StudlyCaps for classes
camelCase only to conform to pre-existing
conventions
Attributes: interface, _internal, __private
Assignment
Assignment
 You can assign to multiple names at the
same time
>>> x, y = 2, 3
>>> x
2
>>> y
3
This makes it easy to swap values
>>> x, y = y, x
 Assignments can be chained
>>> a = b = x = 2
Accessing Non-Existent Name
Accessing Non-Existent Name
Accessing a name before it’s been properly
created (by placing it on the left side of an
assignment), raises an error
>>> y
Traceback (most recent call last):
File "<pyshell#16>", line 1, in -toplevel-
y
NameError: name ‘y' is not defined
>>> y = 3
>>> y
3
Sequence types:
Sequence types:
Tuples, Lists, and
Tuples, Lists, and
Strings
Strings
Sequence Types
Sequence Types
1. Tuple: (‘john’, 32, [CMSC])
 A simple immutable ordered sequence of
items
 Items can be of mixed types, including
collection types
2. Strings: “John Smith”
• Immutable
• Conceptually very much like a tuple
3. List: [1, 2, ‘john’, (‘up’, ‘down’)]
 Mutable ordered sequence of items of
mixed types
Similar Syntax
Similar Syntax
 All three sequence types (tuples,
strings, and lists) share much of the
same syntax and functionality.
 Key difference:
• Tuples and strings are immutable
• Lists are mutable
 The operations shown in this section
can be applied to all sequence types
• most examples will just show the
operation performed on one
Sequence Types 1
Sequence Types 1
 Define tuples using parentheses and commas
>>> tu = (23, ‘abc’, 4.56, (2,3), ‘def’)
 Define lists are using square brackets and
commas
>>> li = [“abc”, 34, 4.34, 23]
 Define strings using quotes (“, ‘, or “““).
>>> st = “Hello World”
>>> st = ‘Hello World’
>>> st = “““This is a multi-line
string that uses triple quotes.”””
Sequence Types 2
Sequence Types 2
 Access individual members of a tuple, list, or
string using square bracket “array” notation
 Note that all are 0 based…
>>> tu = (23, ‘abc’, 4.56, (2,3), ‘def’)
>>> tu[1] # Second item in the tuple.
‘abc’
>>> li = [“abc”, 34, 4.34, 23]
>>> li[1] # Second item in the list.
34
>>> st = “Hello World”
>>> st[1] # Second character in string.
‘e’
Positive and negative indices
Positive and negative indices
>>> t = (23, ‘abc’, 4.56, (2,3), ‘def’)
Positive index: count from the left, starting with 0
>>> t[1]
‘abc’
Negative index: count from right, starting with –1
>>> t[-3]
4.56
Slicing: return copy of a subset
Slicing: return copy of a subset
>>> t = (23, ‘abc’, 4.56, (2,3), ‘def’)
Return a copy of the container with a subset of
the original members. Start copying at the first
index, and stop copying before second.
>>> t[1:4]
(‘abc’, 4.56, (2,3))
Negative indices count from end
>>> t[1:-1]
(‘abc’, 4.56, (2,3))
Slicing: return copy of a =subset
Slicing: return copy of a =subset
>>> t = (23, ‘abc’, 4.56, (2,3), ‘def’)
Omit first index to make copy starting from
beginning of the container
>>> t[:2]
(23, ‘abc’)
Omit second index to make copy starting at first
index and going to end
>>> t[2:]
(4.56, (2,3), ‘def’)
Copying the Whole Sequence
Copying the Whole Sequence
 [ : ] makes a copy of an entire sequence
>>> t[:]
(23, ‘abc’, 4.56, (2,3), ‘def’)
 Note the difference between these two lines
for mutable sequences
>>> l2 = l1 # Both refer to 1 ref,
# changing one affects both
>>> l2 = l1[:] # Independent copies, two
refs
The ‘in’ Operator
The ‘in’ Operator
 Boolean test whether a value is inside a container:
>>> t = [1, 2, 4, 5]
>>> 3 in t
False
>>> 4 in t
True
>>> 4 not in t
False
 For strings, tests for substrings
>>> a = 'abcde'
>>> 'c' in a
True
>>> 'cd' in a
True
>>> 'ac' in a
False
 Be careful: the in keyword is also used in the syntax
of for loops and list comprehensions
The + Operator
The + Operator
The + operator produces a new tuple, list, or
string whose value is the concatenation of its
arguments.
>>> (1, 2, 3) + (4, 5, 6)
(1, 2, 3, 4, 5, 6)
>>> [1, 2, 3] + [4, 5, 6]
[1, 2, 3, 4, 5, 6]
>>> “Hello” + “ ” + “World”
‘Hello World’
The * Operator
The * Operator
 The * operator produces a new tuple, list, or
string that “repeats” the original content.
>>> (1, 2, 3) * 3
(1, 2, 3, 1, 2, 3, 1, 2, 3)
>>> [1, 2, 3] * 3
[1, 2, 3, 1, 2, 3, 1, 2, 3]
>>> “Hello” * 3
‘HelloHelloHello’
Mutability:
Mutability:
Tuples vs. Lists
Tuples vs. Lists
Lists are mutable
Lists are mutable
>>> li = [‘abc’, 23, 4.34, 23]
>>> li[1] = 45
>>> li
[‘abc’, 45, 4.34, 23]
 We can change lists in place.
 Name li still points to the same memory
reference when we’re done.
Tuples are immutable
Tuples are immutable
>>> t = (23, ‘abc’, 4.56, (2,3), ‘def’)
>>> t[2] = 3.14
Traceback (most recent call last):
File "<pyshell#75>", line 1, in -toplevel-
tu[2] = 3.14
TypeError: object doesn't support item assignment
You can’t change a tuple.
You can make a fresh tuple and assign its
reference to a previously used name.
>>> t = (23, ‘abc’, 3.14, (2,3), ‘def’)
The immutability of tuples means they’re faster
than lists.
Operations on Lists Only
Operations on Lists Only
>>> li = [1, 11, 3, 4, 5]
>>> li.append(‘a’) # Note the method
syntax
>>> li
[1, 11, 3, 4, 5, ‘a’]
>>> li.insert(2, ‘i’)
>>>li
[1, 11, ‘i’, 3, 4, 5, ‘a’]
The
The extend
extend method vs
method vs +
+
 + creates a fresh list with a new memory ref
 extend operates on list li in place.
>>> li.extend([9, 8, 7])
>>> li
[1, 2, ‘i’, 3, 4, 5, ‘a’, 9, 8, 7]
 Potentially confusing:
• extend takes a list as an argument.
• append takes a singleton as an argument.
>>> li.append([10, 11, 12])
>>> li
[1, 2, ‘i’, 3, 4, 5, ‘a’, 9, 8, 7, [10,
11, 12]]
Operations on Lists Only
Operations on Lists Only
Lists have many methods, including index, count,
remove, reverse, sort
>>> li = [‘a’, ‘b’, ‘c’, ‘b’]
>>> li.index(‘b’) # index of 1st
occurrence
1
>>> li.count(‘b’) # number of occurrences
2
>>> li.remove(‘b’) # remove 1st
occurrence
>>> li
[‘a’, ‘c’, ‘b’]
Operations on Lists Only
Operations on Lists Only
>>> li = [5, 2, 6, 8]
>>> li.reverse() # reverse the list *in place*
>>> li
[8, 6, 2, 5]
>>> li.sort() # sort the list *in place*
>>> li
[2, 5, 6, 8]
>>> li.sort(some_function)
# sort in place using user-defined comparison
Tuple details
Tuple details
 The comma is the tuple creation operator, not parens
>>> 1,
(1,)
 Python shows parens for clarity (best practice)
>>> (1,)
(1,)
 Don't forget the comma!
>>> (1)
1
 Trailing comma only required for singletons others
 Empty tuples have a special syntactic form
>>> ()
()
>>> tuple()
()
Summary: Tuples vs. Lists
Summary: Tuples vs. Lists
 Lists slower but more powerful than tuples
• Lists can be modified, and they have lots of
handy operations and mehtods
• Tuples are immutable and have fewer
features
 To convert between tuples and lists use the
list() and tuple() functions:
li = list(tu)
tu = tuple(li)

More Related Content

PPT
Python for Engineers and Architects Stud
PPT
ENGLISH PYTHON.ppt
PPT
Python Basics
PPT
pysdasdasdsadsadsadsadsadsadasdasdthon1.ppt
PPT
python1.ppt
PPT
Introductio_to_python_progamming_ppt.ppt
PPT
python1.ppt
PPT
python1.ppt
Python for Engineers and Architects Stud
ENGLISH PYTHON.ppt
Python Basics
pysdasdasdsadsadsadsadsadsadasdasdthon1.ppt
python1.ppt
Introductio_to_python_progamming_ppt.ppt
python1.ppt
python1.ppt

Similar to Python doc and Learn Python in three hours (18)

PPT
python1.ppt
PPT
Lenguaje Python
PPT
python1.ppt
PPT
python1.ppt
PPT
python1.ppt
PPT
coolstuff.ppt
PPT
Learn Python in Three Hours - Presentation
PPTX
manish python.pptx
PPT
Kavitha_python.ppt
PPT
python1.ppt
PPT
Python ppt
PPT
PPT
PYTHON
PPT
Python
PPTX
2022-23TYBSC(CS)-Python Prog._Chapter-1.pptx
PPTX
PPTX
Python ppt
PPTX
Python PPT by Sushil Sir.pptx
python1.ppt
Lenguaje Python
python1.ppt
python1.ppt
python1.ppt
coolstuff.ppt
Learn Python in Three Hours - Presentation
manish python.pptx
Kavitha_python.ppt
python1.ppt
Python ppt
PYTHON
Python
2022-23TYBSC(CS)-Python Prog._Chapter-1.pptx
Python ppt
Python PPT by Sushil Sir.pptx
Ad

More from Anil Yadav (20)

PPTX
Link List : Introduction to List and Linked Lists
PPTX
Link List REPRESENTATION OF DOUBLY LINKED LIST
PPTX
ALGORITHM FOR PUSHING AN ELEMENT TO A QUEUE
PPTX
Link List STACK and Queue USING LINKED LIST
PPTX
Link List Programming Linked List in Cpp
PPTX
Link List & ALGORITHM FOR DELETING A NODE
PPTX
Link List ALGORITHM FOR INSERTING A NODE
PPTX
Presentations Linked Lists Data Structure
PPT
Lec-12, 13 Quees First In First Out (FIFO)
PPT
Lec-12, 13 Quee s Applications of Queues
PPT
Lec-12, 13 Quees Array Implementation IN
PPT
Lec-12, 13 Quees In Queue IntQueue(int s)
PPT
Lec-12, 13 Quees A class for Dynamic Queue implementation
PPT
Function enqueue inserts the value in num
PPT
Lec-12, 13 Quees -How to determine empty and full Queues?
PDF
Unit2-BIS Business Information system Data
PPT
Lec-12, 13 Queues - IntQueue IntQueue(int s) //constructor
PPT
Lec-12, 13 Quees Another implementation of Queues using Arrays
PPT
Lec-12, 13 Quees - Circular Queues and Implementation with Array
PPT
Lec-32 Recursion - Divide and Conquer in Queue
Link List : Introduction to List and Linked Lists
Link List REPRESENTATION OF DOUBLY LINKED LIST
ALGORITHM FOR PUSHING AN ELEMENT TO A QUEUE
Link List STACK and Queue USING LINKED LIST
Link List Programming Linked List in Cpp
Link List & ALGORITHM FOR DELETING A NODE
Link List ALGORITHM FOR INSERTING A NODE
Presentations Linked Lists Data Structure
Lec-12, 13 Quees First In First Out (FIFO)
Lec-12, 13 Quee s Applications of Queues
Lec-12, 13 Quees Array Implementation IN
Lec-12, 13 Quees In Queue IntQueue(int s)
Lec-12, 13 Quees A class for Dynamic Queue implementation
Function enqueue inserts the value in num
Lec-12, 13 Quees -How to determine empty and full Queues?
Unit2-BIS Business Information system Data
Lec-12, 13 Queues - IntQueue IntQueue(int s) //constructor
Lec-12, 13 Quees Another implementation of Queues using Arrays
Lec-12, 13 Quees - Circular Queues and Implementation with Array
Lec-32 Recursion - Divide and Conquer in Queue
Ad

Recently uploaded (20)

PPTX
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
PDF
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
PDF
FourierSeries-QuestionsWithAnswers(Part-A).pdf
PDF
Insiders guide to clinical Medicine.pdf
PPTX
Pharma ospi slides which help in ospi learning
PDF
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
PDF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
PDF
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
PPTX
Lesson notes of climatology university.
PDF
Basic Mud Logging Guide for educational purpose
PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
PPTX
Pharmacology of Heart Failure /Pharmacotherapy of CHF
PDF
Supply Chain Operations Speaking Notes -ICLT Program
PPTX
GDM (1) (1).pptx small presentation for students
PDF
Complications of Minimal Access Surgery at WLH
PDF
O7-L3 Supply Chain Operations - ICLT Program
PPTX
PPH.pptx obstetrics and gynecology in nursing
PPTX
Renaissance Architecture: A Journey from Faith to Humanism
PDF
Classroom Observation Tools for Teachers
PDF
RMMM.pdf make it easy to upload and study
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
FourierSeries-QuestionsWithAnswers(Part-A).pdf
Insiders guide to clinical Medicine.pdf
Pharma ospi slides which help in ospi learning
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
Lesson notes of climatology university.
Basic Mud Logging Guide for educational purpose
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
Pharmacology of Heart Failure /Pharmacotherapy of CHF
Supply Chain Operations Speaking Notes -ICLT Program
GDM (1) (1).pptx small presentation for students
Complications of Minimal Access Surgery at WLH
O7-L3 Supply Chain Operations - ICLT Program
PPH.pptx obstetrics and gynecology in nursing
Renaissance Architecture: A Journey from Faith to Humanism
Classroom Observation Tools for Teachers
RMMM.pdf make it easy to upload and study

Python doc and Learn Python in three hours

  • 1. Learn Python Learn Python in three hours in three hours Some material adapted from Upenn cmpe391 slides and other sources
  • 2. Overview Overview  History  Installing & Running Python  Names & Assignment  Sequences types: Lists, Tuples, and Strings  Mutability
  • 3. Brief History of Python Brief History of Python  Invented in the Netherlands, early 90s by Guido van Rossum  Named after Monty Python  Open sourced from the beginning  Considered a scripting language, but is much more  Scalable, object oriented and functional from the beginning  Used by Google from the beginning  Increasingly popular
  • 4. Python’s Benevolent Dictator For Life Python’s Benevolent Dictator For Life “Python is an experiment in how much freedom program- mers need. Too much freedom and nobody can read another's code; too little and expressive-ness is endangered.” - Guido van Rossum
  • 6. The Python tutorial is good! The Python tutorial is good!
  • 8. The Python Interpreter The Python Interpreter  Typical Python implementations offer both an interpreter and compiler  Interactive interface to Python with a read-eval-print loop [finin@linux2 ~]$ python Python 2.4.3 (#1, Jan 14 2008, 18:32:40) [GCC 4.1.2 20070626 (Red Hat 4.1.2-14)] on linux2 Type "help", "copyright", "credits" or "license" for more information. >>> def square(x): ... return x * x ... >>> map(square, [1, 2, 3, 4]) [1, 4, 9, 16] >>>
  • 9. Installing Installing  Python is pre-installed on most Unix systems, including Linux and MAC OS X  The pre-installed version may not be the most recent one (2.6.2 and 3.1.1 as of Sept 09)  Download from http://python.org/download/  Python comes with a large library of standard modules  There are several options for an IDE • IDLE – works well with Windows • Emacs with python-mode or your favorite text editor • Eclipse with Pydev (http://pydev.sourceforge.net/)
  • 10. IDLE Development Environment IDLE Development Environment  IDLE is an Integrated DeveLopment Environ- ment for Python, typically used on Windows  Multi-window text editor with syntax highlighting, auto-completion, smart indent and other.  Python shell with syntax highlighting.  Integrated debugger with stepping, persis- tent breakpoints, and call stack visi- bility
  • 11. Editing Python in Emacs Editing Python in Emacs  Emacs python-mode has good support for editing Python, enabled enabled by default for .py files  Features: completion, symbol help, eldoc, and inferior interpreter shell, etc.
  • 12. Running Interactively on UNIX Running Interactively on UNIX On Unix… % python >>> 3+3 6  Python prompts with ‘>>>’.  To exit Python (not Idle): • In Unix, type CONTROL-D • In Windows, type CONTROL-Z + <Enter> • Evaluate exit()
  • 13. Running Programs on UNIX Running Programs on UNIX  Call python program via the python interpreter % python fact.py  Make a python file directly executable by • Adding the appropriate path to your python interpreter as the first line of your file #!/usr/bin/python • Making the file executable % chmod a+x fact.py • Invoking file from Unix command line % fact.py
  • 14. Example ‘script’: fact.py Example ‘script’: fact.py #! /usr/bin/python def fact(x): """Returns the factorial of its argument, assumed to be a posint""" if x == 0: return 1 return x * fact(x - 1) print print ’N fact(N)’ print "---------" for n in range(10): print n, fact(n)
  • 15. Python Scripts Python Scripts  When you call a python program from the command line the interpreter evaluates each expression in the file  Familiar mechanisms are used to provide command line arguments and/or redirect input and output  Python also has mechanisms to allow a python program to act both as a script and as a module to be imported and used by another python program
  • 16. Example of a Script Example of a Script #! /usr/bin/python """ reads text from standard input and outputs any email addresses it finds, one to a line. """ import re from sys import stdin # a regular expression ~ for a valid email address pat = re.compile(r'[-w][-.w]*@[-w][-w.]+[a-zA-Z]{2,4}') for line in stdin.readlines(): for address in pat.findall(line): print address
  • 17. results results python> python email0.py <email.txt bill@msft.com gates@microsoft.com steve@apple.com bill@msft.com python>
  • 18. Getting a unique, sorted list Getting a unique, sorted list import re from sys import stdin pat = re.compile(r'[-w][-.w]*@[-w][-w.]+[a-zA-Z]{2,4}’) # found is an initially empty set (a list w/o duplicates) found = set( ) for line in stdin.readlines(): for address in pat.findall(line): found.add(address) # sorted() takes a sequence, returns a sorted list of its elements for address in sorted(found): print address
  • 19. results results python> python email2.py <email.txt bill@msft.com gates@microsoft.com steve@apple.com python>
  • 20. Simple functions: ex.py Simple functions: ex.py """factorial done recursively and iteratively""" def fact1(n): ans = 1 for i in range(2,n): ans = ans * n return ans def fact2(n): if n < 1: return 1 else: return n * fact2(n - 1)
  • 21. Simple functions: ex.py Simple functions: ex.py 671> python Python 2.5.2 … >>> import ex >>> ex.fact1(6) 1296 >>> ex.fact2(200) 78865786736479050355236321393218507…000000L >>> ex.fact1 <function fact1 at 0x902470> >>> fact1 Traceback (most recent call last): File "<stdin>", line 1, in <module> NameError: name 'fact1' is not defined >>>
  • 23. A Code Sample (in IDLE) A Code Sample (in IDLE) x = 34 - 23 # A comment. y = “Hello” # Another one. z = 3.45 if z == 3.45 or y == “Hello”: x = x + 1 y = y + “ World” # String concat. print x print y
  • 24. Enough to Understand the Code Enough to Understand the Code  Indentation matters to code meaning • Block structure indicated by indentation  First assignment to a variable creates it • Variable types don’t need to be declared. • Python figures out the variable types on its own.  Assignment is = and comparison is ==  For numbers + - * / % are as expected • Special use of + for string concatenation and % for string formatting (as in C’s printf)  Logical operators are words (and, or, not) not symbols  The basic printing command is print
  • 25. Basic Datatypes Basic Datatypes  Integers (default for numbers) z = 5 / 2 # Answer 2, integer division  Floats x = 3.456  Strings • Can use “” or ‘’ to specify with “abc” == ‘abc’ • Unmatched can occur within the string: “matt’s” • Use triple double-quotes for multi-line strings or strings than contain both ‘ and “ inside of them: “““a‘b“c”””
  • 26. Whitespace Whitespace Whitespace is meaningful in Python: especially indentation and placement of newlines Use a newline to end a line of code Use when must go to next line prematurely No braces {} to mark blocks of code, use consistent indentation instead • First line with less indentation is outside of the block • First line with more indentation starts a nested block Colons start of a new block in many constructs, e.g. function definitions, then clauses
  • 27. Comments Comments  Start comments with #, rest of line is ignored  Can include a “documentation string” as the first line of a new function or class you define  Development environments, debugger, and other tools use it: it’s good style to include one def fact(n): “““fact(n) assumes n is a positive integer and returns facorial of n.””” assert(n>0) return 1 if n==1 else n*fact(n-1)
  • 28. Assignment Assignment  Binding a variable in Python means setting a name to hold a reference to some object • Assignment creates references, not copies  Names in Python do not have an intrinsic type, objects have types • Python determines the type of the reference automatically based on what data is assigned to it  You create a name the first time it appears on the left side of an assignment expression: x = 3  A reference is deleted via garbage collection after any names bound to it have passed out of scope  Python uses reference semantics (more later)
  • 29. Naming Rules Naming Rules  Names are case sensitive and cannot start with a number. They can contain letters, numbers, and underscores. bob Bob _bob _2_bob_ bob_2 BoB  There are some reserved words: and, assert, break, class, continue, def, del, elif, else, except, exec, finally, for, from, global, if, import, in, is, lambda, not, or, pass, print, raise, return, try, while
  • 30. Naming conventions Naming conventions The Python community has these recommend- ed naming conventions joined_lower for functions, methods and, attributes joined_lower or ALL_CAPS for constants StudlyCaps for classes camelCase only to conform to pre-existing conventions Attributes: interface, _internal, __private
  • 31. Assignment Assignment  You can assign to multiple names at the same time >>> x, y = 2, 3 >>> x 2 >>> y 3 This makes it easy to swap values >>> x, y = y, x  Assignments can be chained >>> a = b = x = 2
  • 32. Accessing Non-Existent Name Accessing Non-Existent Name Accessing a name before it’s been properly created (by placing it on the left side of an assignment), raises an error >>> y Traceback (most recent call last): File "<pyshell#16>", line 1, in -toplevel- y NameError: name ‘y' is not defined >>> y = 3 >>> y 3
  • 33. Sequence types: Sequence types: Tuples, Lists, and Tuples, Lists, and Strings Strings
  • 34. Sequence Types Sequence Types 1. Tuple: (‘john’, 32, [CMSC])  A simple immutable ordered sequence of items  Items can be of mixed types, including collection types 2. Strings: “John Smith” • Immutable • Conceptually very much like a tuple 3. List: [1, 2, ‘john’, (‘up’, ‘down’)]  Mutable ordered sequence of items of mixed types
  • 35. Similar Syntax Similar Syntax  All three sequence types (tuples, strings, and lists) share much of the same syntax and functionality.  Key difference: • Tuples and strings are immutable • Lists are mutable  The operations shown in this section can be applied to all sequence types • most examples will just show the operation performed on one
  • 36. Sequence Types 1 Sequence Types 1  Define tuples using parentheses and commas >>> tu = (23, ‘abc’, 4.56, (2,3), ‘def’)  Define lists are using square brackets and commas >>> li = [“abc”, 34, 4.34, 23]  Define strings using quotes (“, ‘, or “““). >>> st = “Hello World” >>> st = ‘Hello World’ >>> st = “““This is a multi-line string that uses triple quotes.”””
  • 37. Sequence Types 2 Sequence Types 2  Access individual members of a tuple, list, or string using square bracket “array” notation  Note that all are 0 based… >>> tu = (23, ‘abc’, 4.56, (2,3), ‘def’) >>> tu[1] # Second item in the tuple. ‘abc’ >>> li = [“abc”, 34, 4.34, 23] >>> li[1] # Second item in the list. 34 >>> st = “Hello World” >>> st[1] # Second character in string. ‘e’
  • 38. Positive and negative indices Positive and negative indices >>> t = (23, ‘abc’, 4.56, (2,3), ‘def’) Positive index: count from the left, starting with 0 >>> t[1] ‘abc’ Negative index: count from right, starting with –1 >>> t[-3] 4.56
  • 39. Slicing: return copy of a subset Slicing: return copy of a subset >>> t = (23, ‘abc’, 4.56, (2,3), ‘def’) Return a copy of the container with a subset of the original members. Start copying at the first index, and stop copying before second. >>> t[1:4] (‘abc’, 4.56, (2,3)) Negative indices count from end >>> t[1:-1] (‘abc’, 4.56, (2,3))
  • 40. Slicing: return copy of a =subset Slicing: return copy of a =subset >>> t = (23, ‘abc’, 4.56, (2,3), ‘def’) Omit first index to make copy starting from beginning of the container >>> t[:2] (23, ‘abc’) Omit second index to make copy starting at first index and going to end >>> t[2:] (4.56, (2,3), ‘def’)
  • 41. Copying the Whole Sequence Copying the Whole Sequence  [ : ] makes a copy of an entire sequence >>> t[:] (23, ‘abc’, 4.56, (2,3), ‘def’)  Note the difference between these two lines for mutable sequences >>> l2 = l1 # Both refer to 1 ref, # changing one affects both >>> l2 = l1[:] # Independent copies, two refs
  • 42. The ‘in’ Operator The ‘in’ Operator  Boolean test whether a value is inside a container: >>> t = [1, 2, 4, 5] >>> 3 in t False >>> 4 in t True >>> 4 not in t False  For strings, tests for substrings >>> a = 'abcde' >>> 'c' in a True >>> 'cd' in a True >>> 'ac' in a False  Be careful: the in keyword is also used in the syntax of for loops and list comprehensions
  • 43. The + Operator The + Operator The + operator produces a new tuple, list, or string whose value is the concatenation of its arguments. >>> (1, 2, 3) + (4, 5, 6) (1, 2, 3, 4, 5, 6) >>> [1, 2, 3] + [4, 5, 6] [1, 2, 3, 4, 5, 6] >>> “Hello” + “ ” + “World” ‘Hello World’
  • 44. The * Operator The * Operator  The * operator produces a new tuple, list, or string that “repeats” the original content. >>> (1, 2, 3) * 3 (1, 2, 3, 1, 2, 3, 1, 2, 3) >>> [1, 2, 3] * 3 [1, 2, 3, 1, 2, 3, 1, 2, 3] >>> “Hello” * 3 ‘HelloHelloHello’
  • 46. Lists are mutable Lists are mutable >>> li = [‘abc’, 23, 4.34, 23] >>> li[1] = 45 >>> li [‘abc’, 45, 4.34, 23]  We can change lists in place.  Name li still points to the same memory reference when we’re done.
  • 47. Tuples are immutable Tuples are immutable >>> t = (23, ‘abc’, 4.56, (2,3), ‘def’) >>> t[2] = 3.14 Traceback (most recent call last): File "<pyshell#75>", line 1, in -toplevel- tu[2] = 3.14 TypeError: object doesn't support item assignment You can’t change a tuple. You can make a fresh tuple and assign its reference to a previously used name. >>> t = (23, ‘abc’, 3.14, (2,3), ‘def’) The immutability of tuples means they’re faster than lists.
  • 48. Operations on Lists Only Operations on Lists Only >>> li = [1, 11, 3, 4, 5] >>> li.append(‘a’) # Note the method syntax >>> li [1, 11, 3, 4, 5, ‘a’] >>> li.insert(2, ‘i’) >>>li [1, 11, ‘i’, 3, 4, 5, ‘a’]
  • 49. The The extend extend method vs method vs + +  + creates a fresh list with a new memory ref  extend operates on list li in place. >>> li.extend([9, 8, 7]) >>> li [1, 2, ‘i’, 3, 4, 5, ‘a’, 9, 8, 7]  Potentially confusing: • extend takes a list as an argument. • append takes a singleton as an argument. >>> li.append([10, 11, 12]) >>> li [1, 2, ‘i’, 3, 4, 5, ‘a’, 9, 8, 7, [10, 11, 12]]
  • 50. Operations on Lists Only Operations on Lists Only Lists have many methods, including index, count, remove, reverse, sort >>> li = [‘a’, ‘b’, ‘c’, ‘b’] >>> li.index(‘b’) # index of 1st occurrence 1 >>> li.count(‘b’) # number of occurrences 2 >>> li.remove(‘b’) # remove 1st occurrence >>> li [‘a’, ‘c’, ‘b’]
  • 51. Operations on Lists Only Operations on Lists Only >>> li = [5, 2, 6, 8] >>> li.reverse() # reverse the list *in place* >>> li [8, 6, 2, 5] >>> li.sort() # sort the list *in place* >>> li [2, 5, 6, 8] >>> li.sort(some_function) # sort in place using user-defined comparison
  • 52. Tuple details Tuple details  The comma is the tuple creation operator, not parens >>> 1, (1,)  Python shows parens for clarity (best practice) >>> (1,) (1,)  Don't forget the comma! >>> (1) 1  Trailing comma only required for singletons others  Empty tuples have a special syntactic form >>> () () >>> tuple() ()
  • 53. Summary: Tuples vs. Lists Summary: Tuples vs. Lists  Lists slower but more powerful than tuples • Lists can be modified, and they have lots of handy operations and mehtods • Tuples are immutable and have fewer features  To convert between tuples and lists use the list() and tuple() functions: li = list(tu) tu = tuple(li)